Properties

Label 42.12.d
Level $42$
Weight $12$
Character orbit 42.d
Rep. character $\chi_{42}(41,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 42.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(42, [\chi])\).

Total New Old
Modular forms 92 28 64
Cusp forms 84 28 56
Eisenstein series 8 0 8

Trace form

\( 28 q - 28672 q^{4} - 23884 q^{7} + 9600 q^{9} - 2225148 q^{15} + 29360128 q^{16} + 8028288 q^{18} - 38450580 q^{21} + 24372480 q^{22} + 163501900 q^{25} + 24457216 q^{28} - 544245888 q^{30} - 9830400 q^{36}+ \cdots + 554680171584 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(42, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
42.12.d.a 42.d 21.c $28$ $32.270$ None 42.12.d.a \(0\) \(0\) \(0\) \(-23884\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{12}^{\mathrm{old}}(42, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(42, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)