Properties

Label 42.6.e
Level $42$
Weight $6$
Character orbit 42.e
Rep. character $\chi_{42}(25,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $12$
Newform subspaces $4$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 42.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(42, [\chi])\).

Total New Old
Modular forms 88 12 76
Cusp forms 72 12 60
Eisenstein series 16 0 16

Trace form

\( 12 q - 96 q^{4} - 44 q^{5} - 144 q^{6} - 234 q^{7} - 486 q^{9} + 648 q^{10} + 296 q^{11} - 3312 q^{13} - 704 q^{14} - 396 q^{15} - 1536 q^{16} + 2612 q^{17} + 1020 q^{19} + 1408 q^{20} + 1764 q^{21} - 5232 q^{22}+ \cdots - 47952 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(42, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
42.6.e.a 42.e 7.c $2$ $6.736$ \(\Q(\sqrt{-3}) \) None 42.6.e.a \(-4\) \(-9\) \(6\) \(119\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-4+4\zeta_{6})q^{2}-9\zeta_{6}q^{3}-2^{4}\zeta_{6}q^{4}+\cdots\)
42.6.e.b 42.e 7.c $2$ $6.736$ \(\Q(\sqrt{-3}) \) None 42.6.e.b \(4\) \(9\) \(-86\) \(49\) $\mathrm{SU}(2)[C_{3}]$ \(q+(4-4\zeta_{6})q^{2}+9\zeta_{6}q^{3}-2^{4}\zeta_{6}q^{4}+\cdots\)
42.6.e.c 42.e 7.c $4$ $6.736$ \(\Q(\sqrt{-3}, \sqrt{9601})\) None 42.6.e.c \(-8\) \(18\) \(53\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q-4\beta _{2}q^{2}+(9-9\beta _{2})q^{3}+(-2^{4}+2^{4}\beta _{2}+\cdots)q^{4}+\cdots\)
42.6.e.d 42.e 7.c $4$ $6.736$ \(\Q(\sqrt{-3}, \sqrt{505})\) None 42.6.e.d \(8\) \(-18\) \(-17\) \(-408\) $\mathrm{SU}(2)[C_{3}]$ \(q+(4-4\beta _{1})q^{2}-9\beta _{1}q^{3}-2^{4}\beta _{1}q^{4}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(42, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(42, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)