Properties

Label 42.4.a
Level $42$
Weight $4$
Character orbit 42.a
Rep. character $\chi_{42}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $32$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(32\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(42))\).

Total New Old
Modular forms 28 2 26
Cusp forms 20 2 18
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeDim
\(-\)\(+\)\(-\)\(+\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(0\)

Trace form

\( 2 q + 4 q^{2} + 8 q^{4} + 20 q^{5} + 16 q^{8} + 18 q^{9} + 40 q^{10} - 80 q^{11} - 76 q^{13} - 48 q^{15} + 32 q^{16} + 4 q^{17} + 36 q^{18} - 32 q^{19} + 80 q^{20} - 42 q^{21} - 160 q^{22} - 104 q^{23}+ \cdots - 720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(42))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
42.4.a.a 42.a 1.a $1$ $2.478$ \(\Q\) None 42.4.a.a \(2\) \(-3\) \(18\) \(7\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-3q^{3}+4q^{4}+18q^{5}-6q^{6}+\cdots\)
42.4.a.b 42.a 1.a $1$ $2.478$ \(\Q\) None 42.4.a.b \(2\) \(3\) \(2\) \(-7\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}+4q^{4}+2q^{5}+6q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(42))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(42)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)