Properties

Label 42.2.f
Level $42$
Weight $2$
Character orbit 42.f
Rep. character $\chi_{42}(5,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 42.f (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(42, [\chi])\).

Total New Old
Modular forms 24 4 20
Cusp forms 8 4 4
Eisenstein series 16 0 16

Trace form

\( 4 q + 2 q^{4} - 10 q^{7} - 6 q^{9} - 6 q^{10} + 12 q^{15} - 2 q^{16} + 12 q^{19} + 12 q^{22} + 6 q^{24} + 4 q^{25} - 2 q^{28} - 6 q^{31} - 18 q^{33} - 12 q^{36} + 4 q^{37} - 6 q^{40} - 6 q^{42} - 32 q^{43}+ \cdots + 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(42, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
42.2.f.a 42.f 21.g $4$ $0.335$ \(\Q(\zeta_{12})\) None 42.2.f.a \(0\) \(0\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(42, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(42, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)