Properties

Label 42.2.d
Level 4242
Weight 22
Character orbit 42.d
Rep. character χ42(41,)\chi_{42}(41,\cdot)
Character field Q\Q
Dimension 44
Newform subspaces 11
Sturm bound 1616
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 42=237 42 = 2 \cdot 3 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 42.d (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q\Q
Newform subspaces: 1 1
Sturm bound: 1616
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(42,[χ])M_{2}(42, [\chi]).

Total New Old
Modular forms 12 4 8
Cusp forms 4 4 0
Eisenstein series 8 0 8

Trace form

4q4q44q712q15+4q16+12q18+12q21+4q25+4q2812q308q3712q3912q42+16q4324q4620q49+24q51+12q57+24q58++24q91+O(q100) 4 q - 4 q^{4} - 4 q^{7} - 12 q^{15} + 4 q^{16} + 12 q^{18} + 12 q^{21} + 4 q^{25} + 4 q^{28} - 12 q^{30} - 8 q^{37} - 12 q^{39} - 12 q^{42} + 16 q^{43} - 24 q^{46} - 20 q^{49} + 24 q^{51} + 12 q^{57} + 24 q^{58}+ \cdots + 24 q^{91}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(42,[χ])S_{2}^{\mathrm{new}}(42, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
42.2.d.a 42.d 21.c 44 0.3350.335 Q(i,6)\Q(i, \sqrt{6}) None 42.2.d.a 00 00 00 4-4 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ2q2+β1q3q4+(β1+β3)q5+q-\beta _{2}q^{2}+\beta _{1}q^{3}-q^{4}+(-\beta _{1}+\beta _{3})q^{5}+\cdots