Properties

Label 42.2.d.a
Level $42$
Weight $2$
Character orbit 42.d
Analytic conductor $0.335$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [42,2,Mod(41,42)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("42.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 42.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.335371688489\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + \beta_1 q^{3} - q^{4} + (\beta_{3} - \beta_1) q^{5} - \beta_{3} q^{6} + ( - \beta_{3} - \beta_1 - 1) q^{7} + \beta_{2} q^{8} + 3 \beta_{2} q^{9} + (\beta_{3} + \beta_1) q^{10} - \beta_1 q^{12}+ \cdots + ( - 2 \beta_{3} + 5 \beta_{2} + 2 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{7} - 12 q^{15} + 4 q^{16} + 12 q^{18} + 12 q^{21} + 4 q^{25} + 4 q^{28} - 12 q^{30} - 8 q^{37} - 12 q^{39} - 12 q^{42} + 16 q^{43} - 24 q^{46} - 20 q^{49} + 24 q^{51} + 12 q^{57} + 24 q^{58}+ \cdots + 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(31\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
41.1
−1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 + 1.22474i
1.22474 1.22474i
1.00000i −1.22474 1.22474i −1.00000 2.44949 −1.22474 + 1.22474i −1.00000 + 2.44949i 1.00000i 3.00000i 2.44949i
41.2 1.00000i 1.22474 + 1.22474i −1.00000 −2.44949 1.22474 1.22474i −1.00000 2.44949i 1.00000i 3.00000i 2.44949i
41.3 1.00000i −1.22474 + 1.22474i −1.00000 2.44949 −1.22474 1.22474i −1.00000 2.44949i 1.00000i 3.00000i 2.44949i
41.4 1.00000i 1.22474 1.22474i −1.00000 −2.44949 1.22474 + 1.22474i −1.00000 + 2.44949i 1.00000i 3.00000i 2.44949i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.2.d.a 4
3.b odd 2 1 inner 42.2.d.a 4
4.b odd 2 1 336.2.k.b 4
5.b even 2 1 1050.2.b.b 4
5.c odd 4 1 1050.2.d.b 4
5.c odd 4 1 1050.2.d.e 4
7.b odd 2 1 inner 42.2.d.a 4
7.c even 3 2 294.2.f.b 8
7.d odd 6 2 294.2.f.b 8
8.b even 2 1 1344.2.k.c 4
8.d odd 2 1 1344.2.k.d 4
9.c even 3 2 1134.2.m.g 8
9.d odd 6 2 1134.2.m.g 8
12.b even 2 1 336.2.k.b 4
15.d odd 2 1 1050.2.b.b 4
15.e even 4 1 1050.2.d.b 4
15.e even 4 1 1050.2.d.e 4
21.c even 2 1 inner 42.2.d.a 4
21.g even 6 2 294.2.f.b 8
21.h odd 6 2 294.2.f.b 8
24.f even 2 1 1344.2.k.d 4
24.h odd 2 1 1344.2.k.c 4
28.d even 2 1 336.2.k.b 4
35.c odd 2 1 1050.2.b.b 4
35.f even 4 1 1050.2.d.b 4
35.f even 4 1 1050.2.d.e 4
56.e even 2 1 1344.2.k.d 4
56.h odd 2 1 1344.2.k.c 4
63.l odd 6 2 1134.2.m.g 8
63.o even 6 2 1134.2.m.g 8
84.h odd 2 1 336.2.k.b 4
105.g even 2 1 1050.2.b.b 4
105.k odd 4 1 1050.2.d.b 4
105.k odd 4 1 1050.2.d.e 4
168.e odd 2 1 1344.2.k.d 4
168.i even 2 1 1344.2.k.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.d.a 4 1.a even 1 1 trivial
42.2.d.a 4 3.b odd 2 1 inner
42.2.d.a 4 7.b odd 2 1 inner
42.2.d.a 4 21.c even 2 1 inner
294.2.f.b 8 7.c even 3 2
294.2.f.b 8 7.d odd 6 2
294.2.f.b 8 21.g even 6 2
294.2.f.b 8 21.h odd 6 2
336.2.k.b 4 4.b odd 2 1
336.2.k.b 4 12.b even 2 1
336.2.k.b 4 28.d even 2 1
336.2.k.b 4 84.h odd 2 1
1050.2.b.b 4 5.b even 2 1
1050.2.b.b 4 15.d odd 2 1
1050.2.b.b 4 35.c odd 2 1
1050.2.b.b 4 105.g even 2 1
1050.2.d.b 4 5.c odd 4 1
1050.2.d.b 4 15.e even 4 1
1050.2.d.b 4 35.f even 4 1
1050.2.d.b 4 105.k odd 4 1
1050.2.d.e 4 5.c odd 4 1
1050.2.d.e 4 15.e even 4 1
1050.2.d.e 4 35.f even 4 1
1050.2.d.e 4 105.k odd 4 1
1134.2.m.g 8 9.c even 3 2
1134.2.m.g 8 9.d odd 6 2
1134.2.m.g 8 63.l odd 6 2
1134.2.m.g 8 63.o even 6 2
1344.2.k.c 4 8.b even 2 1
1344.2.k.c 4 24.h odd 2 1
1344.2.k.c 4 56.h odd 2 1
1344.2.k.c 4 168.i even 2 1
1344.2.k.d 4 8.d odd 2 1
1344.2.k.d 4 24.f even 2 1
1344.2.k.d 4 56.e even 2 1
1344.2.k.d 4 168.e odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(42, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 2 T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T + 2)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 24)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 150)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 150)^{2} \) Copy content Toggle raw display
$67$ \( (T - 8)^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 96)^{2} \) Copy content Toggle raw display
$79$ \( (T + 10)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
show more
show less