Properties

Label 42.2.a
Level $42$
Weight $2$
Character orbit 42.a
Rep. character $\chi_{42}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(42))\).

Total New Old
Modular forms 12 1 11
Cusp forms 5 1 4
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeDim
\(-\)\(+\)\(+\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(1\)

Trace form

\( q + q^{2} - q^{3} + q^{4} - 2 q^{5} - q^{6} - q^{7} + q^{8} + q^{9} - 2 q^{10} - 4 q^{11} - q^{12} + 6 q^{13} - q^{14} + 2 q^{15} + q^{16} + 2 q^{17} + q^{18} - 4 q^{19} - 2 q^{20} + q^{21}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(42))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
42.2.a.a 42.a 1.a $1$ $0.335$ \(\Q\) None 42.2.a.a \(1\) \(-1\) \(-2\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-2q^{5}-q^{6}-q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(42))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(42)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)