Properties

Label 42.6.a.c.1.1
Level $42$
Weight $6$
Character 42.1
Self dual yes
Analytic conductor $6.736$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,6,Mod(1,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.73612043215\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 42.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -72.0000 q^{5} -36.0000 q^{6} +49.0000 q^{7} -64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q-4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -72.0000 q^{5} -36.0000 q^{6} +49.0000 q^{7} -64.0000 q^{8} +81.0000 q^{9} +288.000 q^{10} -414.000 q^{11} +144.000 q^{12} -1054.00 q^{13} -196.000 q^{14} -648.000 q^{15} +256.000 q^{16} -1848.00 q^{17} -324.000 q^{18} +236.000 q^{19} -1152.00 q^{20} +441.000 q^{21} +1656.00 q^{22} +2898.00 q^{23} -576.000 q^{24} +2059.00 q^{25} +4216.00 q^{26} +729.000 q^{27} +784.000 q^{28} -6522.00 q^{29} +2592.00 q^{30} +6200.00 q^{31} -1024.00 q^{32} -3726.00 q^{33} +7392.00 q^{34} -3528.00 q^{35} +1296.00 q^{36} +9650.00 q^{37} -944.000 q^{38} -9486.00 q^{39} +4608.00 q^{40} +8484.00 q^{41} -1764.00 q^{42} -10804.0 q^{43} -6624.00 q^{44} -5832.00 q^{45} -11592.0 q^{46} +60.0000 q^{47} +2304.00 q^{48} +2401.00 q^{49} -8236.00 q^{50} -16632.0 q^{51} -16864.0 q^{52} +22506.0 q^{53} -2916.00 q^{54} +29808.0 q^{55} -3136.00 q^{56} +2124.00 q^{57} +26088.0 q^{58} -28176.0 q^{59} -10368.0 q^{60} -35194.0 q^{61} -24800.0 q^{62} +3969.00 q^{63} +4096.00 q^{64} +75888.0 q^{65} +14904.0 q^{66} -28216.0 q^{67} -29568.0 q^{68} +26082.0 q^{69} +14112.0 q^{70} -6642.00 q^{71} -5184.00 q^{72} -52090.0 q^{73} -38600.0 q^{74} +18531.0 q^{75} +3776.00 q^{76} -20286.0 q^{77} +37944.0 q^{78} +43340.0 q^{79} -18432.0 q^{80} +6561.00 q^{81} -33936.0 q^{82} +25716.0 q^{83} +7056.00 q^{84} +133056. q^{85} +43216.0 q^{86} -58698.0 q^{87} +26496.0 q^{88} +98724.0 q^{89} +23328.0 q^{90} -51646.0 q^{91} +46368.0 q^{92} +55800.0 q^{93} -240.000 q^{94} -16992.0 q^{95} -9216.00 q^{96} -148954. q^{97} -9604.00 q^{98} -33534.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) −72.0000 −1.28798 −0.643988 0.765036i \(-0.722721\pi\)
−0.643988 + 0.765036i \(0.722721\pi\)
\(6\) −36.0000 −0.408248
\(7\) 49.0000 0.377964
\(8\) −64.0000 −0.353553
\(9\) 81.0000 0.333333
\(10\) 288.000 0.910736
\(11\) −414.000 −1.03162 −0.515809 0.856704i \(-0.672508\pi\)
−0.515809 + 0.856704i \(0.672508\pi\)
\(12\) 144.000 0.288675
\(13\) −1054.00 −1.72975 −0.864873 0.501991i \(-0.832601\pi\)
−0.864873 + 0.501991i \(0.832601\pi\)
\(14\) −196.000 −0.267261
\(15\) −648.000 −0.743613
\(16\) 256.000 0.250000
\(17\) −1848.00 −1.55089 −0.775443 0.631418i \(-0.782473\pi\)
−0.775443 + 0.631418i \(0.782473\pi\)
\(18\) −324.000 −0.235702
\(19\) 236.000 0.149978 0.0749891 0.997184i \(-0.476108\pi\)
0.0749891 + 0.997184i \(0.476108\pi\)
\(20\) −1152.00 −0.643988
\(21\) 441.000 0.218218
\(22\) 1656.00 0.729464
\(23\) 2898.00 1.14230 0.571148 0.820847i \(-0.306498\pi\)
0.571148 + 0.820847i \(0.306498\pi\)
\(24\) −576.000 −0.204124
\(25\) 2059.00 0.658880
\(26\) 4216.00 1.22311
\(27\) 729.000 0.192450
\(28\) 784.000 0.188982
\(29\) −6522.00 −1.44008 −0.720039 0.693934i \(-0.755876\pi\)
−0.720039 + 0.693934i \(0.755876\pi\)
\(30\) 2592.00 0.525814
\(31\) 6200.00 1.15874 0.579372 0.815063i \(-0.303298\pi\)
0.579372 + 0.815063i \(0.303298\pi\)
\(32\) −1024.00 −0.176777
\(33\) −3726.00 −0.595605
\(34\) 7392.00 1.09664
\(35\) −3528.00 −0.486809
\(36\) 1296.00 0.166667
\(37\) 9650.00 1.15884 0.579419 0.815030i \(-0.303279\pi\)
0.579419 + 0.815030i \(0.303279\pi\)
\(38\) −944.000 −0.106051
\(39\) −9486.00 −0.998669
\(40\) 4608.00 0.455368
\(41\) 8484.00 0.788208 0.394104 0.919066i \(-0.371055\pi\)
0.394104 + 0.919066i \(0.371055\pi\)
\(42\) −1764.00 −0.154303
\(43\) −10804.0 −0.891073 −0.445537 0.895264i \(-0.646987\pi\)
−0.445537 + 0.895264i \(0.646987\pi\)
\(44\) −6624.00 −0.515809
\(45\) −5832.00 −0.429325
\(46\) −11592.0 −0.807725
\(47\) 60.0000 0.00396193 0.00198096 0.999998i \(-0.499369\pi\)
0.00198096 + 0.999998i \(0.499369\pi\)
\(48\) 2304.00 0.144338
\(49\) 2401.00 0.142857
\(50\) −8236.00 −0.465899
\(51\) −16632.0 −0.895404
\(52\) −16864.0 −0.864873
\(53\) 22506.0 1.10055 0.550274 0.834984i \(-0.314523\pi\)
0.550274 + 0.834984i \(0.314523\pi\)
\(54\) −2916.00 −0.136083
\(55\) 29808.0 1.32870
\(56\) −3136.00 −0.133631
\(57\) 2124.00 0.0865899
\(58\) 26088.0 1.01829
\(59\) −28176.0 −1.05378 −0.526889 0.849934i \(-0.676642\pi\)
−0.526889 + 0.849934i \(0.676642\pi\)
\(60\) −10368.0 −0.371806
\(61\) −35194.0 −1.21100 −0.605500 0.795845i \(-0.707027\pi\)
−0.605500 + 0.795845i \(0.707027\pi\)
\(62\) −24800.0 −0.819356
\(63\) 3969.00 0.125988
\(64\) 4096.00 0.125000
\(65\) 75888.0 2.22787
\(66\) 14904.0 0.421156
\(67\) −28216.0 −0.767907 −0.383953 0.923352i \(-0.625438\pi\)
−0.383953 + 0.923352i \(0.625438\pi\)
\(68\) −29568.0 −0.775443
\(69\) 26082.0 0.659505
\(70\) 14112.0 0.344226
\(71\) −6642.00 −0.156370 −0.0781849 0.996939i \(-0.524912\pi\)
−0.0781849 + 0.996939i \(0.524912\pi\)
\(72\) −5184.00 −0.117851
\(73\) −52090.0 −1.14406 −0.572028 0.820234i \(-0.693843\pi\)
−0.572028 + 0.820234i \(0.693843\pi\)
\(74\) −38600.0 −0.819423
\(75\) 18531.0 0.380405
\(76\) 3776.00 0.0749891
\(77\) −20286.0 −0.389915
\(78\) 37944.0 0.706166
\(79\) 43340.0 0.781306 0.390653 0.920538i \(-0.372249\pi\)
0.390653 + 0.920538i \(0.372249\pi\)
\(80\) −18432.0 −0.321994
\(81\) 6561.00 0.111111
\(82\) −33936.0 −0.557347
\(83\) 25716.0 0.409740 0.204870 0.978789i \(-0.434323\pi\)
0.204870 + 0.978789i \(0.434323\pi\)
\(84\) 7056.00 0.109109
\(85\) 133056. 1.99750
\(86\) 43216.0 0.630084
\(87\) −58698.0 −0.831429
\(88\) 26496.0 0.364732
\(89\) 98724.0 1.32114 0.660568 0.750766i \(-0.270315\pi\)
0.660568 + 0.750766i \(0.270315\pi\)
\(90\) 23328.0 0.303579
\(91\) −51646.0 −0.653782
\(92\) 46368.0 0.571148
\(93\) 55800.0 0.669001
\(94\) −240.000 −0.00280151
\(95\) −16992.0 −0.193168
\(96\) −9216.00 −0.102062
\(97\) −148954. −1.60740 −0.803698 0.595038i \(-0.797137\pi\)
−0.803698 + 0.595038i \(0.797137\pi\)
\(98\) −9604.00 −0.101015
\(99\) −33534.0 −0.343872
\(100\) 32944.0 0.329440
\(101\) 48348.0 0.471601 0.235801 0.971801i \(-0.424229\pi\)
0.235801 + 0.971801i \(0.424229\pi\)
\(102\) 66528.0 0.633146
\(103\) −183592. −1.70514 −0.852571 0.522611i \(-0.824958\pi\)
−0.852571 + 0.522611i \(0.824958\pi\)
\(104\) 67456.0 0.611557
\(105\) −31752.0 −0.281059
\(106\) −90024.0 −0.778204
\(107\) −2238.00 −0.0188973 −0.00944867 0.999955i \(-0.503008\pi\)
−0.00944867 + 0.999955i \(0.503008\pi\)
\(108\) 11664.0 0.0962250
\(109\) 60158.0 0.484984 0.242492 0.970153i \(-0.422035\pi\)
0.242492 + 0.970153i \(0.422035\pi\)
\(110\) −119232. −0.939531
\(111\) 86850.0 0.669056
\(112\) 12544.0 0.0944911
\(113\) −7014.00 −0.0516737 −0.0258369 0.999666i \(-0.508225\pi\)
−0.0258369 + 0.999666i \(0.508225\pi\)
\(114\) −8496.00 −0.0612283
\(115\) −208656. −1.47125
\(116\) −104352. −0.720039
\(117\) −85374.0 −0.576582
\(118\) 112704. 0.745134
\(119\) −90552.0 −0.586180
\(120\) 41472.0 0.262907
\(121\) 10345.0 0.0642343
\(122\) 140776. 0.856306
\(123\) 76356.0 0.455072
\(124\) 99200.0 0.579372
\(125\) 76752.0 0.439354
\(126\) −15876.0 −0.0890871
\(127\) −1780.00 −0.00979289 −0.00489644 0.999988i \(-0.501559\pi\)
−0.00489644 + 0.999988i \(0.501559\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −97236.0 −0.514461
\(130\) −303552. −1.57534
\(131\) −265140. −1.34989 −0.674943 0.737870i \(-0.735832\pi\)
−0.674943 + 0.737870i \(0.735832\pi\)
\(132\) −59616.0 −0.297802
\(133\) 11564.0 0.0566864
\(134\) 112864. 0.542992
\(135\) −52488.0 −0.247871
\(136\) 118272. 0.548321
\(137\) −206730. −0.941027 −0.470514 0.882393i \(-0.655931\pi\)
−0.470514 + 0.882393i \(0.655931\pi\)
\(138\) −104328. −0.466341
\(139\) −236836. −1.03971 −0.519853 0.854256i \(-0.674013\pi\)
−0.519853 + 0.854256i \(0.674013\pi\)
\(140\) −56448.0 −0.243404
\(141\) 540.000 0.00228742
\(142\) 26568.0 0.110570
\(143\) 436356. 1.78444
\(144\) 20736.0 0.0833333
\(145\) 469584. 1.85478
\(146\) 208360. 0.808970
\(147\) 21609.0 0.0824786
\(148\) 154400. 0.579419
\(149\) 473706. 1.74801 0.874004 0.485919i \(-0.161515\pi\)
0.874004 + 0.485919i \(0.161515\pi\)
\(150\) −74124.0 −0.268987
\(151\) 394952. 1.40962 0.704810 0.709396i \(-0.251032\pi\)
0.704810 + 0.709396i \(0.251032\pi\)
\(152\) −15104.0 −0.0530253
\(153\) −149688. −0.516962
\(154\) 81144.0 0.275711
\(155\) −446400. −1.49243
\(156\) −151776. −0.499335
\(157\) −145090. −0.469773 −0.234887 0.972023i \(-0.575472\pi\)
−0.234887 + 0.972023i \(0.575472\pi\)
\(158\) −173360. −0.552467
\(159\) 202554. 0.635401
\(160\) 73728.0 0.227684
\(161\) 142002. 0.431747
\(162\) −26244.0 −0.0785674
\(163\) 530480. 1.56387 0.781934 0.623361i \(-0.214233\pi\)
0.781934 + 0.623361i \(0.214233\pi\)
\(164\) 135744. 0.394104
\(165\) 268272. 0.767124
\(166\) −102864. −0.289730
\(167\) −312348. −0.866658 −0.433329 0.901236i \(-0.642661\pi\)
−0.433329 + 0.901236i \(0.642661\pi\)
\(168\) −28224.0 −0.0771517
\(169\) 739623. 1.99202
\(170\) −532224. −1.41245
\(171\) 19116.0 0.0499927
\(172\) −172864. −0.445537
\(173\) −75108.0 −0.190797 −0.0953984 0.995439i \(-0.530412\pi\)
−0.0953984 + 0.995439i \(0.530412\pi\)
\(174\) 234792. 0.587909
\(175\) 100891. 0.249033
\(176\) −105984. −0.257904
\(177\) −253584. −0.608399
\(178\) −394896. −0.934185
\(179\) 386718. 0.902115 0.451057 0.892495i \(-0.351047\pi\)
0.451057 + 0.892495i \(0.351047\pi\)
\(180\) −93312.0 −0.214663
\(181\) −417598. −0.947462 −0.473731 0.880669i \(-0.657093\pi\)
−0.473731 + 0.880669i \(0.657093\pi\)
\(182\) 206584. 0.462294
\(183\) −316746. −0.699171
\(184\) −185472. −0.403863
\(185\) −694800. −1.49256
\(186\) −223200. −0.473055
\(187\) 765072. 1.59992
\(188\) 960.000 0.00198096
\(189\) 35721.0 0.0727393
\(190\) 67968.0 0.136590
\(191\) −988050. −1.95973 −0.979863 0.199669i \(-0.936013\pi\)
−0.979863 + 0.199669i \(0.936013\pi\)
\(192\) 36864.0 0.0721688
\(193\) −409258. −0.790868 −0.395434 0.918494i \(-0.629406\pi\)
−0.395434 + 0.918494i \(0.629406\pi\)
\(194\) 595816. 1.13660
\(195\) 682992. 1.28626
\(196\) 38416.0 0.0714286
\(197\) −922230. −1.69307 −0.846533 0.532337i \(-0.821314\pi\)
−0.846533 + 0.532337i \(0.821314\pi\)
\(198\) 134136. 0.243155
\(199\) 189488. 0.339195 0.169597 0.985513i \(-0.445753\pi\)
0.169597 + 0.985513i \(0.445753\pi\)
\(200\) −131776. −0.232949
\(201\) −253944. −0.443351
\(202\) −193392. −0.333473
\(203\) −319578. −0.544298
\(204\) −266112. −0.447702
\(205\) −610848. −1.01519
\(206\) 734368. 1.20572
\(207\) 234738. 0.380765
\(208\) −269824. −0.432436
\(209\) −97704.0 −0.154720
\(210\) 127008. 0.198739
\(211\) −611380. −0.945377 −0.472689 0.881230i \(-0.656716\pi\)
−0.472689 + 0.881230i \(0.656716\pi\)
\(212\) 360096. 0.550274
\(213\) −59778.0 −0.0902802
\(214\) 8952.00 0.0133624
\(215\) 777888. 1.14768
\(216\) −46656.0 −0.0680414
\(217\) 303800. 0.437964
\(218\) −240632. −0.342935
\(219\) −468810. −0.660521
\(220\) 476928. 0.664349
\(221\) 1.94779e6 2.68264
\(222\) −347400. −0.473094
\(223\) −783256. −1.05473 −0.527365 0.849639i \(-0.676820\pi\)
−0.527365 + 0.849639i \(0.676820\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 166779. 0.219627
\(226\) 28056.0 0.0365388
\(227\) 80712.0 0.103962 0.0519809 0.998648i \(-0.483447\pi\)
0.0519809 + 0.998648i \(0.483447\pi\)
\(228\) 33984.0 0.0432950
\(229\) 152738. 0.192468 0.0962340 0.995359i \(-0.469320\pi\)
0.0962340 + 0.995359i \(0.469320\pi\)
\(230\) 834624. 1.04033
\(231\) −182574. −0.225117
\(232\) 417408. 0.509144
\(233\) −354282. −0.427523 −0.213761 0.976886i \(-0.568572\pi\)
−0.213761 + 0.976886i \(0.568572\pi\)
\(234\) 341496. 0.407705
\(235\) −4320.00 −0.00510287
\(236\) −450816. −0.526889
\(237\) 390060. 0.451087
\(238\) 362208. 0.414492
\(239\) 275370. 0.311833 0.155916 0.987770i \(-0.450167\pi\)
0.155916 + 0.987770i \(0.450167\pi\)
\(240\) −165888. −0.185903
\(241\) −584698. −0.648469 −0.324234 0.945977i \(-0.605107\pi\)
−0.324234 + 0.945977i \(0.605107\pi\)
\(242\) −41380.0 −0.0454205
\(243\) 59049.0 0.0641500
\(244\) −563104. −0.605500
\(245\) −172872. −0.183996
\(246\) −305424. −0.321785
\(247\) −248744. −0.259424
\(248\) −396800. −0.409678
\(249\) 231444. 0.236563
\(250\) −307008. −0.310670
\(251\) −184752. −0.185099 −0.0925497 0.995708i \(-0.529502\pi\)
−0.0925497 + 0.995708i \(0.529502\pi\)
\(252\) 63504.0 0.0629941
\(253\) −1.19977e6 −1.17841
\(254\) 7120.00 0.00692462
\(255\) 1.19750e6 1.15326
\(256\) 65536.0 0.0625000
\(257\) 235980. 0.222865 0.111433 0.993772i \(-0.464456\pi\)
0.111433 + 0.993772i \(0.464456\pi\)
\(258\) 388944. 0.363779
\(259\) 472850. 0.438000
\(260\) 1.21421e6 1.11393
\(261\) −528282. −0.480026
\(262\) 1.06056e6 0.954513
\(263\) −244494. −0.217961 −0.108981 0.994044i \(-0.534759\pi\)
−0.108981 + 0.994044i \(0.534759\pi\)
\(264\) 238464. 0.210578
\(265\) −1.62043e6 −1.41748
\(266\) −46256.0 −0.0400833
\(267\) 888516. 0.762759
\(268\) −451456. −0.383953
\(269\) 1.52779e6 1.28731 0.643656 0.765315i \(-0.277417\pi\)
0.643656 + 0.765315i \(0.277417\pi\)
\(270\) 209952. 0.175271
\(271\) 2.07056e6 1.71263 0.856317 0.516450i \(-0.172747\pi\)
0.856317 + 0.516450i \(0.172747\pi\)
\(272\) −473088. −0.387721
\(273\) −464814. −0.377461
\(274\) 826920. 0.665407
\(275\) −852426. −0.679712
\(276\) 417312. 0.329753
\(277\) −2.40727e6 −1.88506 −0.942530 0.334120i \(-0.891561\pi\)
−0.942530 + 0.334120i \(0.891561\pi\)
\(278\) 947344. 0.735183
\(279\) 502200. 0.386248
\(280\) 225792. 0.172113
\(281\) 341886. 0.258295 0.129147 0.991625i \(-0.458776\pi\)
0.129147 + 0.991625i \(0.458776\pi\)
\(282\) −2160.00 −0.00161745
\(283\) 578564. 0.429423 0.214712 0.976678i \(-0.431119\pi\)
0.214712 + 0.976678i \(0.431119\pi\)
\(284\) −106272. −0.0781849
\(285\) −152928. −0.111526
\(286\) −1.74542e6 −1.26179
\(287\) 415716. 0.297915
\(288\) −82944.0 −0.0589256
\(289\) 1.99525e6 1.40525
\(290\) −1.87834e6 −1.31153
\(291\) −1.34059e6 −0.928030
\(292\) −833440. −0.572028
\(293\) 780540. 0.531161 0.265580 0.964089i \(-0.414436\pi\)
0.265580 + 0.964089i \(0.414436\pi\)
\(294\) −86436.0 −0.0583212
\(295\) 2.02867e6 1.35724
\(296\) −617600. −0.409711
\(297\) −301806. −0.198535
\(298\) −1.89482e6 −1.23603
\(299\) −3.05449e6 −1.97588
\(300\) 296496. 0.190202
\(301\) −529396. −0.336794
\(302\) −1.57981e6 −0.996752
\(303\) 435132. 0.272279
\(304\) 60416.0 0.0374945
\(305\) 2.53397e6 1.55974
\(306\) 598752. 0.365547
\(307\) −2.24825e6 −1.36144 −0.680721 0.732543i \(-0.738333\pi\)
−0.680721 + 0.732543i \(0.738333\pi\)
\(308\) −324576. −0.194957
\(309\) −1.65233e6 −0.984465
\(310\) 1.78560e6 1.05531
\(311\) 581412. 0.340865 0.170433 0.985369i \(-0.445483\pi\)
0.170433 + 0.985369i \(0.445483\pi\)
\(312\) 607104. 0.353083
\(313\) −2.00407e6 −1.15625 −0.578125 0.815948i \(-0.696216\pi\)
−0.578125 + 0.815948i \(0.696216\pi\)
\(314\) 580360. 0.332180
\(315\) −285768. −0.162270
\(316\) 693440. 0.390653
\(317\) −1.27832e6 −0.714481 −0.357241 0.934012i \(-0.616282\pi\)
−0.357241 + 0.934012i \(0.616282\pi\)
\(318\) −810216. −0.449296
\(319\) 2.70011e6 1.48561
\(320\) −294912. −0.160997
\(321\) −20142.0 −0.0109104
\(322\) −568008. −0.305292
\(323\) −436128. −0.232599
\(324\) 104976. 0.0555556
\(325\) −2.17019e6 −1.13969
\(326\) −2.12192e6 −1.10582
\(327\) 541422. 0.280005
\(328\) −542976. −0.278674
\(329\) 2940.00 0.00149747
\(330\) −1.07309e6 −0.542438
\(331\) 2.59812e6 1.30343 0.651716 0.758463i \(-0.274049\pi\)
0.651716 + 0.758463i \(0.274049\pi\)
\(332\) 411456. 0.204870
\(333\) 781650. 0.386280
\(334\) 1.24939e6 0.612819
\(335\) 2.03155e6 0.989045
\(336\) 112896. 0.0545545
\(337\) 3.06190e6 1.46864 0.734321 0.678802i \(-0.237501\pi\)
0.734321 + 0.678802i \(0.237501\pi\)
\(338\) −2.95849e6 −1.40857
\(339\) −63126.0 −0.0298338
\(340\) 2.12890e6 0.998751
\(341\) −2.56680e6 −1.19538
\(342\) −76464.0 −0.0353502
\(343\) 117649. 0.0539949
\(344\) 691456. 0.315042
\(345\) −1.87790e6 −0.849426
\(346\) 300432. 0.134914
\(347\) −1.42550e6 −0.635540 −0.317770 0.948168i \(-0.602934\pi\)
−0.317770 + 0.948168i \(0.602934\pi\)
\(348\) −939168. −0.415715
\(349\) 2.93322e6 1.28908 0.644542 0.764569i \(-0.277048\pi\)
0.644542 + 0.764569i \(0.277048\pi\)
\(350\) −403564. −0.176093
\(351\) −768366. −0.332890
\(352\) 423936. 0.182366
\(353\) −2.01276e6 −0.859716 −0.429858 0.902896i \(-0.641436\pi\)
−0.429858 + 0.902896i \(0.641436\pi\)
\(354\) 1.01434e6 0.430203
\(355\) 478224. 0.201400
\(356\) 1.57958e6 0.660568
\(357\) −814968. −0.338431
\(358\) −1.54687e6 −0.637891
\(359\) 4.07710e6 1.66961 0.834806 0.550545i \(-0.185580\pi\)
0.834806 + 0.550545i \(0.185580\pi\)
\(360\) 373248. 0.151789
\(361\) −2.42040e6 −0.977507
\(362\) 1.67039e6 0.669957
\(363\) 93105.0 0.0370857
\(364\) −826336. −0.326891
\(365\) 3.75048e6 1.47352
\(366\) 1.26698e6 0.494389
\(367\) 594752. 0.230500 0.115250 0.993337i \(-0.463233\pi\)
0.115250 + 0.993337i \(0.463233\pi\)
\(368\) 741888. 0.285574
\(369\) 687204. 0.262736
\(370\) 2.77920e6 1.05540
\(371\) 1.10279e6 0.415968
\(372\) 892800. 0.334501
\(373\) 2.04522e6 0.761147 0.380573 0.924751i \(-0.375727\pi\)
0.380573 + 0.924751i \(0.375727\pi\)
\(374\) −3.06029e6 −1.13131
\(375\) 690768. 0.253661
\(376\) −3840.00 −0.00140075
\(377\) 6.87419e6 2.49097
\(378\) −142884. −0.0514344
\(379\) −3.22198e6 −1.15219 −0.576096 0.817382i \(-0.695425\pi\)
−0.576096 + 0.817382i \(0.695425\pi\)
\(380\) −271872. −0.0965841
\(381\) −16020.0 −0.00565393
\(382\) 3.95220e6 1.38574
\(383\) −1.72966e6 −0.602508 −0.301254 0.953544i \(-0.597405\pi\)
−0.301254 + 0.953544i \(0.597405\pi\)
\(384\) −147456. −0.0510310
\(385\) 1.46059e6 0.502200
\(386\) 1.63703e6 0.559228
\(387\) −875124. −0.297024
\(388\) −2.38326e6 −0.803698
\(389\) −1.74919e6 −0.586087 −0.293043 0.956099i \(-0.594668\pi\)
−0.293043 + 0.956099i \(0.594668\pi\)
\(390\) −2.73197e6 −0.909524
\(391\) −5.35550e6 −1.77157
\(392\) −153664. −0.0505076
\(393\) −2.38626e6 −0.779357
\(394\) 3.68892e6 1.19718
\(395\) −3.12048e6 −1.00630
\(396\) −536544. −0.171936
\(397\) 1.88205e6 0.599313 0.299657 0.954047i \(-0.403128\pi\)
0.299657 + 0.954047i \(0.403128\pi\)
\(398\) −757952. −0.239847
\(399\) 104076. 0.0327279
\(400\) 527104. 0.164720
\(401\) 4.18124e6 1.29851 0.649253 0.760573i \(-0.275082\pi\)
0.649253 + 0.760573i \(0.275082\pi\)
\(402\) 1.01578e6 0.313497
\(403\) −6.53480e6 −2.00433
\(404\) 773568. 0.235801
\(405\) −472392. −0.143108
\(406\) 1.27831e6 0.384877
\(407\) −3.99510e6 −1.19548
\(408\) 1.06445e6 0.316573
\(409\) −471682. −0.139425 −0.0697126 0.997567i \(-0.522208\pi\)
−0.0697126 + 0.997567i \(0.522208\pi\)
\(410\) 2.44339e6 0.717850
\(411\) −1.86057e6 −0.543302
\(412\) −2.93747e6 −0.852571
\(413\) −1.38062e6 −0.398291
\(414\) −938952. −0.269242
\(415\) −1.85155e6 −0.527735
\(416\) 1.07930e6 0.305779
\(417\) −2.13152e6 −0.600275
\(418\) 390816. 0.109404
\(419\) −3.54094e6 −0.985333 −0.492666 0.870218i \(-0.663978\pi\)
−0.492666 + 0.870218i \(0.663978\pi\)
\(420\) −508032. −0.140530
\(421\) 2.72763e6 0.750032 0.375016 0.927018i \(-0.377637\pi\)
0.375016 + 0.927018i \(0.377637\pi\)
\(422\) 2.44552e6 0.668483
\(423\) 4860.00 0.00132064
\(424\) −1.44038e6 −0.389102
\(425\) −3.80503e6 −1.02185
\(426\) 239112. 0.0638377
\(427\) −1.72451e6 −0.457715
\(428\) −35808.0 −0.00944867
\(429\) 3.92720e6 1.03024
\(430\) −3.11155e6 −0.811533
\(431\) −4.76517e6 −1.23562 −0.617810 0.786327i \(-0.711980\pi\)
−0.617810 + 0.786327i \(0.711980\pi\)
\(432\) 186624. 0.0481125
\(433\) 6.90300e6 1.76937 0.884684 0.466191i \(-0.154374\pi\)
0.884684 + 0.466191i \(0.154374\pi\)
\(434\) −1.21520e6 −0.309687
\(435\) 4.22626e6 1.07086
\(436\) 962528. 0.242492
\(437\) 683928. 0.171319
\(438\) 1.87524e6 0.467059
\(439\) 5.40126e6 1.33762 0.668811 0.743432i \(-0.266803\pi\)
0.668811 + 0.743432i \(0.266803\pi\)
\(440\) −1.90771e6 −0.469766
\(441\) 194481. 0.0476190
\(442\) −7.79117e6 −1.89691
\(443\) −4.05863e6 −0.982586 −0.491293 0.870994i \(-0.663476\pi\)
−0.491293 + 0.870994i \(0.663476\pi\)
\(444\) 1.38960e6 0.334528
\(445\) −7.10813e6 −1.70159
\(446\) 3.13302e6 0.745807
\(447\) 4.26335e6 1.00921
\(448\) 200704. 0.0472456
\(449\) 212994. 0.0498599 0.0249300 0.999689i \(-0.492064\pi\)
0.0249300 + 0.999689i \(0.492064\pi\)
\(450\) −667116. −0.155300
\(451\) −3.51238e6 −0.813129
\(452\) −112224. −0.0258369
\(453\) 3.55457e6 0.813844
\(454\) −322848. −0.0735120
\(455\) 3.71851e6 0.842055
\(456\) −135936. −0.0306142
\(457\) −916150. −0.205199 −0.102600 0.994723i \(-0.532716\pi\)
−0.102600 + 0.994723i \(0.532716\pi\)
\(458\) −610952. −0.136095
\(459\) −1.34719e6 −0.298468
\(460\) −3.33850e6 −0.735625
\(461\) −4.15835e6 −0.911315 −0.455657 0.890155i \(-0.650596\pi\)
−0.455657 + 0.890155i \(0.650596\pi\)
\(462\) 730296. 0.159182
\(463\) 8.40799e6 1.82280 0.911401 0.411519i \(-0.135002\pi\)
0.911401 + 0.411519i \(0.135002\pi\)
\(464\) −1.66963e6 −0.360019
\(465\) −4.01760e6 −0.861657
\(466\) 1.41713e6 0.302304
\(467\) 72048.0 0.0152873 0.00764363 0.999971i \(-0.497567\pi\)
0.00764363 + 0.999971i \(0.497567\pi\)
\(468\) −1.36598e6 −0.288291
\(469\) −1.38258e6 −0.290241
\(470\) 17280.0 0.00360827
\(471\) −1.30581e6 −0.271224
\(472\) 1.80326e6 0.372567
\(473\) 4.47286e6 0.919247
\(474\) −1.56024e6 −0.318967
\(475\) 485924. 0.0988176
\(476\) −1.44883e6 −0.293090
\(477\) 1.82299e6 0.366849
\(478\) −1.10148e6 −0.220499
\(479\) 4.80560e6 0.956994 0.478497 0.878089i \(-0.341182\pi\)
0.478497 + 0.878089i \(0.341182\pi\)
\(480\) 663552. 0.131453
\(481\) −1.01711e7 −2.00450
\(482\) 2.33879e6 0.458537
\(483\) 1.27802e6 0.249270
\(484\) 165520. 0.0321172
\(485\) 1.07247e7 2.07029
\(486\) −236196. −0.0453609
\(487\) 4.41805e6 0.844127 0.422064 0.906566i \(-0.361306\pi\)
0.422064 + 0.906566i \(0.361306\pi\)
\(488\) 2.25242e6 0.428153
\(489\) 4.77432e6 0.902899
\(490\) 691488. 0.130105
\(491\) −5.64998e6 −1.05765 −0.528826 0.848730i \(-0.677368\pi\)
−0.528826 + 0.848730i \(0.677368\pi\)
\(492\) 1.22170e6 0.227536
\(493\) 1.20527e7 2.23339
\(494\) 994976. 0.183441
\(495\) 2.41445e6 0.442899
\(496\) 1.58720e6 0.289686
\(497\) −325458. −0.0591022
\(498\) −925776. −0.167276
\(499\) −9.22344e6 −1.65822 −0.829109 0.559087i \(-0.811152\pi\)
−0.829109 + 0.559087i \(0.811152\pi\)
\(500\) 1.22803e6 0.219677
\(501\) −2.81113e6 −0.500365
\(502\) 739008. 0.130885
\(503\) 1.45562e6 0.256525 0.128262 0.991740i \(-0.459060\pi\)
0.128262 + 0.991740i \(0.459060\pi\)
\(504\) −254016. −0.0445435
\(505\) −3.48106e6 −0.607411
\(506\) 4.79909e6 0.833264
\(507\) 6.65661e6 1.15009
\(508\) −28480.0 −0.00489644
\(509\) −367344. −0.0628461 −0.0314231 0.999506i \(-0.510004\pi\)
−0.0314231 + 0.999506i \(0.510004\pi\)
\(510\) −4.79002e6 −0.815477
\(511\) −2.55241e6 −0.432412
\(512\) −262144. −0.0441942
\(513\) 172044. 0.0288633
\(514\) −943920. −0.157590
\(515\) 1.32186e7 2.19618
\(516\) −1.55578e6 −0.257231
\(517\) −24840.0 −0.00408719
\(518\) −1.89140e6 −0.309713
\(519\) −675972. −0.110157
\(520\) −4.85683e6 −0.787671
\(521\) 5.76362e6 0.930254 0.465127 0.885244i \(-0.346009\pi\)
0.465127 + 0.885244i \(0.346009\pi\)
\(522\) 2.11313e6 0.339429
\(523\) 235100. 0.0375836 0.0187918 0.999823i \(-0.494018\pi\)
0.0187918 + 0.999823i \(0.494018\pi\)
\(524\) −4.24224e6 −0.674943
\(525\) 908019. 0.143779
\(526\) 977976. 0.154122
\(527\) −1.14576e7 −1.79708
\(528\) −953856. −0.148901
\(529\) 1.96206e6 0.304841
\(530\) 6.48173e6 1.00231
\(531\) −2.28226e6 −0.351259
\(532\) 185024. 0.0283432
\(533\) −8.94214e6 −1.36340
\(534\) −3.55406e6 −0.539352
\(535\) 161136. 0.0243393
\(536\) 1.80582e6 0.271496
\(537\) 3.48046e6 0.520836
\(538\) −6.11117e6 −0.910266
\(539\) −994014. −0.147374
\(540\) −839808. −0.123935
\(541\) 109010. 0.0160130 0.00800651 0.999968i \(-0.497451\pi\)
0.00800651 + 0.999968i \(0.497451\pi\)
\(542\) −8.28224e6 −1.21102
\(543\) −3.75838e6 −0.547018
\(544\) 1.89235e6 0.274160
\(545\) −4.33138e6 −0.624647
\(546\) 1.85926e6 0.266906
\(547\) 1.61953e6 0.231430 0.115715 0.993282i \(-0.463084\pi\)
0.115715 + 0.993282i \(0.463084\pi\)
\(548\) −3.30768e6 −0.470514
\(549\) −2.85071e6 −0.403667
\(550\) 3.40970e6 0.480629
\(551\) −1.53919e6 −0.215980
\(552\) −1.66925e6 −0.233170
\(553\) 2.12366e6 0.295306
\(554\) 9.62908e6 1.33294
\(555\) −6.25320e6 −0.861727
\(556\) −3.78938e6 −0.519853
\(557\) −6.62986e6 −0.905454 −0.452727 0.891649i \(-0.649549\pi\)
−0.452727 + 0.891649i \(0.649549\pi\)
\(558\) −2.00880e6 −0.273119
\(559\) 1.13874e7 1.54133
\(560\) −903168. −0.121702
\(561\) 6.88565e6 0.923714
\(562\) −1.36754e6 −0.182642
\(563\) 7.85294e6 1.04415 0.522073 0.852901i \(-0.325159\pi\)
0.522073 + 0.852901i \(0.325159\pi\)
\(564\) 8640.00 0.00114371
\(565\) 505008. 0.0665545
\(566\) −2.31426e6 −0.303648
\(567\) 321489. 0.0419961
\(568\) 425088. 0.0552851
\(569\) −2.48155e6 −0.321323 −0.160661 0.987010i \(-0.551363\pi\)
−0.160661 + 0.987010i \(0.551363\pi\)
\(570\) 611712. 0.0788606
\(571\) 1.13675e7 1.45907 0.729533 0.683945i \(-0.239737\pi\)
0.729533 + 0.683945i \(0.239737\pi\)
\(572\) 6.98170e6 0.892218
\(573\) −8.89245e6 −1.13145
\(574\) −1.66286e6 −0.210658
\(575\) 5.96698e6 0.752636
\(576\) 331776. 0.0416667
\(577\) −8.20505e6 −1.02599 −0.512993 0.858393i \(-0.671463\pi\)
−0.512993 + 0.858393i \(0.671463\pi\)
\(578\) −7.98099e6 −0.993658
\(579\) −3.68332e6 −0.456608
\(580\) 7.51334e6 0.927392
\(581\) 1.26008e6 0.154867
\(582\) 5.36234e6 0.656217
\(583\) −9.31748e6 −1.13534
\(584\) 3.33376e6 0.404485
\(585\) 6.14693e6 0.742623
\(586\) −3.12216e6 −0.375587
\(587\) −1.38400e7 −1.65783 −0.828917 0.559371i \(-0.811043\pi\)
−0.828917 + 0.559371i \(0.811043\pi\)
\(588\) 345744. 0.0412393
\(589\) 1.46320e6 0.173786
\(590\) −8.11469e6 −0.959714
\(591\) −8.30007e6 −0.977492
\(592\) 2.47040e6 0.289710
\(593\) −5.38951e6 −0.629380 −0.314690 0.949195i \(-0.601901\pi\)
−0.314690 + 0.949195i \(0.601901\pi\)
\(594\) 1.20722e6 0.140385
\(595\) 6.51974e6 0.754985
\(596\) 7.57930e6 0.874004
\(597\) 1.70539e6 0.195834
\(598\) 1.22180e7 1.39716
\(599\) −1.14885e7 −1.30827 −0.654134 0.756379i \(-0.726967\pi\)
−0.654134 + 0.756379i \(0.726967\pi\)
\(600\) −1.18598e6 −0.134493
\(601\) −2.79225e6 −0.315333 −0.157666 0.987492i \(-0.550397\pi\)
−0.157666 + 0.987492i \(0.550397\pi\)
\(602\) 2.11758e6 0.238149
\(603\) −2.28550e6 −0.255969
\(604\) 6.31923e6 0.704810
\(605\) −744840. −0.0827322
\(606\) −1.74053e6 −0.192530
\(607\) 713888. 0.0786427 0.0393213 0.999227i \(-0.487480\pi\)
0.0393213 + 0.999227i \(0.487480\pi\)
\(608\) −241664. −0.0265126
\(609\) −2.87620e6 −0.314251
\(610\) −1.01359e7 −1.10290
\(611\) −63240.0 −0.00685313
\(612\) −2.39501e6 −0.258481
\(613\) 3.10972e6 0.334249 0.167124 0.985936i \(-0.446552\pi\)
0.167124 + 0.985936i \(0.446552\pi\)
\(614\) 8.99301e6 0.962685
\(615\) −5.49763e6 −0.586122
\(616\) 1.29830e6 0.137856
\(617\) 3.62384e6 0.383227 0.191613 0.981470i \(-0.438628\pi\)
0.191613 + 0.981470i \(0.438628\pi\)
\(618\) 6.60931e6 0.696122
\(619\) 4.25196e6 0.446028 0.223014 0.974815i \(-0.428410\pi\)
0.223014 + 0.974815i \(0.428410\pi\)
\(620\) −7.14240e6 −0.746217
\(621\) 2.11264e6 0.219835
\(622\) −2.32565e6 −0.241028
\(623\) 4.83748e6 0.499343
\(624\) −2.42842e6 −0.249667
\(625\) −1.19605e7 −1.22476
\(626\) 8.01628e6 0.817593
\(627\) −879336. −0.0893277
\(628\) −2.32144e6 −0.234887
\(629\) −1.78332e7 −1.79723
\(630\) 1.14307e6 0.114742
\(631\) −1.70299e7 −1.70270 −0.851349 0.524600i \(-0.824215\pi\)
−0.851349 + 0.524600i \(0.824215\pi\)
\(632\) −2.77376e6 −0.276233
\(633\) −5.50242e6 −0.545814
\(634\) 5.11327e6 0.505214
\(635\) 128160. 0.0126130
\(636\) 3.24086e6 0.317701
\(637\) −2.53065e6 −0.247107
\(638\) −1.08004e7 −1.05048
\(639\) −538002. −0.0521233
\(640\) 1.17965e6 0.113842
\(641\) −1.80938e6 −0.173934 −0.0869669 0.996211i \(-0.527717\pi\)
−0.0869669 + 0.996211i \(0.527717\pi\)
\(642\) 80568.0 0.00771481
\(643\) 1.53012e7 1.45948 0.729740 0.683725i \(-0.239641\pi\)
0.729740 + 0.683725i \(0.239641\pi\)
\(644\) 2.27203e6 0.215874
\(645\) 7.00099e6 0.662614
\(646\) 1.74451e6 0.164472
\(647\) 1.67546e7 1.57352 0.786762 0.617256i \(-0.211756\pi\)
0.786762 + 0.617256i \(0.211756\pi\)
\(648\) −419904. −0.0392837
\(649\) 1.16649e7 1.08710
\(650\) 8.68074e6 0.805886
\(651\) 2.73420e6 0.252859
\(652\) 8.48768e6 0.781934
\(653\) 1.47859e7 1.35695 0.678477 0.734622i \(-0.262640\pi\)
0.678477 + 0.734622i \(0.262640\pi\)
\(654\) −2.16569e6 −0.197994
\(655\) 1.90901e7 1.73862
\(656\) 2.17190e6 0.197052
\(657\) −4.21929e6 −0.381352
\(658\) −11760.0 −0.00105887
\(659\) 933762. 0.0837573 0.0418786 0.999123i \(-0.486666\pi\)
0.0418786 + 0.999123i \(0.486666\pi\)
\(660\) 4.29235e6 0.383562
\(661\) 6.09724e6 0.542787 0.271394 0.962468i \(-0.412516\pi\)
0.271394 + 0.962468i \(0.412516\pi\)
\(662\) −1.03925e7 −0.921666
\(663\) 1.75301e7 1.54882
\(664\) −1.64582e6 −0.144865
\(665\) −832608. −0.0730107
\(666\) −3.12660e6 −0.273141
\(667\) −1.89008e7 −1.64500
\(668\) −4.99757e6 −0.433329
\(669\) −7.04930e6 −0.608949
\(670\) −8.12621e6 −0.699360
\(671\) 1.45703e7 1.24929
\(672\) −451584. −0.0385758
\(673\) 2.09190e6 0.178034 0.0890171 0.996030i \(-0.471627\pi\)
0.0890171 + 0.996030i \(0.471627\pi\)
\(674\) −1.22476e7 −1.03849
\(675\) 1.50101e6 0.126802
\(676\) 1.18340e7 0.996010
\(677\) 1.36453e6 0.114423 0.0572113 0.998362i \(-0.481779\pi\)
0.0572113 + 0.998362i \(0.481779\pi\)
\(678\) 252504. 0.0210957
\(679\) −7.29875e6 −0.607539
\(680\) −8.51558e6 −0.706223
\(681\) 726408. 0.0600223
\(682\) 1.02672e7 0.845261
\(683\) 1.15483e7 0.947254 0.473627 0.880726i \(-0.342945\pi\)
0.473627 + 0.880726i \(0.342945\pi\)
\(684\) 305856. 0.0249964
\(685\) 1.48846e7 1.21202
\(686\) −470596. −0.0381802
\(687\) 1.37464e6 0.111121
\(688\) −2.76582e6 −0.222768
\(689\) −2.37213e7 −1.90367
\(690\) 7.51162e6 0.600635
\(691\) 4.17744e6 0.332824 0.166412 0.986056i \(-0.446782\pi\)
0.166412 + 0.986056i \(0.446782\pi\)
\(692\) −1.20173e6 −0.0953984
\(693\) −1.64317e6 −0.129972
\(694\) 5.70199e6 0.449395
\(695\) 1.70522e7 1.33912
\(696\) 3.75667e6 0.293955
\(697\) −1.56784e7 −1.22242
\(698\) −1.17329e7 −0.911520
\(699\) −3.18854e6 −0.246830
\(700\) 1.61426e6 0.124517
\(701\) −1.70278e7 −1.30877 −0.654385 0.756161i \(-0.727073\pi\)
−0.654385 + 0.756161i \(0.727073\pi\)
\(702\) 3.07346e6 0.235389
\(703\) 2.27740e6 0.173800
\(704\) −1.69574e6 −0.128952
\(705\) −38880.0 −0.00294614
\(706\) 8.05104e6 0.607911
\(707\) 2.36905e6 0.178249
\(708\) −4.05734e6 −0.304200
\(709\) 2.26932e7 1.69543 0.847715 0.530452i \(-0.177978\pi\)
0.847715 + 0.530452i \(0.177978\pi\)
\(710\) −1.91290e6 −0.142412
\(711\) 3.51054e6 0.260435
\(712\) −6.31834e6 −0.467092
\(713\) 1.79676e7 1.32363
\(714\) 3.25987e6 0.239307
\(715\) −3.14176e7 −2.29831
\(716\) 6.18749e6 0.451057
\(717\) 2.47833e6 0.180037
\(718\) −1.63084e7 −1.18059
\(719\) 5.12544e6 0.369751 0.184875 0.982762i \(-0.440812\pi\)
0.184875 + 0.982762i \(0.440812\pi\)
\(720\) −1.49299e6 −0.107331
\(721\) −8.99601e6 −0.644483
\(722\) 9.68161e6 0.691202
\(723\) −5.26228e6 −0.374394
\(724\) −6.68157e6 −0.473731
\(725\) −1.34288e7 −0.948838
\(726\) −372420. −0.0262235
\(727\) −1.54328e7 −1.08295 −0.541476 0.840716i \(-0.682134\pi\)
−0.541476 + 0.840716i \(0.682134\pi\)
\(728\) 3.30534e6 0.231147
\(729\) 531441. 0.0370370
\(730\) −1.50019e7 −1.04193
\(731\) 1.99658e7 1.38195
\(732\) −5.06794e6 −0.349586
\(733\) −6.84465e6 −0.470535 −0.235267 0.971931i \(-0.575597\pi\)
−0.235267 + 0.971931i \(0.575597\pi\)
\(734\) −2.37901e6 −0.162988
\(735\) −1.55585e6 −0.106230
\(736\) −2.96755e6 −0.201931
\(737\) 1.16814e7 0.792186
\(738\) −2.74882e6 −0.185782
\(739\) 2.99389e6 0.201662 0.100831 0.994904i \(-0.467850\pi\)
0.100831 + 0.994904i \(0.467850\pi\)
\(740\) −1.11168e7 −0.746278
\(741\) −2.23870e6 −0.149779
\(742\) −4.41118e6 −0.294134
\(743\) 2.23250e7 1.48361 0.741804 0.670617i \(-0.233971\pi\)
0.741804 + 0.670617i \(0.233971\pi\)
\(744\) −3.57120e6 −0.236528
\(745\) −3.41068e7 −2.25139
\(746\) −8.18089e6 −0.538212
\(747\) 2.08300e6 0.136580
\(748\) 1.22412e7 0.799960
\(749\) −109662. −0.00714252
\(750\) −2.76307e6 −0.179366
\(751\) −1.41440e7 −0.915110 −0.457555 0.889181i \(-0.651275\pi\)
−0.457555 + 0.889181i \(0.651275\pi\)
\(752\) 15360.0 0.000990482 0
\(753\) −1.66277e6 −0.106867
\(754\) −2.74968e7 −1.76138
\(755\) −2.84365e7 −1.81556
\(756\) 571536. 0.0363696
\(757\) −8.15367e6 −0.517147 −0.258573 0.965992i \(-0.583252\pi\)
−0.258573 + 0.965992i \(0.583252\pi\)
\(758\) 1.28879e7 0.814723
\(759\) −1.07979e7 −0.680357
\(760\) 1.08749e6 0.0682952
\(761\) −2.25745e6 −0.141305 −0.0706524 0.997501i \(-0.522508\pi\)
−0.0706524 + 0.997501i \(0.522508\pi\)
\(762\) 64080.0 0.00399793
\(763\) 2.94774e6 0.183307
\(764\) −1.58088e7 −0.979863
\(765\) 1.07775e7 0.665834
\(766\) 6.91862e6 0.426037
\(767\) 2.96975e7 1.82277
\(768\) 589824. 0.0360844
\(769\) −748774. −0.0456599 −0.0228299 0.999739i \(-0.507268\pi\)
−0.0228299 + 0.999739i \(0.507268\pi\)
\(770\) −5.84237e6 −0.355109
\(771\) 2.12382e6 0.128671
\(772\) −6.54813e6 −0.395434
\(773\) −9.46225e6 −0.569568 −0.284784 0.958592i \(-0.591922\pi\)
−0.284784 + 0.958592i \(0.591922\pi\)
\(774\) 3.50050e6 0.210028
\(775\) 1.27658e7 0.763473
\(776\) 9.53306e6 0.568300
\(777\) 4.25565e6 0.252879
\(778\) 6.99674e6 0.414426
\(779\) 2.00222e6 0.118214
\(780\) 1.09279e7 0.643130
\(781\) 2.74979e6 0.161314
\(782\) 2.14220e7 1.25269
\(783\) −4.75454e6 −0.277143
\(784\) 614656. 0.0357143
\(785\) 1.04465e7 0.605056
\(786\) 9.54504e6 0.551089
\(787\) −1.99634e7 −1.14894 −0.574470 0.818525i \(-0.694792\pi\)
−0.574470 + 0.818525i \(0.694792\pi\)
\(788\) −1.47557e7 −0.846533
\(789\) −2.20045e6 −0.125840
\(790\) 1.24819e7 0.711564
\(791\) −343686. −0.0195308
\(792\) 2.14618e6 0.121577
\(793\) 3.70945e7 2.09472
\(794\) −7.52818e6 −0.423779
\(795\) −1.45839e7 −0.818381
\(796\) 3.03181e6 0.169597
\(797\) −4.05368e6 −0.226050 −0.113025 0.993592i \(-0.536054\pi\)
−0.113025 + 0.993592i \(0.536054\pi\)
\(798\) −416304. −0.0231421
\(799\) −110880. −0.00614450
\(800\) −2.10842e6 −0.116475
\(801\) 7.99664e6 0.440379
\(802\) −1.67250e7 −0.918182
\(803\) 2.15653e7 1.18023
\(804\) −4.06310e6 −0.221676
\(805\) −1.02241e7 −0.556080
\(806\) 2.61392e7 1.41728
\(807\) 1.37501e7 0.743229
\(808\) −3.09427e6 −0.166736
\(809\) 1.85432e7 0.996124 0.498062 0.867141i \(-0.334045\pi\)
0.498062 + 0.867141i \(0.334045\pi\)
\(810\) 1.88957e6 0.101193
\(811\) 1.63648e7 0.873690 0.436845 0.899537i \(-0.356096\pi\)
0.436845 + 0.899537i \(0.356096\pi\)
\(812\) −5.11325e6 −0.272149
\(813\) 1.86350e7 0.988790
\(814\) 1.59804e7 0.845331
\(815\) −3.81946e7 −2.01422
\(816\) −4.25779e6 −0.223851
\(817\) −2.54974e6 −0.133642
\(818\) 1.88673e6 0.0985884
\(819\) −4.18333e6 −0.217927
\(820\) −9.77357e6 −0.507596
\(821\) −5.45014e6 −0.282195 −0.141098 0.989996i \(-0.545063\pi\)
−0.141098 + 0.989996i \(0.545063\pi\)
\(822\) 7.44228e6 0.384173
\(823\) −2.19153e7 −1.12784 −0.563921 0.825829i \(-0.690708\pi\)
−0.563921 + 0.825829i \(0.690708\pi\)
\(824\) 1.17499e7 0.602859
\(825\) −7.67183e6 −0.392432
\(826\) 5.52250e6 0.281634
\(827\) 8.11859e6 0.412778 0.206389 0.978470i \(-0.433829\pi\)
0.206389 + 0.978470i \(0.433829\pi\)
\(828\) 3.75581e6 0.190383
\(829\) 1.60662e7 0.811943 0.405972 0.913886i \(-0.366933\pi\)
0.405972 + 0.913886i \(0.366933\pi\)
\(830\) 7.40621e6 0.373165
\(831\) −2.16654e7 −1.08834
\(832\) −4.31718e6 −0.216218
\(833\) −4.43705e6 −0.221555
\(834\) 8.52610e6 0.424458
\(835\) 2.24891e7 1.11623
\(836\) −1.56326e6 −0.0773600
\(837\) 4.51980e6 0.223000
\(838\) 1.41637e7 0.696736
\(839\) −2.63504e7 −1.29236 −0.646178 0.763186i \(-0.723634\pi\)
−0.646178 + 0.763186i \(0.723634\pi\)
\(840\) 2.03213e6 0.0993694
\(841\) 2.20253e7 1.07382
\(842\) −1.09105e7 −0.530352
\(843\) 3.07697e6 0.149127
\(844\) −9.78208e6 −0.472689
\(845\) −5.32529e7 −2.56567
\(846\) −19440.0 −0.000933835 0
\(847\) 506905. 0.0242783
\(848\) 5.76154e6 0.275137
\(849\) 5.20708e6 0.247927
\(850\) 1.52201e7 0.722555
\(851\) 2.79657e7 1.32374
\(852\) −956448. −0.0451401
\(853\) 2.78129e7 1.30880 0.654400 0.756148i \(-0.272921\pi\)
0.654400 + 0.756148i \(0.272921\pi\)
\(854\) 6.89802e6 0.323653
\(855\) −1.37635e6 −0.0643894
\(856\) 143232. 0.00668122
\(857\) −2.69363e6 −0.125281 −0.0626406 0.998036i \(-0.519952\pi\)
−0.0626406 + 0.998036i \(0.519952\pi\)
\(858\) −1.57088e7 −0.728493
\(859\) −1.88389e7 −0.871109 −0.435555 0.900162i \(-0.643448\pi\)
−0.435555 + 0.900162i \(0.643448\pi\)
\(860\) 1.24462e7 0.573840
\(861\) 3.74144e6 0.172001
\(862\) 1.90607e7 0.873716
\(863\) −1.28630e7 −0.587917 −0.293959 0.955818i \(-0.594973\pi\)
−0.293959 + 0.955818i \(0.594973\pi\)
\(864\) −746496. −0.0340207
\(865\) 5.40778e6 0.245741
\(866\) −2.76120e7 −1.25113
\(867\) 1.79572e7 0.811319
\(868\) 4.86080e6 0.218982
\(869\) −1.79428e7 −0.806009
\(870\) −1.69050e7 −0.757212
\(871\) 2.97397e7 1.32828
\(872\) −3.85011e6 −0.171468
\(873\) −1.20653e7 −0.535799
\(874\) −2.73571e6 −0.121141
\(875\) 3.76085e6 0.166060
\(876\) −7.50096e6 −0.330260
\(877\) −1.58811e7 −0.697240 −0.348620 0.937264i \(-0.613350\pi\)
−0.348620 + 0.937264i \(0.613350\pi\)
\(878\) −2.16050e7 −0.945842
\(879\) 7.02486e6 0.306666
\(880\) 7.63085e6 0.332174
\(881\) 1.73681e7 0.753899 0.376950 0.926234i \(-0.376973\pi\)
0.376950 + 0.926234i \(0.376973\pi\)
\(882\) −777924. −0.0336718
\(883\) 2.23513e7 0.964721 0.482361 0.875973i \(-0.339780\pi\)
0.482361 + 0.875973i \(0.339780\pi\)
\(884\) 3.11647e7 1.34132
\(885\) 1.82580e7 0.783603
\(886\) 1.62345e7 0.694793
\(887\) −8.91140e6 −0.380309 −0.190155 0.981754i \(-0.560899\pi\)
−0.190155 + 0.981754i \(0.560899\pi\)
\(888\) −5.55840e6 −0.236547
\(889\) −87220.0 −0.00370136
\(890\) 2.84325e7 1.20321
\(891\) −2.71625e6 −0.114624
\(892\) −1.25321e7 −0.527365
\(893\) 14160.0 0.000594203 0
\(894\) −1.70534e7 −0.713621
\(895\) −2.78437e7 −1.16190
\(896\) −802816. −0.0334077
\(897\) −2.74904e7 −1.14078
\(898\) −851976. −0.0352563
\(899\) −4.04364e7 −1.66868
\(900\) 2.66846e6 0.109813
\(901\) −4.15911e7 −1.70682
\(902\) 1.40495e7 0.574969
\(903\) −4.76456e6 −0.194448
\(904\) 448896. 0.0182694
\(905\) 3.00671e7 1.22031
\(906\) −1.42183e7 −0.575475
\(907\) −4.53327e6 −0.182976 −0.0914878 0.995806i \(-0.529162\pi\)
−0.0914878 + 0.995806i \(0.529162\pi\)
\(908\) 1.29139e6 0.0519809
\(909\) 3.91619e6 0.157200
\(910\) −1.48740e7 −0.595423
\(911\) −9.83085e6 −0.392460 −0.196230 0.980558i \(-0.562870\pi\)
−0.196230 + 0.980558i \(0.562870\pi\)
\(912\) 543744. 0.0216475
\(913\) −1.06464e7 −0.422695
\(914\) 3.66460e6 0.145098
\(915\) 2.28057e7 0.900515
\(916\) 2.44381e6 0.0962340
\(917\) −1.29919e7 −0.510209
\(918\) 5.38877e6 0.211049
\(919\) −4.82049e7 −1.88279 −0.941396 0.337304i \(-0.890485\pi\)
−0.941396 + 0.337304i \(0.890485\pi\)
\(920\) 1.33540e7 0.520165
\(921\) −2.02343e7 −0.786029
\(922\) 1.66334e7 0.644397
\(923\) 7.00067e6 0.270480
\(924\) −2.92118e6 −0.112559
\(925\) 1.98694e7 0.763536
\(926\) −3.36320e7 −1.28892
\(927\) −1.48710e7 −0.568381
\(928\) 6.67853e6 0.254572
\(929\) −6.77017e6 −0.257371 −0.128686 0.991685i \(-0.541076\pi\)
−0.128686 + 0.991685i \(0.541076\pi\)
\(930\) 1.60704e7 0.609283
\(931\) 566636. 0.0214255
\(932\) −5.66851e6 −0.213761
\(933\) 5.23271e6 0.196799
\(934\) −288192. −0.0108097
\(935\) −5.50852e7 −2.06066
\(936\) 5.46394e6 0.203852
\(937\) 1.25127e7 0.465590 0.232795 0.972526i \(-0.425213\pi\)
0.232795 + 0.972526i \(0.425213\pi\)
\(938\) 5.53034e6 0.205232
\(939\) −1.80366e7 −0.667562
\(940\) −69120.0 −0.00255143
\(941\) −1.38659e7 −0.510473 −0.255236 0.966879i \(-0.582153\pi\)
−0.255236 + 0.966879i \(0.582153\pi\)
\(942\) 5.22324e6 0.191784
\(943\) 2.45866e7 0.900367
\(944\) −7.21306e6 −0.263445
\(945\) −2.57191e6 −0.0936864
\(946\) −1.78914e7 −0.650006
\(947\) 4.89287e6 0.177292 0.0886460 0.996063i \(-0.471746\pi\)
0.0886460 + 0.996063i \(0.471746\pi\)
\(948\) 6.24096e6 0.225544
\(949\) 5.49029e7 1.97893
\(950\) −1.94370e6 −0.0698746
\(951\) −1.15049e7 −0.412506
\(952\) 5.79533e6 0.207246
\(953\) −1.40055e7 −0.499535 −0.249768 0.968306i \(-0.580354\pi\)
−0.249768 + 0.968306i \(0.580354\pi\)
\(954\) −7.29194e6 −0.259401
\(955\) 7.11396e7 2.52408
\(956\) 4.40592e6 0.155916
\(957\) 2.43010e7 0.857717
\(958\) −1.92224e7 −0.676697
\(959\) −1.01298e7 −0.355675
\(960\) −2.65421e6 −0.0929516
\(961\) 9.81085e6 0.342687
\(962\) 4.06844e7 1.41739
\(963\) −181278. −0.00629911
\(964\) −9.35517e6 −0.324234
\(965\) 2.94666e7 1.01862
\(966\) −5.11207e6 −0.176260
\(967\) −1.02386e7 −0.352106 −0.176053 0.984381i \(-0.556333\pi\)
−0.176053 + 0.984381i \(0.556333\pi\)
\(968\) −662080. −0.0227103
\(969\) −3.92515e6 −0.134291
\(970\) −4.28988e7 −1.46391
\(971\) 1.17452e7 0.399773 0.199886 0.979819i \(-0.435943\pi\)
0.199886 + 0.979819i \(0.435943\pi\)
\(972\) 944784. 0.0320750
\(973\) −1.16050e7 −0.392972
\(974\) −1.76722e7 −0.596888
\(975\) −1.95317e7 −0.658003
\(976\) −9.00966e6 −0.302750
\(977\) 2.26195e7 0.758134 0.379067 0.925369i \(-0.376245\pi\)
0.379067 + 0.925369i \(0.376245\pi\)
\(978\) −1.90973e7 −0.638446
\(979\) −4.08717e7 −1.36291
\(980\) −2.76595e6 −0.0919982
\(981\) 4.87280e6 0.161661
\(982\) 2.25999e7 0.747873
\(983\) 2.79575e7 0.922813 0.461407 0.887189i \(-0.347345\pi\)
0.461407 + 0.887189i \(0.347345\pi\)
\(984\) −4.88678e6 −0.160892
\(985\) 6.64006e7 2.18063
\(986\) −4.82106e7 −1.57925
\(987\) 26460.0 0.000864564 0
\(988\) −3.97990e6 −0.129712
\(989\) −3.13100e7 −1.01787
\(990\) −9.65779e6 −0.313177
\(991\) −1.66475e7 −0.538474 −0.269237 0.963074i \(-0.586772\pi\)
−0.269237 + 0.963074i \(0.586772\pi\)
\(992\) −6.34880e6 −0.204839
\(993\) 2.33830e7 0.752537
\(994\) 1.30183e6 0.0417916
\(995\) −1.36431e7 −0.436874
\(996\) 3.70310e6 0.118282
\(997\) −5.17280e7 −1.64812 −0.824058 0.566505i \(-0.808295\pi\)
−0.824058 + 0.566505i \(0.808295\pi\)
\(998\) 3.68938e7 1.17254
\(999\) 7.03485e6 0.223019
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 42.6.a.c.1.1 1
3.2 odd 2 126.6.a.l.1.1 1
4.3 odd 2 336.6.a.b.1.1 1
5.2 odd 4 1050.6.g.b.799.1 2
5.3 odd 4 1050.6.g.b.799.2 2
5.4 even 2 1050.6.a.g.1.1 1
7.2 even 3 294.6.e.l.67.1 2
7.3 odd 6 294.6.e.n.79.1 2
7.4 even 3 294.6.e.l.79.1 2
7.5 odd 6 294.6.e.n.67.1 2
7.6 odd 2 294.6.a.c.1.1 1
12.11 even 2 1008.6.a.ba.1.1 1
21.20 even 2 882.6.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.c.1.1 1 1.1 even 1 trivial
126.6.a.l.1.1 1 3.2 odd 2
294.6.a.c.1.1 1 7.6 odd 2
294.6.e.l.67.1 2 7.2 even 3
294.6.e.l.79.1 2 7.4 even 3
294.6.e.n.67.1 2 7.5 odd 6
294.6.e.n.79.1 2 7.3 odd 6
336.6.a.b.1.1 1 4.3 odd 2
882.6.a.n.1.1 1 21.20 even 2
1008.6.a.ba.1.1 1 12.11 even 2
1050.6.a.g.1.1 1 5.4 even 2
1050.6.g.b.799.1 2 5.2 odd 4
1050.6.g.b.799.2 2 5.3 odd 4