Defining parameters
Level: | \( N \) | \(=\) | \( 42 = 2 \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 42.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(42))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 2 | 26 |
Cusp forms | 20 | 2 | 18 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | ||
Minus space | \(-\) | \(0\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(42))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 7 | |||||||
42.4.a.a | $1$ | $2.478$ | \(\Q\) | None | \(2\) | \(-3\) | \(18\) | \(7\) | $-$ | $+$ | $-$ | \(q+2q^{2}-3q^{3}+4q^{4}+18q^{5}-6q^{6}+\cdots\) | |
42.4.a.b | $1$ | $2.478$ | \(\Q\) | None | \(2\) | \(3\) | \(2\) | \(-7\) | $-$ | $-$ | $+$ | \(q+2q^{2}+3q^{3}+4q^{4}+2q^{5}+6q^{6}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(42))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(42)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)