Properties

Label 42.6.e.b.37.1
Level $42$
Weight $6$
Character 42.37
Analytic conductor $6.736$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,6,Mod(25,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.25");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 42.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.73612043215\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 42.37
Dual form 42.6.e.b.25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 3.46410i) q^{2} +(4.50000 + 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(-43.0000 + 74.4782i) q^{5} +36.0000 q^{6} +(24.5000 + 127.306i) q^{7} -64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(2.00000 - 3.46410i) q^{2} +(4.50000 + 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(-43.0000 + 74.4782i) q^{5} +36.0000 q^{6} +(24.5000 + 127.306i) q^{7} -64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(172.000 + 297.913i) q^{10} +(-17.0000 - 29.4449i) q^{11} +(72.0000 - 124.708i) q^{12} -3.00000 q^{13} +(490.000 + 169.741i) q^{14} -774.000 q^{15} +(-128.000 + 221.703i) q^{16} +(952.000 + 1648.91i) q^{17} +(162.000 + 280.592i) q^{18} +(744.500 - 1289.51i) q^{19} +1376.00 q^{20} +(-882.000 + 763.834i) q^{21} -136.000 q^{22} +(112.000 - 193.990i) q^{23} +(-288.000 - 498.831i) q^{24} +(-2135.50 - 3698.79i) q^{25} +(-6.00000 + 10.3923i) q^{26} -729.000 q^{27} +(1568.00 - 1357.93i) q^{28} -6508.00 q^{29} +(-1548.00 + 2681.21i) q^{30} +(-865.500 - 1499.09i) q^{31} +(512.000 + 886.810i) q^{32} +(153.000 - 265.004i) q^{33} +7616.00 q^{34} +(-10535.0 - 3649.43i) q^{35} +1296.00 q^{36} +(3816.50 - 6610.37i) q^{37} +(-2978.00 - 5158.05i) q^{38} +(-13.5000 - 23.3827i) q^{39} +(2752.00 - 4766.60i) q^{40} +15414.0 q^{41} +(882.000 + 4583.01i) q^{42} +18491.0 q^{43} +(-272.000 + 471.118i) q^{44} +(-3483.00 - 6032.73i) q^{45} +(-448.000 - 775.959i) q^{46} +(-9231.00 + 15988.6i) q^{47} -2304.00 q^{48} +(-15606.5 + 6237.98i) q^{49} -17084.0 q^{50} +(-8568.00 + 14840.2i) q^{51} +(24.0000 + 41.5692i) q^{52} +(9978.00 + 17282.4i) q^{53} +(-1458.00 + 2525.33i) q^{54} +2924.00 q^{55} +(-1568.00 - 8147.57i) q^{56} +13401.0 q^{57} +(-13016.0 + 22544.4i) q^{58} +(15914.0 + 27563.9i) q^{59} +(6192.00 + 10724.9i) q^{60} +(28827.0 - 49929.8i) q^{61} -6924.00 q^{62} +(-9922.50 - 3437.25i) q^{63} +4096.00 q^{64} +(129.000 - 223.435i) q^{65} +(-612.000 - 1060.02i) q^{66} +(30281.5 + 52449.1i) q^{67} +(15232.0 - 26382.6i) q^{68} +2016.00 q^{69} +(-33712.0 + 29195.4i) q^{70} -44834.0 q^{71} +(2592.00 - 4489.48i) q^{72} +(-10410.5 - 18031.5i) q^{73} +(-15266.0 - 26441.5i) q^{74} +(19219.5 - 33289.2i) q^{75} -23824.0 q^{76} +(3332.00 - 2885.60i) q^{77} -108.000 q^{78} +(15265.5 - 26440.6i) q^{79} +(-11008.0 - 19066.4i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(30828.0 - 53395.7i) q^{82} +110602. q^{83} +(17640.0 + 6110.68i) q^{84} -163744. q^{85} +(36982.0 - 64054.7i) q^{86} +(-29286.0 - 50724.8i) q^{87} +(1088.00 + 1884.47i) q^{88} +(29496.0 - 51088.6i) q^{89} -27864.0 q^{90} +(-73.5000 - 381.917i) q^{91} -3584.00 q^{92} +(7789.50 - 13491.8i) q^{93} +(36924.0 + 63954.2i) q^{94} +(64027.0 + 110898. i) q^{95} +(-4608.00 + 7981.29i) q^{96} -119846. q^{97} +(-9604.00 + 66538.5i) q^{98} +2754.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 9 q^{3} - 16 q^{4} - 86 q^{5} + 72 q^{6} + 49 q^{7} - 128 q^{8} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} + 9 q^{3} - 16 q^{4} - 86 q^{5} + 72 q^{6} + 49 q^{7} - 128 q^{8} - 81 q^{9} + 344 q^{10} - 34 q^{11} + 144 q^{12} - 6 q^{13} + 980 q^{14} - 1548 q^{15} - 256 q^{16} + 1904 q^{17} + 324 q^{18} + 1489 q^{19} + 2752 q^{20} - 1764 q^{21} - 272 q^{22} + 224 q^{23} - 576 q^{24} - 4271 q^{25} - 12 q^{26} - 1458 q^{27} + 3136 q^{28} - 13016 q^{29} - 3096 q^{30} - 1731 q^{31} + 1024 q^{32} + 306 q^{33} + 15232 q^{34} - 21070 q^{35} + 2592 q^{36} + 7633 q^{37} - 5956 q^{38} - 27 q^{39} + 5504 q^{40} + 30828 q^{41} + 1764 q^{42} + 36982 q^{43} - 544 q^{44} - 6966 q^{45} - 896 q^{46} - 18462 q^{47} - 4608 q^{48} - 31213 q^{49} - 34168 q^{50} - 17136 q^{51} + 48 q^{52} + 19956 q^{53} - 2916 q^{54} + 5848 q^{55} - 3136 q^{56} + 26802 q^{57} - 26032 q^{58} + 31828 q^{59} + 12384 q^{60} + 57654 q^{61} - 13848 q^{62} - 19845 q^{63} + 8192 q^{64} + 258 q^{65} - 1224 q^{66} + 60563 q^{67} + 30464 q^{68} + 4032 q^{69} - 67424 q^{70} - 89668 q^{71} + 5184 q^{72} - 20821 q^{73} - 30532 q^{74} + 38439 q^{75} - 47648 q^{76} + 6664 q^{77} - 216 q^{78} + 30531 q^{79} - 22016 q^{80} - 6561 q^{81} + 61656 q^{82} + 221204 q^{83} + 35280 q^{84} - 327488 q^{85} + 73964 q^{86} - 58572 q^{87} + 2176 q^{88} + 58992 q^{89} - 55728 q^{90} - 147 q^{91} - 7168 q^{92} + 15579 q^{93} + 73848 q^{94} + 128054 q^{95} - 9216 q^{96} - 239692 q^{97} - 19208 q^{98} + 5508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(31\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 3.46410i 0.353553 0.612372i
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) −43.0000 + 74.4782i −0.769207 + 1.33231i 0.168786 + 0.985653i \(0.446015\pi\)
−0.937993 + 0.346654i \(0.887318\pi\)
\(6\) 36.0000 0.408248
\(7\) 24.5000 + 127.306i 0.188982 + 0.981981i
\(8\) −64.0000 −0.353553
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 172.000 + 297.913i 0.543912 + 0.942083i
\(11\) −17.0000 29.4449i −0.0423611 0.0733716i 0.844067 0.536237i \(-0.180155\pi\)
−0.886429 + 0.462865i \(0.846821\pi\)
\(12\) 72.0000 124.708i 0.144338 0.250000i
\(13\) −3.00000 −0.00492337 −0.00246169 0.999997i \(-0.500784\pi\)
−0.00246169 + 0.999997i \(0.500784\pi\)
\(14\) 490.000 + 169.741i 0.668153 + 0.231455i
\(15\) −774.000 −0.888204
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) 952.000 + 1648.91i 0.798941 + 1.38381i 0.920306 + 0.391198i \(0.127939\pi\)
−0.121366 + 0.992608i \(0.538727\pi\)
\(18\) 162.000 + 280.592i 0.117851 + 0.204124i
\(19\) 744.500 1289.51i 0.473130 0.819486i −0.526397 0.850239i \(-0.676457\pi\)
0.999527 + 0.0307534i \(0.00979067\pi\)
\(20\) 1376.00 0.769207
\(21\) −882.000 + 763.834i −0.436436 + 0.377964i
\(22\) −136.000 −0.0599076
\(23\) 112.000 193.990i 0.0441467 0.0764644i −0.843108 0.537745i \(-0.819276\pi\)
0.887254 + 0.461280i \(0.152610\pi\)
\(24\) −288.000 498.831i −0.102062 0.176777i
\(25\) −2135.50 3698.79i −0.683360 1.18361i
\(26\) −6.00000 + 10.3923i −0.00174068 + 0.00301494i
\(27\) −729.000 −0.192450
\(28\) 1568.00 1357.93i 0.377964 0.327327i
\(29\) −6508.00 −1.43699 −0.718493 0.695534i \(-0.755168\pi\)
−0.718493 + 0.695534i \(0.755168\pi\)
\(30\) −1548.00 + 2681.21i −0.314028 + 0.543912i
\(31\) −865.500 1499.09i −0.161757 0.280171i 0.773742 0.633501i \(-0.218383\pi\)
−0.935499 + 0.353330i \(0.885049\pi\)
\(32\) 512.000 + 886.810i 0.0883883 + 0.153093i
\(33\) 153.000 265.004i 0.0244572 0.0423611i
\(34\) 7616.00 1.12987
\(35\) −10535.0 3649.43i −1.45367 0.503564i
\(36\) 1296.00 0.166667
\(37\) 3816.50 6610.37i 0.458312 0.793819i −0.540560 0.841305i \(-0.681788\pi\)
0.998872 + 0.0474862i \(0.0151210\pi\)
\(38\) −2978.00 5158.05i −0.334554 0.579464i
\(39\) −13.5000 23.3827i −0.00142126 0.00246169i
\(40\) 2752.00 4766.60i 0.271956 0.471041i
\(41\) 15414.0 1.43204 0.716021 0.698079i \(-0.245961\pi\)
0.716021 + 0.698079i \(0.245961\pi\)
\(42\) 882.000 + 4583.01i 0.0771517 + 0.400892i
\(43\) 18491.0 1.52507 0.762534 0.646948i \(-0.223955\pi\)
0.762534 + 0.646948i \(0.223955\pi\)
\(44\) −272.000 + 471.118i −0.0211805 + 0.0366858i
\(45\) −3483.00 6032.73i −0.256402 0.444102i
\(46\) −448.000 775.959i −0.0312164 0.0540685i
\(47\) −9231.00 + 15988.6i −0.609543 + 1.05576i 0.381773 + 0.924256i \(0.375314\pi\)
−0.991316 + 0.131503i \(0.958020\pi\)
\(48\) −2304.00 −0.144338
\(49\) −15606.5 + 6237.98i −0.928571 + 0.371154i
\(50\) −17084.0 −0.966417
\(51\) −8568.00 + 14840.2i −0.461269 + 0.798941i
\(52\) 24.0000 + 41.5692i 0.00123084 + 0.00213188i
\(53\) 9978.00 + 17282.4i 0.487926 + 0.845112i 0.999904 0.0138864i \(-0.00442031\pi\)
−0.511978 + 0.858999i \(0.671087\pi\)
\(54\) −1458.00 + 2525.33i −0.0680414 + 0.117851i
\(55\) 2924.00 0.130338
\(56\) −1568.00 8147.57i −0.0668153 0.347183i
\(57\) 13401.0 0.546324
\(58\) −13016.0 + 22544.4i −0.508051 + 0.879971i
\(59\) 15914.0 + 27563.9i 0.595181 + 1.03088i 0.993521 + 0.113646i \(0.0362531\pi\)
−0.398340 + 0.917238i \(0.630414\pi\)
\(60\) 6192.00 + 10724.9i 0.222051 + 0.384604i
\(61\) 28827.0 49929.8i 0.991916 1.71805i 0.386062 0.922473i \(-0.373835\pi\)
0.605854 0.795576i \(-0.292832\pi\)
\(62\) −6924.00 −0.228759
\(63\) −9922.50 3437.25i −0.314970 0.109109i
\(64\) 4096.00 0.125000
\(65\) 129.000 223.435i 0.00378710 0.00655944i
\(66\) −612.000 1060.02i −0.0172938 0.0299538i
\(67\) 30281.5 + 52449.1i 0.824120 + 1.42742i 0.902590 + 0.430501i \(0.141663\pi\)
−0.0784702 + 0.996916i \(0.525004\pi\)
\(68\) 15232.0 26382.6i 0.399470 0.691903i
\(69\) 2016.00 0.0509762
\(70\) −33712.0 + 29195.4i −0.822317 + 0.712148i
\(71\) −44834.0 −1.05551 −0.527754 0.849397i \(-0.676966\pi\)
−0.527754 + 0.849397i \(0.676966\pi\)
\(72\) 2592.00 4489.48i 0.0589256 0.102062i
\(73\) −10410.5 18031.5i −0.228646 0.396027i 0.728761 0.684768i \(-0.240097\pi\)
−0.957407 + 0.288741i \(0.906763\pi\)
\(74\) −15266.0 26441.5i −0.324075 0.561315i
\(75\) 19219.5 33289.2i 0.394538 0.683360i
\(76\) −23824.0 −0.473130
\(77\) 3332.00 2885.60i 0.0640440 0.0554637i
\(78\) −108.000 −0.00200996
\(79\) 15265.5 26440.6i 0.275197 0.476655i −0.694988 0.719021i \(-0.744590\pi\)
0.970185 + 0.242367i \(0.0779237\pi\)
\(80\) −11008.0 19066.4i −0.192302 0.333077i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 30828.0 53395.7i 0.506303 0.876943i
\(83\) 110602. 1.76225 0.881125 0.472883i \(-0.156787\pi\)
0.881125 + 0.472883i \(0.156787\pi\)
\(84\) 17640.0 + 6110.68i 0.272772 + 0.0944911i
\(85\) −163744. −2.45820
\(86\) 36982.0 64054.7i 0.539193 0.933910i
\(87\) −29286.0 50724.8i −0.414822 0.718493i
\(88\) 1088.00 + 1884.47i 0.0149769 + 0.0259408i
\(89\) 29496.0 51088.6i 0.394719 0.683673i −0.598346 0.801238i \(-0.704175\pi\)
0.993065 + 0.117564i \(0.0375086\pi\)
\(90\) −27864.0 −0.362608
\(91\) −73.5000 381.917i −0.000930430 0.00483466i
\(92\) −3584.00 −0.0441467
\(93\) 7789.50 13491.8i 0.0933904 0.161757i
\(94\) 36924.0 + 63954.2i 0.431012 + 0.746534i
\(95\) 64027.0 + 110898.i 0.727871 + 1.26071i
\(96\) −4608.00 + 7981.29i −0.0510310 + 0.0883883i
\(97\) −119846. −1.29328 −0.646642 0.762793i \(-0.723827\pi\)
−0.646642 + 0.762793i \(0.723827\pi\)
\(98\) −9604.00 + 66538.5i −0.101015 + 0.699854i
\(99\) 2754.00 0.0282407
\(100\) −34168.0 + 59180.7i −0.341680 + 0.591807i
\(101\) −50005.0 86611.2i −0.487764 0.844833i 0.512137 0.858904i \(-0.328854\pi\)
−0.999901 + 0.0140714i \(0.995521\pi\)
\(102\) 34272.0 + 59360.8i 0.326166 + 0.564937i
\(103\) −60845.5 + 105387.i −0.565113 + 0.978805i 0.431926 + 0.901909i \(0.357834\pi\)
−0.997039 + 0.0768956i \(0.975499\pi\)
\(104\) 192.000 0.00174068
\(105\) −18963.0 98534.6i −0.167855 0.872199i
\(106\) 79824.0 0.690031
\(107\) 24324.0 42130.4i 0.205388 0.355743i −0.744868 0.667212i \(-0.767488\pi\)
0.950256 + 0.311469i \(0.100821\pi\)
\(108\) 5832.00 + 10101.3i 0.0481125 + 0.0833333i
\(109\) 76037.5 + 131701.i 0.613002 + 1.06175i 0.990732 + 0.135834i \(0.0433714\pi\)
−0.377730 + 0.925916i \(0.623295\pi\)
\(110\) 5848.00 10129.0i 0.0460814 0.0798153i
\(111\) 68697.0 0.529213
\(112\) −31360.0 10863.4i −0.236228 0.0818317i
\(113\) −60886.0 −0.448561 −0.224280 0.974525i \(-0.572003\pi\)
−0.224280 + 0.974525i \(0.572003\pi\)
\(114\) 26802.0 46422.4i 0.193155 0.334554i
\(115\) 9632.00 + 16683.1i 0.0679160 + 0.117634i
\(116\) 52064.0 + 90177.5i 0.359247 + 0.622233i
\(117\) 121.500 210.444i 0.000820562 0.00142126i
\(118\) 127312. 0.841714
\(119\) −186592. + 161593.i −1.20789 + 1.04606i
\(120\) 49536.0 0.314028
\(121\) 79947.5 138473.i 0.496411 0.859809i
\(122\) −115308. 199719.i −0.701390 1.21484i
\(123\) 69363.0 + 120140.i 0.413395 + 0.716021i
\(124\) −13848.0 + 23985.4i −0.0808785 + 0.140086i
\(125\) 98556.0 0.564167
\(126\) −31752.0 + 27498.0i −0.178174 + 0.154303i
\(127\) −151965. −0.836054 −0.418027 0.908435i \(-0.637278\pi\)
−0.418027 + 0.908435i \(0.637278\pi\)
\(128\) 8192.00 14189.0i 0.0441942 0.0765466i
\(129\) 83209.5 + 144123.i 0.440249 + 0.762534i
\(130\) −516.000 893.738i −0.00267788 0.00463823i
\(131\) −117751. + 203951.i −0.599496 + 1.03836i 0.393399 + 0.919368i \(0.371299\pi\)
−0.992895 + 0.118990i \(0.962034\pi\)
\(132\) −4896.00 −0.0244572
\(133\) 182402. + 63186.1i 0.894132 + 0.309736i
\(134\) 242252. 1.16548
\(135\) 31347.0 54294.6i 0.148034 0.256402i
\(136\) −60928.0 105530.i −0.282468 0.489249i
\(137\) −162754. 281898.i −0.740850 1.28319i −0.952109 0.305760i \(-0.901090\pi\)
0.211259 0.977430i \(-0.432244\pi\)
\(138\) 4032.00 6983.63i 0.0180228 0.0312164i
\(139\) 3211.00 0.0140962 0.00704812 0.999975i \(-0.497756\pi\)
0.00704812 + 0.999975i \(0.497756\pi\)
\(140\) 33712.0 + 175173.i 0.145367 + 0.755347i
\(141\) −166158. −0.703839
\(142\) −89668.0 + 155310.i −0.373179 + 0.646364i
\(143\) 51.0000 + 88.3346i 0.000208560 + 0.000361236i
\(144\) −10368.0 17957.9i −0.0416667 0.0721688i
\(145\) 279844. 484704.i 1.10534 1.91451i
\(146\) −83284.0 −0.323355
\(147\) −118850. 93569.7i −0.453632 0.357143i
\(148\) −122128. −0.458312
\(149\) 75942.0 131535.i 0.280231 0.485375i −0.691210 0.722654i \(-0.742922\pi\)
0.971442 + 0.237279i \(0.0762556\pi\)
\(150\) −76878.0 133157.i −0.278981 0.483208i
\(151\) −38324.0 66379.1i −0.136782 0.236913i 0.789495 0.613757i \(-0.210343\pi\)
−0.926277 + 0.376844i \(0.877009\pi\)
\(152\) −47648.0 + 82528.8i −0.167277 + 0.289732i
\(153\) −154224. −0.532627
\(154\) −3332.00 17313.6i −0.0113215 0.0588281i
\(155\) 148866. 0.497698
\(156\) −216.000 + 374.123i −0.000710628 + 0.00123084i
\(157\) 194855. + 337499.i 0.630903 + 1.09276i 0.987368 + 0.158447i \(0.0506487\pi\)
−0.356465 + 0.934309i \(0.616018\pi\)
\(158\) −61062.0 105762.i −0.194593 0.337046i
\(159\) −89802.0 + 155542.i −0.281704 + 0.487926i
\(160\) −88064.0 −0.271956
\(161\) 27440.0 + 9505.49i 0.0834295 + 0.0289008i
\(162\) −26244.0 −0.0785674
\(163\) 56186.0 97317.0i 0.165638 0.286893i −0.771244 0.636540i \(-0.780365\pi\)
0.936882 + 0.349647i \(0.113698\pi\)
\(164\) −123312. 213583.i −0.358010 0.620092i
\(165\) 13158.0 + 22790.3i 0.0376253 + 0.0651689i
\(166\) 221204. 383137.i 0.623050 1.07915i
\(167\) 52550.0 0.145808 0.0729040 0.997339i \(-0.476773\pi\)
0.0729040 + 0.997339i \(0.476773\pi\)
\(168\) 56448.0 48885.4i 0.154303 0.133631i
\(169\) −371284. −0.999976
\(170\) −327488. + 567226.i −0.869107 + 1.50534i
\(171\) 60304.5 + 104450.i 0.157710 + 0.273162i
\(172\) −147928. 256219.i −0.381267 0.660374i
\(173\) 67628.0 117135.i 0.171795 0.297558i −0.767252 0.641345i \(-0.778377\pi\)
0.939048 + 0.343787i \(0.111710\pi\)
\(174\) −234288. −0.586647
\(175\) 418558. 362482.i 1.03314 0.894728i
\(176\) 8704.00 0.0211805
\(177\) −143226. + 248075.i −0.343628 + 0.595181i
\(178\) −117984. 204354.i −0.279109 0.483430i
\(179\) −125319. 217059.i −0.292337 0.506343i 0.682025 0.731329i \(-0.261100\pi\)
−0.974362 + 0.224986i \(0.927766\pi\)
\(180\) −55728.0 + 96523.7i −0.128201 + 0.222051i
\(181\) 199233. 0.452027 0.226014 0.974124i \(-0.427431\pi\)
0.226014 + 0.974124i \(0.427431\pi\)
\(182\) −1470.00 509.223i −0.00328957 0.00113954i
\(183\) 518886. 1.14537
\(184\) −7168.00 + 12415.3i −0.0156082 + 0.0270342i
\(185\) 328219. + 568492.i 0.705074 + 1.22122i
\(186\) −31158.0 53967.2i −0.0660370 0.114379i
\(187\) 32368.0 56063.0i 0.0676880 0.117239i
\(188\) 295392. 0.609543
\(189\) −17860.5 92805.9i −0.0363696 0.188982i
\(190\) 512216. 1.02936
\(191\) 119385. 206781.i 0.236792 0.410135i −0.723000 0.690848i \(-0.757237\pi\)
0.959792 + 0.280713i \(0.0905708\pi\)
\(192\) 18432.0 + 31925.2i 0.0360844 + 0.0625000i
\(193\) −42845.5 74210.6i −0.0827965 0.143408i 0.821654 0.569987i \(-0.193052\pi\)
−0.904450 + 0.426579i \(0.859718\pi\)
\(194\) −239692. + 415159.i −0.457245 + 0.791972i
\(195\) 2322.00 0.00437296
\(196\) 211288. + 166346.i 0.392857 + 0.309295i
\(197\) −71408.0 −0.131094 −0.0655468 0.997849i \(-0.520879\pi\)
−0.0655468 + 0.997849i \(0.520879\pi\)
\(198\) 5508.00 9540.14i 0.00998461 0.0172938i
\(199\) 355676. + 616049.i 0.636681 + 1.10276i 0.986156 + 0.165818i \(0.0530265\pi\)
−0.349475 + 0.936946i \(0.613640\pi\)
\(200\) 136672. + 236723.i 0.241604 + 0.418471i
\(201\) −272534. + 472042.i −0.475806 + 0.824120i
\(202\) −400040. −0.689803
\(203\) −159446. 828506.i −0.271565 1.41109i
\(204\) 274176. 0.461269
\(205\) −662802. + 1.14801e6i −1.10154 + 1.90792i
\(206\) 243382. + 421550.i 0.399595 + 0.692119i
\(207\) 9072.00 + 15713.2i 0.0147156 + 0.0254881i
\(208\) 384.000 665.108i 0.000615422 0.00106594i
\(209\) −50626.0 −0.0801693
\(210\) −379260. 131380.i −0.593456 0.205579i
\(211\) −260260. −0.402440 −0.201220 0.979546i \(-0.564491\pi\)
−0.201220 + 0.979546i \(0.564491\pi\)
\(212\) 159648. 276518.i 0.243963 0.422556i
\(213\) −201753. 349446.i −0.304699 0.527754i
\(214\) −97296.0 168522.i −0.145231 0.251548i
\(215\) −795113. + 1.37718e6i −1.17309 + 2.03186i
\(216\) 46656.0 0.0680414
\(217\) 169638. 146911.i 0.244553 0.211790i
\(218\) 608300. 0.866915
\(219\) 93694.5 162284.i 0.132009 0.228646i
\(220\) −23392.0 40516.1i −0.0325845 0.0564380i
\(221\) −2856.00 4946.74i −0.00393349 0.00681300i
\(222\) 137394. 237973.i 0.187105 0.324075i
\(223\) 105656. 0.142276 0.0711381 0.997466i \(-0.477337\pi\)
0.0711381 + 0.997466i \(0.477337\pi\)
\(224\) −100352. + 86907.4i −0.133631 + 0.115728i
\(225\) 345951. 0.455573
\(226\) −121772. + 210915.i −0.158590 + 0.274686i
\(227\) −327375. 567030.i −0.421678 0.730368i 0.574426 0.818557i \(-0.305225\pi\)
−0.996104 + 0.0881890i \(0.971892\pi\)
\(228\) −107208. 185690.i −0.136581 0.236565i
\(229\) −278856. + 482994.i −0.351392 + 0.608629i −0.986494 0.163800i \(-0.947625\pi\)
0.635101 + 0.772429i \(0.280958\pi\)
\(230\) 77056.0 0.0960477
\(231\) 37485.0 + 12985.2i 0.0462197 + 0.0160110i
\(232\) 416512. 0.508051
\(233\) 623797. 1.08045e6i 0.752755 1.30381i −0.193728 0.981055i \(-0.562058\pi\)
0.946483 0.322754i \(-0.104609\pi\)
\(234\) −486.000 841.777i −0.000580225 0.00100498i
\(235\) −793866. 1.37502e6i −0.937729 1.62420i
\(236\) 254624. 441022.i 0.297591 0.515442i
\(237\) 274779. 0.317770
\(238\) 186592. + 969560.i 0.213526 + 1.10951i
\(239\) −496926. −0.562726 −0.281363 0.959601i \(-0.590786\pi\)
−0.281363 + 0.959601i \(0.590786\pi\)
\(240\) 99072.0 171598.i 0.111026 0.192302i
\(241\) 138809. + 240424.i 0.153948 + 0.266646i 0.932676 0.360716i \(-0.117468\pi\)
−0.778727 + 0.627363i \(0.784134\pi\)
\(242\) −319790. 553893.i −0.351016 0.607977i
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) −922464. −0.991916
\(245\) 206486. 1.43058e6i 0.219774 1.52264i
\(246\) 554904. 0.584629
\(247\) −2233.50 + 3868.54i −0.00232940 + 0.00403463i
\(248\) 55392.0 + 95941.8i 0.0571897 + 0.0990555i
\(249\) 497709. + 862057.i 0.508718 + 0.881125i
\(250\) 197112. 341408.i 0.199463 0.345481i
\(251\) −308328. −0.308908 −0.154454 0.988000i \(-0.549362\pi\)
−0.154454 + 0.988000i \(0.549362\pi\)
\(252\) 31752.0 + 164988.i 0.0314970 + 0.163663i
\(253\) −7616.00 −0.00748041
\(254\) −303930. + 526422.i −0.295590 + 0.511976i
\(255\) −736848. 1.27626e6i −0.709623 1.22910i
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) −204381. + 353998.i −0.193022 + 0.334325i −0.946250 0.323435i \(-0.895162\pi\)
0.753228 + 0.657759i \(0.228496\pi\)
\(258\) 665676. 0.622606
\(259\) 935042. + 323908.i 0.866128 + 0.300035i
\(260\) −4128.00 −0.00378710
\(261\) 263574. 456524.i 0.239498 0.414822i
\(262\) 471004. + 815803.i 0.423908 + 0.734230i
\(263\) −544062. 942343.i −0.485019 0.840078i 0.514833 0.857291i \(-0.327854\pi\)
−0.999852 + 0.0172127i \(0.994521\pi\)
\(264\) −9792.00 + 16960.2i −0.00864692 + 0.0149769i
\(265\) −1.71622e6 −1.50126
\(266\) 583688. 505489.i 0.505797 0.438033i
\(267\) 530928. 0.455782
\(268\) 484504. 839186.i 0.412060 0.713709i
\(269\) 334145. + 578756.i 0.281549 + 0.487657i 0.971766 0.235945i \(-0.0758184\pi\)
−0.690217 + 0.723602i \(0.742485\pi\)
\(270\) −125388. 217178.i −0.104676 0.181304i
\(271\) 415332. 719376.i 0.343536 0.595022i −0.641551 0.767081i \(-0.721709\pi\)
0.985087 + 0.172059i \(0.0550419\pi\)
\(272\) −487424. −0.399470
\(273\) 2646.00 2291.50i 0.00214874 0.00186086i
\(274\) −1.30203e6 −1.04772
\(275\) −72607.0 + 125759.i −0.0578958 + 0.100278i
\(276\) −16128.0 27934.5i −0.0127441 0.0220734i
\(277\) −462537. 801137.i −0.362198 0.627346i 0.626124 0.779724i \(-0.284640\pi\)
−0.988322 + 0.152377i \(0.951307\pi\)
\(278\) 6422.00 11123.2i 0.00498377 0.00863215i
\(279\) 140211. 0.107838
\(280\) 674240. + 233564.i 0.513948 + 0.178037i
\(281\) 1.33635e6 1.00961 0.504805 0.863233i \(-0.331564\pi\)
0.504805 + 0.863233i \(0.331564\pi\)
\(282\) −332316. + 575588.i −0.248845 + 0.431012i
\(283\) 496478. + 859926.i 0.368497 + 0.638256i 0.989331 0.145686i \(-0.0465390\pi\)
−0.620833 + 0.783942i \(0.713206\pi\)
\(284\) 358672. + 621238.i 0.263877 + 0.457048i
\(285\) −576243. + 998082.i −0.420236 + 0.727871i
\(286\) 408.000 0.000294948
\(287\) 377643. + 1.96229e6i 0.270630 + 1.40624i
\(288\) −82944.0 −0.0589256
\(289\) −1.10268e6 + 1.90990e6i −0.776613 + 1.34513i
\(290\) −1.11938e6 1.93882e6i −0.781594 1.35376i
\(291\) −539307. 934107.i −0.373339 0.646642i
\(292\) −166568. + 288504.i −0.114323 + 0.198014i
\(293\) 563544. 0.383494 0.191747 0.981444i \(-0.438585\pi\)
0.191747 + 0.981444i \(0.438585\pi\)
\(294\) −561834. + 224567.i −0.379088 + 0.151523i
\(295\) −2.73721e6 −1.83127
\(296\) −244256. + 423064.i −0.162038 + 0.280657i
\(297\) 12393.0 + 21465.3i 0.00815240 + 0.0141204i
\(298\) −303768. 526142.i −0.198153 0.343212i
\(299\) −336.000 + 581.969i −0.000217351 + 0.000376463i
\(300\) −615024. −0.394538
\(301\) 453029. + 2.35401e6i 0.288211 + 1.49759i
\(302\) −306592. −0.193439
\(303\) 450045. 779501.i 0.281611 0.487764i
\(304\) 190592. + 330115.i 0.118283 + 0.204871i
\(305\) 2.47912e6 + 4.29397e6i 1.52598 + 2.64307i
\(306\) −308448. + 534248.i −0.188312 + 0.326166i
\(307\) 2.82703e6 1.71193 0.855963 0.517037i \(-0.172965\pi\)
0.855963 + 0.517037i \(0.172965\pi\)
\(308\) −66640.0 23084.8i −0.0400275 0.0138659i
\(309\) −1.09522e6 −0.652536
\(310\) 297732. 515687.i 0.175963 0.304777i
\(311\) 563657. + 976283.i 0.330456 + 0.572367i 0.982601 0.185727i \(-0.0594641\pi\)
−0.652145 + 0.758094i \(0.726131\pi\)
\(312\) 864.000 + 1496.49i 0.000502490 + 0.000870338i
\(313\) 1.18006e6 2.04393e6i 0.680840 1.17925i −0.293885 0.955841i \(-0.594948\pi\)
0.974725 0.223408i \(-0.0717183\pi\)
\(314\) 1.55884e6 0.892231
\(315\) 682668. 591208.i 0.387644 0.335710i
\(316\) −488496. −0.275197
\(317\) 1.11210e6 1.92621e6i 0.621578 1.07660i −0.367614 0.929979i \(-0.619825\pi\)
0.989192 0.146626i \(-0.0468415\pi\)
\(318\) 359208. + 622167.i 0.199195 + 0.345016i
\(319\) 110636. + 191627.i 0.0608723 + 0.105434i
\(320\) −176128. + 305063.i −0.0961509 + 0.166538i
\(321\) 437832. 0.237162
\(322\) 87808.0 76044.0i 0.0471948 0.0408719i
\(323\) 2.83506e6 1.51201
\(324\) −52488.0 + 90911.9i −0.0277778 + 0.0481125i
\(325\) 6406.50 + 11096.4i 0.00336444 + 0.00582738i
\(326\) −224744. 389268.i −0.117124 0.202864i
\(327\) −684338. + 1.18531e6i −0.353917 + 0.613002i
\(328\) −986496. −0.506303
\(329\) −2.26160e6 783439.i −1.15193 0.399039i
\(330\) 105264. 0.0532102
\(331\) 1.85152e6 3.20693e6i 0.928877 1.60886i 0.143673 0.989625i \(-0.454109\pi\)
0.785204 0.619237i \(-0.212558\pi\)
\(332\) −884816. 1.53255e6i −0.440563 0.763077i
\(333\) 309136. + 535440.i 0.152771 + 0.264606i
\(334\) 105100. 182039.i 0.0515509 0.0892888i
\(335\) −5.20842e6 −2.53568
\(336\) −56448.0 293312.i −0.0272772 0.141737i
\(337\) 1.21432e6 0.582452 0.291226 0.956654i \(-0.405937\pi\)
0.291226 + 0.956654i \(0.405937\pi\)
\(338\) −742568. + 1.28617e6i −0.353545 + 0.612358i
\(339\) −273987. 474559.i −0.129488 0.224280i
\(340\) 1.30995e6 + 2.26890e6i 0.614551 + 1.06443i
\(341\) −29427.0 + 50969.1i −0.0137044 + 0.0237367i
\(342\) 482436. 0.223036
\(343\) −1.17649e6 1.83397e6i −0.539949 0.841698i
\(344\) −1.18342e6 −0.539193
\(345\) −86688.0 + 150148.i −0.0392113 + 0.0679160i
\(346\) −270512. 468541.i −0.121478 0.210405i
\(347\) 488952. + 846890.i 0.217993 + 0.377575i 0.954194 0.299188i \(-0.0967157\pi\)
−0.736201 + 0.676763i \(0.763382\pi\)
\(348\) −468576. + 811597.i −0.207411 + 0.359247i
\(349\) 511282. 0.224697 0.112348 0.993669i \(-0.464163\pi\)
0.112348 + 0.993669i \(0.464163\pi\)
\(350\) −418558. 2.17489e6i −0.182636 0.949003i
\(351\) 2187.00 0.000947504
\(352\) 17408.0 30151.5i 0.00748845 0.0129704i
\(353\) −1.51376e6 2.62191e6i −0.646577 1.11990i −0.983935 0.178528i \(-0.942866\pi\)
0.337357 0.941377i \(-0.390467\pi\)
\(354\) 572904. + 992299.i 0.242982 + 0.420857i
\(355\) 1.92786e6 3.33915e6i 0.811905 1.40626i
\(356\) −943872. −0.394719
\(357\) −2.09916e6 727170.i −0.871716 0.301971i
\(358\) −1.00255e6 −0.413427
\(359\) −2.29728e6 + 3.97900e6i −0.940757 + 1.62944i −0.176725 + 0.984260i \(0.556550\pi\)
−0.764032 + 0.645179i \(0.776783\pi\)
\(360\) 222912. + 386095.i 0.0906520 + 0.157014i
\(361\) 129489. + 224282.i 0.0522956 + 0.0905786i
\(362\) 398466. 690163.i 0.159816 0.276809i
\(363\) 1.43906e6 0.573206
\(364\) −4704.00 + 4073.78i −0.00186086 + 0.00161155i
\(365\) 1.79061e6 0.703506
\(366\) 1.03777e6 1.79747e6i 0.404948 0.701390i
\(367\) 556365. + 963653.i 0.215623 + 0.373470i 0.953465 0.301503i \(-0.0974885\pi\)
−0.737842 + 0.674973i \(0.764155\pi\)
\(368\) 28672.0 + 49661.4i 0.0110367 + 0.0191161i
\(369\) −624267. + 1.08126e6i −0.238674 + 0.413395i
\(370\) 2.62575e6 0.997125
\(371\) −1.95569e6 + 1.69368e6i −0.737675 + 0.638845i
\(372\) −249264. −0.0933904
\(373\) 1.22947e6 2.12951e6i 0.457559 0.792516i −0.541272 0.840848i \(-0.682057\pi\)
0.998831 + 0.0483315i \(0.0153904\pi\)
\(374\) −129472. 224252.i −0.0478627 0.0829006i
\(375\) 443502. + 768168.i 0.162861 + 0.282084i
\(376\) 590784. 1.02327e6i 0.215506 0.373267i
\(377\) 19524.0 0.00707482
\(378\) −357210. 123741.i −0.128586 0.0445435i
\(379\) −4.10130e6 −1.46664 −0.733320 0.679884i \(-0.762030\pi\)
−0.733320 + 0.679884i \(0.762030\pi\)
\(380\) 1.02443e6 1.77437e6i 0.363935 0.630354i
\(381\) −683842. 1.18445e6i −0.241348 0.418027i
\(382\) −477540. 827124.i −0.167437 0.290009i
\(383\) 1.29707e6 2.24658e6i 0.451820 0.782575i −0.546679 0.837342i \(-0.684108\pi\)
0.998499 + 0.0547673i \(0.0174417\pi\)
\(384\) 147456. 0.0510310
\(385\) 71638.0 + 372242.i 0.0246315 + 0.127989i
\(386\) −342764. −0.117092
\(387\) −748886. + 1.29711e6i −0.254178 + 0.440249i
\(388\) 958768. + 1.66063e6i 0.323321 + 0.560009i
\(389\) −1.11703e6 1.93476e6i −0.374276 0.648265i 0.615942 0.787791i \(-0.288775\pi\)
−0.990218 + 0.139526i \(0.955442\pi\)
\(390\) 4644.00 8043.64i 0.00154608 0.00267788i
\(391\) 426496. 0.141082
\(392\) 998816. 399231.i 0.328300 0.131223i
\(393\) −2.11952e6 −0.692238
\(394\) −142816. + 247365.i −0.0463486 + 0.0802781i
\(395\) 1.31283e6 + 2.27389e6i 0.423367 + 0.733293i
\(396\) −22032.0 38160.5i −0.00706018 0.0122286i
\(397\) 1.03200e6 1.78747e6i 0.328627 0.569198i −0.653613 0.756829i \(-0.726748\pi\)
0.982240 + 0.187631i \(0.0600809\pi\)
\(398\) 2.84541e6 0.900403
\(399\) 328324. + 1.70602e6i 0.103245 + 0.536479i
\(400\) 1.09338e6 0.341680
\(401\) −576414. + 998378.i −0.179008 + 0.310052i −0.941541 0.336898i \(-0.890622\pi\)
0.762533 + 0.646950i \(0.223956\pi\)
\(402\) 1.09013e6 + 1.88817e6i 0.336446 + 0.582741i
\(403\) 2596.50 + 4497.27i 0.000796390 + 0.00137939i
\(404\) −800080. + 1.38578e6i −0.243882 + 0.422416i
\(405\) 564246. 0.170935
\(406\) −3.18892e6 1.10467e6i −0.960127 0.332598i
\(407\) −259522. −0.0776583
\(408\) 548352. 949774.i 0.163083 0.282468i
\(409\) −2.96706e6 5.13910e6i −0.877038 1.51907i −0.854576 0.519327i \(-0.826183\pi\)
−0.0224623 0.999748i \(-0.507151\pi\)
\(410\) 2.65121e6 + 4.59203e6i 0.778904 + 1.34910i
\(411\) 1.46479e6 2.53708e6i 0.427730 0.740850i
\(412\) 1.94706e6 0.565113
\(413\) −3.11914e6 + 2.70126e6i −0.899830 + 0.779275i
\(414\) 72576.0 0.0208110
\(415\) −4.75589e6 + 8.23744e6i −1.35554 + 2.34786i
\(416\) −1536.00 2660.43i −0.000435169 0.000753735i
\(417\) 14449.5 + 25027.3i 0.00406923 + 0.00704812i
\(418\) −101252. + 175374.i −0.0283441 + 0.0490934i
\(419\) 771666. 0.214731 0.107365 0.994220i \(-0.465759\pi\)
0.107365 + 0.994220i \(0.465759\pi\)
\(420\) −1.21363e6 + 1.05104e6i −0.335710 + 0.290733i
\(421\) −2.87542e6 −0.790671 −0.395336 0.918537i \(-0.629372\pi\)
−0.395336 + 0.918537i \(0.629372\pi\)
\(422\) −520520. + 901567.i −0.142284 + 0.246443i
\(423\) −747711. 1.29507e6i −0.203181 0.351920i
\(424\) −638592. 1.10607e6i −0.172508 0.298792i
\(425\) 4.06599e6 7.04250e6i 1.09193 1.89128i
\(426\) −1.61402e6 −0.430909
\(427\) 7.06261e6 + 2.44656e6i 1.87454 + 0.649361i
\(428\) −778368. −0.205388
\(429\) −459.000 + 795.011i −0.000120412 + 0.000208560i
\(430\) 3.18045e6 + 5.50870e6i 0.829503 + 1.43674i
\(431\) 68931.0 + 119392.i 0.0178740 + 0.0309587i 0.874824 0.484441i \(-0.160977\pi\)
−0.856950 + 0.515399i \(0.827644\pi\)
\(432\) 93312.0 161621.i 0.0240563 0.0416667i
\(433\) 1.56526e6 0.401204 0.200602 0.979673i \(-0.435710\pi\)
0.200602 + 0.979673i \(0.435710\pi\)
\(434\) −169638. 881465.i −0.0432314 0.224637i
\(435\) 5.03719e6 1.27634
\(436\) 1.21660e6 2.10721e6i 0.306501 0.530875i
\(437\) −166768. 288851.i −0.0417743 0.0723552i
\(438\) −374778. 649135.i −0.0933445 0.161677i
\(439\) −2.44079e6 + 4.22757e6i −0.604462 + 1.04696i 0.387675 + 0.921796i \(0.373278\pi\)
−0.992136 + 0.125162i \(0.960055\pi\)
\(440\) −187136. −0.0460814
\(441\) 194481. 1.34740e6i 0.0476190 0.329914i
\(442\) −22848.0 −0.00556279
\(443\) 650758. 1.12715e6i 0.157547 0.272879i −0.776437 0.630195i \(-0.782975\pi\)
0.933984 + 0.357316i \(0.116308\pi\)
\(444\) −549576. 951894.i −0.132303 0.229156i
\(445\) 2.53666e6 + 4.39362e6i 0.607242 + 1.05177i
\(446\) 211312. 366003.i 0.0503022 0.0871260i
\(447\) 1.36696e6 0.323583
\(448\) 100352. + 521444.i 0.0236228 + 0.122748i
\(449\) −3.13141e6 −0.733034 −0.366517 0.930411i \(-0.619450\pi\)
−0.366517 + 0.930411i \(0.619450\pi\)
\(450\) 691902. 1.19841e6i 0.161069 0.278981i
\(451\) −262038. 453863.i −0.0606629 0.105071i
\(452\) 487088. + 843661.i 0.112140 + 0.194233i
\(453\) 344916. 597412.i 0.0789710 0.136782i
\(454\) −2.61900e6 −0.596343
\(455\) 31605.0 + 10948.3i 0.00715694 + 0.00247924i
\(456\) −857664. −0.193155
\(457\) −3.24634e6 + 5.62283e6i −0.727116 + 1.25940i 0.230981 + 0.972958i \(0.425807\pi\)
−0.958097 + 0.286444i \(0.907527\pi\)
\(458\) 1.11543e6 + 1.93197e6i 0.248472 + 0.430366i
\(459\) −694008. 1.20206e6i −0.153756 0.266314i
\(460\) 154112. 266930.i 0.0339580 0.0588170i
\(461\) 5.34717e6 1.17185 0.585925 0.810365i \(-0.300731\pi\)
0.585925 + 0.810365i \(0.300731\pi\)
\(462\) 119952. 103881.i 0.0261458 0.0226430i
\(463\) 3.37285e6 0.731215 0.365607 0.930769i \(-0.380861\pi\)
0.365607 + 0.930769i \(0.380861\pi\)
\(464\) 833024. 1.44284e6i 0.179623 0.311117i
\(465\) 669897. + 1.16030e6i 0.143673 + 0.248849i
\(466\) −2.49519e6 4.32179e6i −0.532278 0.921932i
\(467\) −1.11726e6 + 1.93515e6i −0.237062 + 0.410604i −0.959870 0.280445i \(-0.909518\pi\)
0.722808 + 0.691049i \(0.242851\pi\)
\(468\) −3888.00 −0.000820562
\(469\) −5.93517e6 + 5.14001e6i −1.24595 + 1.07903i
\(470\) −6.35093e6 −1.32615
\(471\) −1.75369e6 + 3.03749e6i −0.364252 + 0.630903i
\(472\) −1.01850e6 1.76409e6i −0.210428 0.364473i
\(473\) −314347. 544465.i −0.0646036 0.111897i
\(474\) 549558. 951862.i 0.112349 0.194593i
\(475\) −6.35952e6 −1.29327
\(476\) 3.73184e6 + 1.29275e6i 0.754928 + 0.261515i
\(477\) −1.61644e6 −0.325284
\(478\) −993852. + 1.72140e6i −0.198954 + 0.344598i
\(479\) 1.26068e6 + 2.18357e6i 0.251054 + 0.434838i 0.963816 0.266568i \(-0.0858896\pi\)
−0.712762 + 0.701406i \(0.752556\pi\)
\(480\) −396288. 686391.i −0.0785069 0.135978i
\(481\) −11449.5 + 19831.1i −0.00225644 + 0.00390827i
\(482\) 1.11047e6 0.217716
\(483\) 49392.0 + 256648.i 0.00963360 + 0.0500577i
\(484\) −2.55832e6 −0.496411
\(485\) 5.15338e6 8.92591e6i 0.994804 1.72305i
\(486\) −118098. 204552.i −0.0226805 0.0392837i
\(487\) −958358. 1.65993e6i −0.183107 0.317151i 0.759830 0.650122i \(-0.225282\pi\)
−0.942937 + 0.332971i \(0.891949\pi\)
\(488\) −1.84493e6 + 3.19551e6i −0.350695 + 0.607422i
\(489\) 1.01135e6 0.191262
\(490\) −4.54269e6 3.57644e6i −0.854718 0.672916i
\(491\) 5.82875e6 1.09112 0.545559 0.838073i \(-0.316317\pi\)
0.545559 + 0.838073i \(0.316317\pi\)
\(492\) 1.10981e6 1.92224e6i 0.206697 0.358010i
\(493\) −6.19562e6 1.07311e7i −1.14807 1.98851i
\(494\) 8934.00 + 15474.1i 0.00164713 + 0.00285292i
\(495\) −118422. + 205113.i −0.0217230 + 0.0376253i
\(496\) 443136. 0.0808785
\(497\) −1.09843e6 5.70763e6i −0.199472 1.03649i
\(498\) 3.98167e6 0.719436
\(499\) 5.00243e6 8.66446e6i 0.899352 1.55772i 0.0710277 0.997474i \(-0.477372\pi\)
0.828324 0.560249i \(-0.189295\pi\)
\(500\) −788448. 1.36563e6i −0.141042 0.244292i
\(501\) 236475. + 409587.i 0.0420912 + 0.0729040i
\(502\) −616656. + 1.06808e6i −0.109215 + 0.189167i
\(503\) 1.13666e6 0.200313 0.100157 0.994972i \(-0.468066\pi\)
0.100157 + 0.994972i \(0.468066\pi\)
\(504\) 635040. + 219984.i 0.111359 + 0.0385758i
\(505\) 8.60086e6 1.50077
\(506\) −15232.0 + 26382.6i −0.00264473 + 0.00458080i
\(507\) −1.67078e6 2.89387e6i −0.288668 0.499988i
\(508\) 1.21572e6 + 2.10569e6i 0.209013 + 0.362022i
\(509\) −2.00968e6 + 3.48088e6i −0.343822 + 0.595517i −0.985139 0.171759i \(-0.945055\pi\)
0.641317 + 0.767276i \(0.278388\pi\)
\(510\) −5.89478e6 −1.00356
\(511\) 2.04046e6 1.76709e6i 0.345681 0.299368i
\(512\) −262144. −0.0441942
\(513\) −542740. + 940054.i −0.0910540 + 0.157710i
\(514\) 817524. + 1.41599e6i 0.136487 + 0.236403i
\(515\) −5.23271e6 9.06332e6i −0.869378 1.50581i
\(516\) 1.33135e6 2.30597e6i 0.220125 0.381267i
\(517\) 627708. 0.103284
\(518\) 2.99214e6 2.59127e6i 0.489956 0.424314i
\(519\) 1.21730e6 0.198372
\(520\) −8256.00 + 14299.8i −0.00133894 + 0.00231911i
\(521\) 2.76014e6 + 4.78070e6i 0.445488 + 0.771609i 0.998086 0.0618395i \(-0.0196967\pi\)
−0.552598 + 0.833448i \(0.686363\pi\)
\(522\) −1.05430e6 1.82609e6i −0.169350 0.293324i
\(523\) −4.47236e6 + 7.74636e6i −0.714961 + 1.23835i 0.248013 + 0.968757i \(0.420222\pi\)
−0.962974 + 0.269593i \(0.913111\pi\)
\(524\) 3.76803e6 0.599496
\(525\) 4.70878e6 + 1.63117e6i 0.745607 + 0.258286i
\(526\) −4.35250e6 −0.685921
\(527\) 1.64791e6 2.85427e6i 0.258468 0.447680i
\(528\) 39168.0 + 67841.0i 0.00611430 + 0.0105903i
\(529\) 3.19308e6 + 5.53058e6i 0.496102 + 0.859274i
\(530\) −3.43243e6 + 5.94515e6i −0.530777 + 0.919333i
\(531\) −2.57807e6 −0.396788
\(532\) −583688. 3.03293e6i −0.0894132 0.464605i
\(533\) −46242.0 −0.00705048
\(534\) 1.06186e6 1.83919e6i 0.161143 0.279109i
\(535\) 2.09186e6 + 3.62321e6i 0.315972 + 0.547280i
\(536\) −1.93802e6 3.35674e6i −0.291370 0.504668i
\(537\) 1.12787e6 1.95353e6i 0.168781 0.292337i
\(538\) 2.67316e6 0.398171
\(539\) 448987. + 353486.i 0.0665674 + 0.0524083i
\(540\) −1.00310e6 −0.148034
\(541\) −424528. + 735305.i −0.0623611 + 0.108013i −0.895520 0.445021i \(-0.853196\pi\)
0.833159 + 0.553033i \(0.186530\pi\)
\(542\) −1.66133e6 2.87750e6i −0.242917 0.420744i
\(543\) 896548. + 1.55287e6i 0.130489 + 0.226014i
\(544\) −974848. + 1.68849e6i −0.141234 + 0.244625i
\(545\) −1.30784e7 −1.88610
\(546\) −2646.00 13749.0i −0.000379847 0.00197374i
\(547\) 8.61340e6 1.23085 0.615426 0.788194i \(-0.288984\pi\)
0.615426 + 0.788194i \(0.288984\pi\)
\(548\) −2.60406e6 + 4.51037e6i −0.370425 + 0.641595i
\(549\) 2.33499e6 + 4.04432e6i 0.330639 + 0.572683i
\(550\) 290428. + 503036.i 0.0409385 + 0.0709075i
\(551\) −4.84521e6 + 8.39214e6i −0.679882 + 1.17759i
\(552\) −129024. −0.0180228
\(553\) 3.74005e6 + 1.29559e6i 0.520073 + 0.180159i
\(554\) −3.70029e6 −0.512226
\(555\) −2.95397e6 + 5.11643e6i −0.407074 + 0.705074i
\(556\) −25688.0 44492.9i −0.00352406 0.00610385i
\(557\) −3.89940e6 6.75395e6i −0.532549 0.922401i −0.999278 0.0380009i \(-0.987901\pi\)
0.466729 0.884400i \(-0.345432\pi\)
\(558\) 280422. 485705.i 0.0381265 0.0660370i
\(559\) −55473.0 −0.00750848
\(560\) 2.15757e6 1.86851e6i 0.290733 0.251782i
\(561\) 582624. 0.0781594
\(562\) 2.67270e6 4.62925e6i 0.356951 0.618258i
\(563\) −536357. 928998.i −0.0713153 0.123522i 0.828163 0.560488i \(-0.189386\pi\)
−0.899478 + 0.436966i \(0.856053\pi\)
\(564\) 1.32926e6 + 2.30235e6i 0.175960 + 0.304771i
\(565\) 2.61810e6 4.53468e6i 0.345036 0.597620i
\(566\) 3.97183e6 0.521134
\(567\) 642978. 556835.i 0.0839921 0.0727393i
\(568\) 2.86938e6 0.373179
\(569\) 507621. 879225.i 0.0657293 0.113846i −0.831288 0.555842i \(-0.812396\pi\)
0.897017 + 0.441996i \(0.145729\pi\)
\(570\) 2.30497e6 + 3.99233e6i 0.297152 + 0.514682i
\(571\) 3.39047e6 + 5.87246e6i 0.435180 + 0.753754i 0.997310 0.0732945i \(-0.0233513\pi\)
−0.562130 + 0.827049i \(0.690018\pi\)
\(572\) 816.000 1413.35i 0.000104280 0.000180618i
\(573\) 2.14893e6 0.273423
\(574\) 7.55286e6 + 2.61639e6i 0.956823 + 0.331453i
\(575\) −956704. −0.120672
\(576\) −165888. + 287326.i −0.0208333 + 0.0360844i
\(577\) 1.65268e6 + 2.86253e6i 0.206657 + 0.357941i 0.950659 0.310236i \(-0.100408\pi\)
−0.744002 + 0.668177i \(0.767075\pi\)
\(578\) 4.41072e6 + 7.63959e6i 0.549148 + 0.951153i
\(579\) 385610. 667895.i 0.0478026 0.0827965i
\(580\) −8.95501e6 −1.10534
\(581\) 2.70975e6 + 1.40803e7i 0.333034 + 1.73050i
\(582\) −4.31446e6 −0.527981
\(583\) 339252. 587602.i 0.0413381 0.0715998i
\(584\) 666272. + 1.15402e6i 0.0808387 + 0.140017i
\(585\) 10449.0 + 18098.2i 0.00126237 + 0.00218648i
\(586\) 1.12709e6 1.95217e6i 0.135586 0.234841i
\(587\) −1.19833e7 −1.43543 −0.717715 0.696337i \(-0.754812\pi\)
−0.717715 + 0.696337i \(0.754812\pi\)
\(588\) −345744. + 2.39538e6i −0.0412393 + 0.285714i
\(589\) −2.57746e6 −0.306128
\(590\) −5.47442e6 + 9.48197e6i −0.647452 + 1.12142i
\(591\) −321336. 556570.i −0.0378434 0.0655468i
\(592\) 977024. + 1.69226e6i 0.114578 + 0.198455i
\(593\) 2.65510e6 4.59877e6i 0.310059 0.537038i −0.668316 0.743877i \(-0.732985\pi\)
0.978375 + 0.206840i \(0.0663179\pi\)
\(594\) 99144.0 0.0115292
\(595\) −4.01173e6 2.08456e7i −0.464557 2.41391i
\(596\) −2.43014e6 −0.280231
\(597\) −3.20108e6 + 5.54444e6i −0.367588 + 0.636681i
\(598\) 1344.00 + 2327.88i 0.000153690 + 0.000266199i
\(599\) −1.21118e6 2.09782e6i −0.137924 0.238892i 0.788786 0.614667i \(-0.210710\pi\)
−0.926711 + 0.375775i \(0.877376\pi\)
\(600\) −1.23005e6 + 2.13051e6i −0.139490 + 0.241604i
\(601\) −7.10659e6 −0.802556 −0.401278 0.915956i \(-0.631434\pi\)
−0.401278 + 0.915956i \(0.631434\pi\)
\(602\) 9.06059e6 + 3.13868e6i 1.01898 + 0.352985i
\(603\) −4.90560e6 −0.549413
\(604\) −613184. + 1.06207e6i −0.0683909 + 0.118457i
\(605\) 6.87548e6 + 1.19087e7i 0.763686 + 1.32274i
\(606\) −1.80018e6 3.11800e6i −0.199129 0.344901i
\(607\) −8.95970e6 + 1.55187e7i −0.987011 + 1.70955i −0.354374 + 0.935104i \(0.615306\pi\)
−0.632636 + 0.774449i \(0.718027\pi\)
\(608\) 1.52474e6 0.167277
\(609\) 5.74006e6 4.97103e6i 0.627152 0.543130i
\(610\) 1.98330e7 2.15806
\(611\) 27693.0 47965.7i 0.00300101 0.00519790i
\(612\) 1.23379e6 + 2.13699e6i 0.133157 + 0.230634i
\(613\) −6.98950e6 1.21062e7i −0.751269 1.30124i −0.947208 0.320619i \(-0.896109\pi\)
0.195940 0.980616i \(-0.437224\pi\)
\(614\) 5.65407e6 9.79313e6i 0.605257 1.04834i
\(615\) −1.19304e7 −1.27195
\(616\) −213248. + 184678.i −0.0226430 + 0.0196094i
\(617\) −5.25594e6 −0.555824 −0.277912 0.960606i \(-0.589642\pi\)
−0.277912 + 0.960606i \(0.589642\pi\)
\(618\) −2.19044e6 + 3.79395e6i −0.230706 + 0.399595i
\(619\) −721506. 1.24969e6i −0.0756857 0.131091i 0.825699 0.564112i \(-0.190781\pi\)
−0.901384 + 0.433020i \(0.857448\pi\)
\(620\) −1.19093e6 2.06275e6i −0.124425 0.215510i
\(621\) −81648.0 + 141418.i −0.00849604 + 0.0147156i
\(622\) 4.50926e6 0.467336
\(623\) 7.22652e6 + 2.50334e6i 0.745949 + 0.258404i
\(624\) 6912.00 0.000710628
\(625\) 2.43553e6 4.21846e6i 0.249398 0.431970i
\(626\) −4.72026e6 8.17573e6i −0.481426 0.833855i
\(627\) −227817. 394591.i −0.0231429 0.0400846i
\(628\) 3.11768e6 5.39998e6i 0.315451 0.546378i
\(629\) 1.45332e7 1.46466
\(630\) −682668. 3.54725e6i −0.0685264 0.356074i
\(631\) 1.51723e7 1.51697 0.758487 0.651688i \(-0.225939\pi\)
0.758487 + 0.651688i \(0.225939\pi\)
\(632\) −976992. + 1.69220e6i −0.0972967 + 0.168523i
\(633\) −1.17117e6 2.02853e6i −0.116174 0.201220i
\(634\) −4.44840e6 7.70485e6i −0.439522 0.761275i
\(635\) 6.53450e6 1.13181e7i 0.643099 1.11388i
\(636\) 2.87366e6 0.281704
\(637\) 46819.5 18713.9i 0.00457170 0.00182733i
\(638\) 885088. 0.0860864
\(639\) 1.81578e6 3.14502e6i 0.175918 0.304699i
\(640\) 704512. + 1.22025e6i 0.0679890 + 0.117760i
\(641\) 72424.0 + 125442.i 0.00696205 + 0.0120586i 0.869485 0.493959i \(-0.164451\pi\)
−0.862523 + 0.506017i \(0.831117\pi\)
\(642\) 875664. 1.51669e6i 0.0838494 0.145231i
\(643\) −27469.0 −0.00262009 −0.00131004 0.999999i \(-0.500417\pi\)
−0.00131004 + 0.999999i \(0.500417\pi\)
\(644\) −87808.0 456264.i −0.00834295 0.0433512i
\(645\) −1.43120e7 −1.35457
\(646\) 5.67011e6 9.82092e6i 0.534577 0.925915i
\(647\) −4.27892e6 7.41130e6i −0.401858 0.696039i 0.592092 0.805870i \(-0.298302\pi\)
−0.993950 + 0.109831i \(0.964969\pi\)
\(648\) 209952. + 363648.i 0.0196419 + 0.0340207i
\(649\) 541076. 937171.i 0.0504251 0.0873388i
\(650\) 51252.0 0.00475803
\(651\) 1.90843e6 + 661099.i 0.176491 + 0.0611384i
\(652\) −1.79795e6 −0.165638
\(653\) −6.25152e6 + 1.08279e7i −0.573723 + 0.993718i 0.422456 + 0.906384i \(0.361168\pi\)
−0.996179 + 0.0873343i \(0.972165\pi\)
\(654\) 2.73735e6 + 4.74123e6i 0.250257 + 0.433458i
\(655\) −1.01266e7 1.75398e7i −0.922274 1.59742i
\(656\) −1.97299e6 + 3.41732e6i −0.179005 + 0.310046i
\(657\) 1.68650e6 0.152431
\(658\) −7.23710e6 + 6.26752e6i −0.651629 + 0.564327i
\(659\) 1.80471e7 1.61880 0.809400 0.587258i \(-0.199793\pi\)
0.809400 + 0.587258i \(0.199793\pi\)
\(660\) 210528. 364645.i 0.0188127 0.0325845i
\(661\) −1.67072e6 2.89377e6i −0.148731 0.257609i 0.782028 0.623243i \(-0.214185\pi\)
−0.930759 + 0.365634i \(0.880852\pi\)
\(662\) −7.40608e6 1.28277e7i −0.656815 1.13764i
\(663\) 25704.0 44520.6i 0.00227100 0.00393349i
\(664\) −7.07853e6 −0.623050
\(665\) −1.25493e7 + 1.08680e7i −1.10044 + 0.953006i
\(666\) 2.47309e6 0.216050
\(667\) −728896. + 1.26248e6i −0.0634382 + 0.109878i
\(668\) −420400. 728154.i −0.0364520 0.0631367i
\(669\) 475452. + 823507.i 0.0410716 + 0.0711381i
\(670\) −1.04168e7 + 1.80425e7i −0.896497 + 1.55278i
\(671\) −1.96024e6 −0.168075
\(672\) −1.12896e6 391083.i −0.0964396 0.0334077i
\(673\) −8.47066e6 −0.720907 −0.360454 0.932777i \(-0.617378\pi\)
−0.360454 + 0.932777i \(0.617378\pi\)
\(674\) 2.42865e6 4.20655e6i 0.205928 0.356678i
\(675\) 1.55678e6 + 2.69642e6i 0.131513 + 0.227787i
\(676\) 2.97027e6 + 5.14466e6i 0.249994 + 0.433002i
\(677\) −7.32764e6 + 1.26918e7i −0.614458 + 1.06427i 0.376021 + 0.926611i \(0.377292\pi\)
−0.990479 + 0.137662i \(0.956041\pi\)
\(678\) −2.19190e6 −0.183124
\(679\) −2.93623e6 1.52571e7i −0.244408 1.26998i
\(680\) 1.04796e7 0.869107
\(681\) 2.94638e6 5.10327e6i 0.243456 0.421678i
\(682\) 117708. + 203876.i 0.00969047 + 0.0167844i
\(683\) −9.88081e6 1.71141e7i −0.810477 1.40379i −0.912531 0.409008i \(-0.865875\pi\)
0.102054 0.994779i \(-0.467459\pi\)
\(684\) 964872. 1.67121e6i 0.0788550 0.136581i
\(685\) 2.79937e7 2.27947
\(686\) −8.70603e6 + 407548.i −0.706333 + 0.0330650i
\(687\) −5.01942e6 −0.405753
\(688\) −2.36685e6 + 4.09950e6i −0.190634 + 0.330187i
\(689\) −29934.0 51847.2i −0.00240224 0.00416080i
\(690\) 346752. + 600592.i 0.0277266 + 0.0480238i
\(691\) −6.79162e6 + 1.17634e7i −0.541101 + 0.937214i 0.457740 + 0.889086i \(0.348659\pi\)
−0.998841 + 0.0481282i \(0.984674\pi\)
\(692\) −2.16410e6 −0.171795
\(693\) 67473.0 + 350600.i 0.00533700 + 0.0277318i
\(694\) 3.91162e6 0.308289
\(695\) −138073. + 239149.i −0.0108429 + 0.0187805i
\(696\) 1.87430e6 + 3.24639e6i 0.146662 + 0.254026i
\(697\) 1.46741e7 + 2.54163e7i 1.14412 + 1.98167i
\(698\) 1.02256e6 1.77113e6i 0.0794423 0.137598i
\(699\) 1.12283e7 0.869206
\(700\) −8.37116e6 2.89985e6i −0.645715 0.223682i
\(701\) −1.29915e7 −0.998538 −0.499269 0.866447i \(-0.666398\pi\)
−0.499269 + 0.866447i \(0.666398\pi\)
\(702\) 4374.00 7575.99i 0.000334993 0.000580225i
\(703\) −5.68277e6 9.84284e6i −0.433682 0.751160i
\(704\) −69632.0 120606.i −0.00529514 0.00917145i
\(705\) 7.14479e6 1.23751e7i 0.541398 0.937729i
\(706\) −1.21101e7 −0.914399
\(707\) 9.80098e6 8.48790e6i 0.737430 0.638633i
\(708\) 4.58323e6 0.343628
\(709\) −954367. + 1.65301e6i −0.0713017 + 0.123498i −0.899472 0.436978i \(-0.856049\pi\)
0.828170 + 0.560476i \(0.189382\pi\)
\(710\) −7.71145e6 1.33566e7i −0.574103 0.994376i
\(711\) 1.23651e6 + 2.14169e6i 0.0917323 + 0.158885i
\(712\) −1.88774e6 + 3.26967e6i −0.139554 + 0.241715i
\(713\) −387744. −0.0285641
\(714\) −6.71731e6 + 5.81736e6i −0.493117 + 0.427052i
\(715\) −8772.00 −0.000641702
\(716\) −2.00510e6 + 3.47294e6i −0.146169 + 0.253172i
\(717\) −2.23617e6 3.87315e6i −0.162445 0.281363i
\(718\) 9.18911e6 + 1.59160e7i 0.665216 + 1.15219i
\(719\) 5.55999e6 9.63018e6i 0.401099 0.694724i −0.592760 0.805379i \(-0.701962\pi\)
0.993859 + 0.110655i \(0.0352950\pi\)
\(720\) 1.78330e6 0.128201
\(721\) −1.49071e7 5.16399e6i −1.06796 0.369953i
\(722\) 1.03591e6 0.0739571
\(723\) −1.24928e6 + 2.16382e6i −0.0888821 + 0.153948i
\(724\) −1.59386e6 2.76065e6i −0.113007 0.195734i
\(725\) 1.38978e7 + 2.40718e7i 0.981979 + 1.70084i
\(726\) 2.87811e6 4.98503e6i 0.202659 0.351016i
\(727\) 8.37406e6 0.587624 0.293812 0.955863i \(-0.405076\pi\)
0.293812 + 0.955863i \(0.405076\pi\)
\(728\) 4704.00 + 24442.7i 0.000328957 + 0.00170931i
\(729\) 531441. 0.0370370
\(730\) 3.58121e6 6.20284e6i 0.248727 0.430808i
\(731\) 1.76034e7 + 3.04900e7i 1.21844 + 2.11040i
\(732\) −4.15109e6 7.18990e6i −0.286341 0.495958i
\(733\) −2.32224e6 + 4.02224e6i −0.159642 + 0.276508i −0.934740 0.355334i \(-0.884367\pi\)
0.775098 + 0.631841i \(0.217701\pi\)
\(734\) 4.45092e6 0.304937
\(735\) 1.20794e7 4.82820e6i 0.824761 0.329660i
\(736\) 229376. 0.0156082
\(737\) 1.02957e6 1.78327e6i 0.0698212 0.120934i
\(738\) 2.49707e6 + 4.32505e6i 0.168768 + 0.292314i
\(739\) 5.53116e6 + 9.58026e6i 0.372568 + 0.645307i 0.989960 0.141349i \(-0.0451440\pi\)
−0.617392 + 0.786656i \(0.711811\pi\)
\(740\) 5.25150e6 9.09587e6i 0.352537 0.610612i
\(741\) −40203.0 −0.00268976
\(742\) 1.95569e6 + 1.01621e7i 0.130404 + 0.677597i
\(743\) 1.97245e6 0.131079 0.0655395 0.997850i \(-0.479123\pi\)
0.0655395 + 0.997850i \(0.479123\pi\)
\(744\) −498528. + 863476.i −0.0330185 + 0.0571897i
\(745\) 6.53101e6 + 1.13120e7i 0.431112 + 0.746707i
\(746\) −4.91790e6 8.51805e6i −0.323543 0.560393i
\(747\) −4.47938e6 + 7.75852e6i −0.293708 + 0.508718i
\(748\) −1.03578e6 −0.0676880
\(749\) 5.95938e6 + 2.06439e6i 0.388147 + 0.134458i
\(750\) 3.54802e6 0.230320
\(751\) −7.51232e6 + 1.30117e7i −0.486042 + 0.841850i −0.999871 0.0160425i \(-0.994893\pi\)
0.513829 + 0.857893i \(0.328227\pi\)
\(752\) −2.36314e6 4.09307e6i −0.152386 0.263940i
\(753\) −1.38748e6 2.40318e6i −0.0891740 0.154454i
\(754\) 39048.0 67633.1i 0.00250133 0.00433243i
\(755\) 6.59173e6 0.420854
\(756\) −1.14307e6 + 989929.i −0.0727393 + 0.0629941i
\(757\) −4.72426e6 −0.299636 −0.149818 0.988714i \(-0.547869\pi\)
−0.149818 + 0.988714i \(0.547869\pi\)
\(758\) −8.20260e6 + 1.42073e7i −0.518535 + 0.898130i
\(759\) −34272.0 59360.8i −0.00215941 0.00374021i
\(760\) −4.09773e6 7.09747e6i −0.257341 0.445728i
\(761\) 4.28918e6 7.42907e6i 0.268480 0.465021i −0.699989 0.714153i \(-0.746812\pi\)
0.968470 + 0.249132i \(0.0801453\pi\)