Properties

Label 42.12.a.f.1.1
Level $42$
Weight $12$
Character 42.1
Self dual yes
Analytic conductor $32.270$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [42,12,Mod(1,42)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("42.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,32,243,1024,-11880] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.2704135835\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 42.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32.0000 q^{2} +243.000 q^{3} +1024.00 q^{4} -11880.0 q^{5} +7776.00 q^{6} +16807.0 q^{7} +32768.0 q^{8} +59049.0 q^{9} -380160. q^{10} +727110. q^{11} +248832. q^{12} -1.89573e6 q^{13} +537824. q^{14} -2.88684e6 q^{15} +1.04858e6 q^{16} -1.02339e7 q^{17} +1.88957e6 q^{18} -1.27928e7 q^{19} -1.21651e7 q^{20} +4.08410e6 q^{21} +2.32675e7 q^{22} -2.74123e7 q^{23} +7.96262e6 q^{24} +9.23063e7 q^{25} -6.06635e7 q^{26} +1.43489e7 q^{27} +1.72104e7 q^{28} -1.08083e8 q^{29} -9.23789e7 q^{30} -2.02243e8 q^{31} +3.35544e7 q^{32} +1.76688e8 q^{33} -3.27485e8 q^{34} -1.99667e8 q^{35} +6.04662e7 q^{36} +4.12455e8 q^{37} -4.09369e8 q^{38} -4.60663e8 q^{39} -3.89284e8 q^{40} -2.45109e8 q^{41} +1.30691e8 q^{42} +5.09840e8 q^{43} +7.44561e8 q^{44} -7.01502e8 q^{45} -8.77193e8 q^{46} +6.99877e8 q^{47} +2.54804e8 q^{48} +2.82475e8 q^{49} +2.95380e9 q^{50} -2.48684e9 q^{51} -1.94123e9 q^{52} -4.83669e9 q^{53} +4.59165e8 q^{54} -8.63807e9 q^{55} +5.50732e8 q^{56} -3.10865e9 q^{57} -3.45865e9 q^{58} +2.46225e9 q^{59} -2.95612e9 q^{60} +9.05472e9 q^{61} -6.47179e9 q^{62} +9.92437e8 q^{63} +1.07374e9 q^{64} +2.25213e10 q^{65} +5.65401e9 q^{66} -2.92315e9 q^{67} -1.04795e10 q^{68} -6.66119e9 q^{69} -6.38935e9 q^{70} -1.12689e10 q^{71} +1.93492e9 q^{72} +2.80923e9 q^{73} +1.31986e10 q^{74} +2.24304e10 q^{75} -1.30998e10 q^{76} +1.22205e10 q^{77} -1.47412e10 q^{78} +2.55736e10 q^{79} -1.24571e10 q^{80} +3.48678e9 q^{81} -7.84348e9 q^{82} -3.87188e10 q^{83} +4.18212e9 q^{84} +1.21579e11 q^{85} +1.63149e10 q^{86} -2.62641e10 q^{87} +2.38259e10 q^{88} +9.07837e10 q^{89} -2.24481e10 q^{90} -3.18616e10 q^{91} -2.80702e10 q^{92} -4.91451e10 q^{93} +2.23961e10 q^{94} +1.51978e11 q^{95} +8.15373e9 q^{96} +1.30560e11 q^{97} +9.03921e9 q^{98} +4.29351e10 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000 0.707107
\(3\) 243.000 0.577350
\(4\) 1024.00 0.500000
\(5\) −11880.0 −1.70013 −0.850064 0.526680i \(-0.823437\pi\)
−0.850064 + 0.526680i \(0.823437\pi\)
\(6\) 7776.00 0.408248
\(7\) 16807.0 0.377964
\(8\) 32768.0 0.353553
\(9\) 59049.0 0.333333
\(10\) −380160. −1.20217
\(11\) 727110. 1.36126 0.680629 0.732628i \(-0.261707\pi\)
0.680629 + 0.732628i \(0.261707\pi\)
\(12\) 248832. 0.288675
\(13\) −1.89573e6 −1.41608 −0.708042 0.706170i \(-0.750421\pi\)
−0.708042 + 0.706170i \(0.750421\pi\)
\(14\) 537824. 0.267261
\(15\) −2.88684e6 −0.981569
\(16\) 1.04858e6 0.250000
\(17\) −1.02339e7 −1.74813 −0.874063 0.485813i \(-0.838524\pi\)
−0.874063 + 0.485813i \(0.838524\pi\)
\(18\) 1.88957e6 0.235702
\(19\) −1.27928e7 −1.18528 −0.592640 0.805468i \(-0.701914\pi\)
−0.592640 + 0.805468i \(0.701914\pi\)
\(20\) −1.21651e7 −0.850064
\(21\) 4.08410e6 0.218218
\(22\) 2.32675e7 0.962555
\(23\) −2.74123e7 −0.888060 −0.444030 0.896012i \(-0.646452\pi\)
−0.444030 + 0.896012i \(0.646452\pi\)
\(24\) 7.96262e6 0.204124
\(25\) 9.23063e7 1.89043
\(26\) −6.06635e7 −1.00132
\(27\) 1.43489e7 0.192450
\(28\) 1.72104e7 0.188982
\(29\) −1.08083e8 −0.978516 −0.489258 0.872139i \(-0.662732\pi\)
−0.489258 + 0.872139i \(0.662732\pi\)
\(30\) −9.23789e7 −0.694074
\(31\) −2.02243e8 −1.26878 −0.634388 0.773015i \(-0.718748\pi\)
−0.634388 + 0.773015i \(0.718748\pi\)
\(32\) 3.35544e7 0.176777
\(33\) 1.76688e8 0.785922
\(34\) −3.27485e8 −1.23611
\(35\) −1.99667e8 −0.642588
\(36\) 6.04662e7 0.166667
\(37\) 4.12455e8 0.977838 0.488919 0.872329i \(-0.337391\pi\)
0.488919 + 0.872329i \(0.337391\pi\)
\(38\) −4.09369e8 −0.838119
\(39\) −4.60663e8 −0.817576
\(40\) −3.89284e8 −0.601086
\(41\) −2.45109e8 −0.330406 −0.165203 0.986260i \(-0.552828\pi\)
−0.165203 + 0.986260i \(0.552828\pi\)
\(42\) 1.30691e8 0.154303
\(43\) 5.09840e8 0.528880 0.264440 0.964402i \(-0.414813\pi\)
0.264440 + 0.964402i \(0.414813\pi\)
\(44\) 7.44561e8 0.680629
\(45\) −7.01502e8 −0.566709
\(46\) −8.77193e8 −0.627953
\(47\) 6.99877e8 0.445127 0.222563 0.974918i \(-0.428558\pi\)
0.222563 + 0.974918i \(0.428558\pi\)
\(48\) 2.54804e8 0.144338
\(49\) 2.82475e8 0.142857
\(50\) 2.95380e9 1.33674
\(51\) −2.48684e9 −1.00928
\(52\) −1.94123e9 −0.708042
\(53\) −4.83669e9 −1.58866 −0.794330 0.607486i \(-0.792178\pi\)
−0.794330 + 0.607486i \(0.792178\pi\)
\(54\) 4.59165e8 0.136083
\(55\) −8.63807e9 −2.31431
\(56\) 5.50732e8 0.133631
\(57\) −3.10865e9 −0.684321
\(58\) −3.45865e9 −0.691915
\(59\) 2.46225e9 0.448380 0.224190 0.974546i \(-0.428026\pi\)
0.224190 + 0.974546i \(0.428026\pi\)
\(60\) −2.95612e9 −0.490784
\(61\) 9.05472e9 1.37265 0.686327 0.727294i \(-0.259222\pi\)
0.686327 + 0.727294i \(0.259222\pi\)
\(62\) −6.47179e9 −0.897160
\(63\) 9.92437e8 0.125988
\(64\) 1.07374e9 0.125000
\(65\) 2.25213e10 2.40752
\(66\) 5.65401e9 0.555731
\(67\) −2.92315e9 −0.264508 −0.132254 0.991216i \(-0.542222\pi\)
−0.132254 + 0.991216i \(0.542222\pi\)
\(68\) −1.04795e10 −0.874063
\(69\) −6.66119e9 −0.512722
\(70\) −6.38935e9 −0.454378
\(71\) −1.12689e10 −0.741241 −0.370620 0.928784i \(-0.620855\pi\)
−0.370620 + 0.928784i \(0.620855\pi\)
\(72\) 1.93492e9 0.117851
\(73\) 2.80923e9 0.158603 0.0793016 0.996851i \(-0.474731\pi\)
0.0793016 + 0.996851i \(0.474731\pi\)
\(74\) 1.31986e10 0.691436
\(75\) 2.24304e10 1.09144
\(76\) −1.30998e10 −0.592640
\(77\) 1.22205e10 0.514507
\(78\) −1.47412e10 −0.578114
\(79\) 2.55736e10 0.935066 0.467533 0.883976i \(-0.345143\pi\)
0.467533 + 0.883976i \(0.345143\pi\)
\(80\) −1.24571e10 −0.425032
\(81\) 3.48678e9 0.111111
\(82\) −7.84348e9 −0.233632
\(83\) −3.87188e10 −1.07893 −0.539463 0.842009i \(-0.681373\pi\)
−0.539463 + 0.842009i \(0.681373\pi\)
\(84\) 4.18212e9 0.109109
\(85\) 1.21579e11 2.97204
\(86\) 1.63149e10 0.373975
\(87\) −2.62641e10 −0.564947
\(88\) 2.38259e10 0.481277
\(89\) 9.07837e10 1.72331 0.861654 0.507496i \(-0.169429\pi\)
0.861654 + 0.507496i \(0.169429\pi\)
\(90\) −2.24481e10 −0.400724
\(91\) −3.18616e10 −0.535229
\(92\) −2.80702e10 −0.444030
\(93\) −4.91451e10 −0.732528
\(94\) 2.23961e10 0.314752
\(95\) 1.51978e11 2.01513
\(96\) 8.15373e9 0.102062
\(97\) 1.30560e11 1.54371 0.771854 0.635800i \(-0.219330\pi\)
0.771854 + 0.635800i \(0.219330\pi\)
\(98\) 9.03921e9 0.101015
\(99\) 4.29351e10 0.453753
\(100\) 9.45216e10 0.945216
\(101\) 1.03664e11 0.981430 0.490715 0.871320i \(-0.336736\pi\)
0.490715 + 0.871320i \(0.336736\pi\)
\(102\) −7.95789e10 −0.713669
\(103\) −9.81571e10 −0.834290 −0.417145 0.908840i \(-0.636969\pi\)
−0.417145 + 0.908840i \(0.636969\pi\)
\(104\) −6.21194e10 −0.500661
\(105\) −4.85191e10 −0.370998
\(106\) −1.54774e11 −1.12335
\(107\) −1.80148e11 −1.24170 −0.620852 0.783928i \(-0.713213\pi\)
−0.620852 + 0.783928i \(0.713213\pi\)
\(108\) 1.46933e10 0.0962250
\(109\) −2.29481e11 −1.42857 −0.714284 0.699856i \(-0.753247\pi\)
−0.714284 + 0.699856i \(0.753247\pi\)
\(110\) −2.76418e11 −1.63647
\(111\) 1.00227e11 0.564555
\(112\) 1.76234e10 0.0944911
\(113\) −2.30038e11 −1.17454 −0.587272 0.809390i \(-0.699798\pi\)
−0.587272 + 0.809390i \(0.699798\pi\)
\(114\) −9.94768e10 −0.483888
\(115\) 3.25658e11 1.50981
\(116\) −1.10677e11 −0.489258
\(117\) −1.11941e11 −0.472028
\(118\) 7.87919e10 0.317052
\(119\) −1.72001e11 −0.660729
\(120\) −9.45960e10 −0.347037
\(121\) 2.43377e11 0.853023
\(122\) 2.89751e11 0.970612
\(123\) −5.95614e10 −0.190760
\(124\) −2.07097e11 −0.634388
\(125\) −5.16520e11 −1.51385
\(126\) 3.17580e10 0.0890871
\(127\) 9.30757e10 0.249986 0.124993 0.992158i \(-0.460109\pi\)
0.124993 + 0.992158i \(0.460109\pi\)
\(128\) 3.43597e10 0.0883883
\(129\) 1.23891e11 0.305349
\(130\) 7.20682e11 1.70238
\(131\) −3.30891e10 −0.0749365 −0.0374683 0.999298i \(-0.511929\pi\)
−0.0374683 + 0.999298i \(0.511929\pi\)
\(132\) 1.80928e11 0.392961
\(133\) −2.15009e11 −0.447993
\(134\) −9.35408e10 −0.187036
\(135\) −1.70465e11 −0.327190
\(136\) −3.35345e11 −0.618056
\(137\) −1.97055e11 −0.348839 −0.174420 0.984671i \(-0.555805\pi\)
−0.174420 + 0.984671i \(0.555805\pi\)
\(138\) −2.13158e11 −0.362549
\(139\) 9.13185e11 1.49272 0.746358 0.665545i \(-0.231801\pi\)
0.746358 + 0.665545i \(0.231801\pi\)
\(140\) −2.04459e11 −0.321294
\(141\) 1.70070e11 0.256994
\(142\) −3.60604e11 −0.524137
\(143\) −1.37841e12 −1.92766
\(144\) 6.19174e10 0.0833333
\(145\) 1.28403e12 1.66360
\(146\) 8.98954e10 0.112149
\(147\) 6.86415e10 0.0824786
\(148\) 4.22354e11 0.488919
\(149\) −1.18532e12 −1.32224 −0.661121 0.750280i \(-0.729919\pi\)
−0.661121 + 0.750280i \(0.729919\pi\)
\(150\) 7.17774e11 0.771766
\(151\) −9.11227e11 −0.944612 −0.472306 0.881435i \(-0.656578\pi\)
−0.472306 + 0.881435i \(0.656578\pi\)
\(152\) −4.19194e11 −0.419059
\(153\) −6.04302e11 −0.582709
\(154\) 3.91057e11 0.363811
\(155\) 2.40265e12 2.15708
\(156\) −4.71719e11 −0.408788
\(157\) 1.88387e12 1.57617 0.788085 0.615567i \(-0.211073\pi\)
0.788085 + 0.615567i \(0.211073\pi\)
\(158\) 8.18354e11 0.661192
\(159\) −1.17532e12 −0.917213
\(160\) −3.98627e11 −0.300543
\(161\) −4.60718e11 −0.335655
\(162\) 1.11577e11 0.0785674
\(163\) 7.12107e11 0.484745 0.242372 0.970183i \(-0.422074\pi\)
0.242372 + 0.970183i \(0.422074\pi\)
\(164\) −2.50991e11 −0.165203
\(165\) −2.09905e12 −1.33617
\(166\) −1.23900e12 −0.762917
\(167\) −1.97324e12 −1.17555 −0.587773 0.809026i \(-0.699995\pi\)
−0.587773 + 0.809026i \(0.699995\pi\)
\(168\) 1.33828e11 0.0771517
\(169\) 1.80165e12 1.00529
\(170\) 3.89052e12 2.10155
\(171\) −7.55402e11 −0.395093
\(172\) 5.22076e11 0.264440
\(173\) 2.51299e12 1.23293 0.616464 0.787383i \(-0.288564\pi\)
0.616464 + 0.787383i \(0.288564\pi\)
\(174\) −8.40453e11 −0.399478
\(175\) 1.55139e12 0.714516
\(176\) 7.62430e11 0.340314
\(177\) 5.98326e11 0.258872
\(178\) 2.90508e12 1.21856
\(179\) 9.11742e11 0.370834 0.185417 0.982660i \(-0.440636\pi\)
0.185417 + 0.982660i \(0.440636\pi\)
\(180\) −7.18338e11 −0.283355
\(181\) −2.37570e12 −0.908990 −0.454495 0.890749i \(-0.650180\pi\)
−0.454495 + 0.890749i \(0.650180\pi\)
\(182\) −1.01957e12 −0.378464
\(183\) 2.20030e12 0.792502
\(184\) −8.98246e11 −0.313977
\(185\) −4.89996e12 −1.66245
\(186\) −1.57264e12 −0.517976
\(187\) −7.44118e12 −2.37965
\(188\) 7.16674e11 0.222563
\(189\) 2.41162e11 0.0727393
\(190\) 4.86331e12 1.42491
\(191\) 3.21217e12 0.914355 0.457177 0.889376i \(-0.348860\pi\)
0.457177 + 0.889376i \(0.348860\pi\)
\(192\) 2.60919e11 0.0721688
\(193\) 1.04028e12 0.279630 0.139815 0.990178i \(-0.455349\pi\)
0.139815 + 0.990178i \(0.455349\pi\)
\(194\) 4.17792e12 1.09157
\(195\) 5.47268e12 1.38998
\(196\) 2.89255e11 0.0714286
\(197\) −8.96811e11 −0.215346 −0.107673 0.994186i \(-0.534340\pi\)
−0.107673 + 0.994186i \(0.534340\pi\)
\(198\) 1.37392e12 0.320852
\(199\) 7.87544e11 0.178889 0.0894444 0.995992i \(-0.471491\pi\)
0.0894444 + 0.995992i \(0.471491\pi\)
\(200\) 3.02469e12 0.668369
\(201\) −7.10325e11 −0.152714
\(202\) 3.31724e12 0.693976
\(203\) −1.81655e12 −0.369844
\(204\) −2.54652e12 −0.504640
\(205\) 2.91189e12 0.561731
\(206\) −3.14103e12 −0.589932
\(207\) −1.61867e12 −0.296020
\(208\) −1.98782e12 −0.354021
\(209\) −9.30177e12 −1.61347
\(210\) −1.55261e12 −0.262335
\(211\) 1.75714e12 0.289237 0.144619 0.989487i \(-0.453805\pi\)
0.144619 + 0.989487i \(0.453805\pi\)
\(212\) −4.95277e12 −0.794330
\(213\) −2.73834e12 −0.427956
\(214\) −5.76473e12 −0.878017
\(215\) −6.05690e12 −0.899164
\(216\) 4.70185e11 0.0680414
\(217\) −3.39910e12 −0.479552
\(218\) −7.34339e12 −1.01015
\(219\) 6.82643e11 0.0915696
\(220\) −8.84538e12 −1.15716
\(221\) 1.94008e13 2.47549
\(222\) 3.20725e12 0.399201
\(223\) −7.56881e12 −0.919075 −0.459538 0.888158i \(-0.651985\pi\)
−0.459538 + 0.888158i \(0.651985\pi\)
\(224\) 5.63949e11 0.0668153
\(225\) 5.45059e12 0.630144
\(226\) −7.36123e12 −0.830527
\(227\) −3.28333e11 −0.0361553 −0.0180777 0.999837i \(-0.505755\pi\)
−0.0180777 + 0.999837i \(0.505755\pi\)
\(228\) −3.18326e12 −0.342161
\(229\) −1.55478e12 −0.163145 −0.0815723 0.996667i \(-0.525994\pi\)
−0.0815723 + 0.996667i \(0.525994\pi\)
\(230\) 1.04211e13 1.06760
\(231\) 2.96959e12 0.297051
\(232\) −3.54166e12 −0.345958
\(233\) −1.08905e12 −0.103894 −0.0519469 0.998650i \(-0.516543\pi\)
−0.0519469 + 0.998650i \(0.516543\pi\)
\(234\) −3.58212e12 −0.333774
\(235\) −8.31454e12 −0.756772
\(236\) 2.52134e12 0.224190
\(237\) 6.21438e12 0.539861
\(238\) −5.50404e12 −0.467206
\(239\) −3.91266e12 −0.324552 −0.162276 0.986745i \(-0.551883\pi\)
−0.162276 + 0.986745i \(0.551883\pi\)
\(240\) −3.02707e12 −0.245392
\(241\) −1.32266e13 −1.04798 −0.523991 0.851724i \(-0.675557\pi\)
−0.523991 + 0.851724i \(0.675557\pi\)
\(242\) 7.78807e12 0.603178
\(243\) 8.47289e11 0.0641500
\(244\) 9.27203e12 0.686327
\(245\) −3.35581e12 −0.242875
\(246\) −1.90596e12 −0.134888
\(247\) 2.42517e13 1.67845
\(248\) −6.62711e12 −0.448580
\(249\) −9.40866e12 −0.622919
\(250\) −1.65287e13 −1.07045
\(251\) 2.20325e13 1.39591 0.697957 0.716140i \(-0.254093\pi\)
0.697957 + 0.716140i \(0.254093\pi\)
\(252\) 1.01626e12 0.0629941
\(253\) −1.99318e13 −1.20888
\(254\) 2.97842e12 0.176767
\(255\) 2.95437e13 1.71591
\(256\) 1.09951e12 0.0625000
\(257\) −3.30770e13 −1.84032 −0.920161 0.391539i \(-0.871943\pi\)
−0.920161 + 0.391539i \(0.871943\pi\)
\(258\) 3.96451e12 0.215914
\(259\) 6.93213e12 0.369588
\(260\) 2.30618e13 1.20376
\(261\) −6.38219e12 −0.326172
\(262\) −1.05885e12 −0.0529881
\(263\) −1.23692e13 −0.606157 −0.303078 0.952966i \(-0.598014\pi\)
−0.303078 + 0.952966i \(0.598014\pi\)
\(264\) 5.78970e12 0.277866
\(265\) 5.74599e13 2.70092
\(266\) −6.88027e12 −0.316779
\(267\) 2.20604e13 0.994952
\(268\) −2.99330e12 −0.132254
\(269\) −3.16373e13 −1.36950 −0.684749 0.728779i \(-0.740088\pi\)
−0.684749 + 0.728779i \(0.740088\pi\)
\(270\) −5.45488e12 −0.231358
\(271\) −6.35915e12 −0.264282 −0.132141 0.991231i \(-0.542185\pi\)
−0.132141 + 0.991231i \(0.542185\pi\)
\(272\) −1.07310e13 −0.437031
\(273\) −7.74237e12 −0.309015
\(274\) −6.30577e12 −0.246666
\(275\) 6.71168e13 2.57337
\(276\) −6.82105e12 −0.256361
\(277\) −1.15762e13 −0.426508 −0.213254 0.976997i \(-0.568406\pi\)
−0.213254 + 0.976997i \(0.568406\pi\)
\(278\) 2.92219e13 1.05551
\(279\) −1.19423e13 −0.422925
\(280\) −6.54269e12 −0.227189
\(281\) −9.66264e12 −0.329011 −0.164506 0.986376i \(-0.552603\pi\)
−0.164506 + 0.986376i \(0.552603\pi\)
\(282\) 5.44224e12 0.181722
\(283\) 1.94524e13 0.637011 0.318505 0.947921i \(-0.396819\pi\)
0.318505 + 0.947921i \(0.396819\pi\)
\(284\) −1.15393e13 −0.370620
\(285\) 3.69308e13 1.16343
\(286\) −4.41090e13 −1.36306
\(287\) −4.11954e12 −0.124882
\(288\) 1.98136e12 0.0589256
\(289\) 7.04611e13 2.05594
\(290\) 4.10888e13 1.17634
\(291\) 3.17261e13 0.891260
\(292\) 2.87665e12 0.0793016
\(293\) 2.95366e12 0.0799077 0.0399538 0.999202i \(-0.487279\pi\)
0.0399538 + 0.999202i \(0.487279\pi\)
\(294\) 2.19653e12 0.0583212
\(295\) −2.92515e13 −0.762302
\(296\) 1.35153e13 0.345718
\(297\) 1.04332e13 0.261974
\(298\) −3.79302e13 −0.934966
\(299\) 5.19664e13 1.25757
\(300\) 2.29688e13 0.545721
\(301\) 8.56888e12 0.199898
\(302\) −2.91593e13 −0.667942
\(303\) 2.51903e13 0.566629
\(304\) −1.34142e13 −0.296320
\(305\) −1.07570e14 −2.33368
\(306\) −1.93377e13 −0.412037
\(307\) −2.94743e13 −0.616855 −0.308427 0.951248i \(-0.599803\pi\)
−0.308427 + 0.951248i \(0.599803\pi\)
\(308\) 1.25138e13 0.257254
\(309\) −2.38522e13 −0.481678
\(310\) 7.68848e13 1.52529
\(311\) −8.57803e13 −1.67188 −0.835941 0.548819i \(-0.815078\pi\)
−0.835941 + 0.548819i \(0.815078\pi\)
\(312\) −1.50950e13 −0.289057
\(313\) −4.35562e13 −0.819514 −0.409757 0.912195i \(-0.634387\pi\)
−0.409757 + 0.912195i \(0.634387\pi\)
\(314\) 6.02838e13 1.11452
\(315\) −1.17901e13 −0.214196
\(316\) 2.61873e13 0.467533
\(317\) 7.73948e12 0.135796 0.0678978 0.997692i \(-0.478371\pi\)
0.0678978 + 0.997692i \(0.478371\pi\)
\(318\) −3.76101e13 −0.648568
\(319\) −7.85882e13 −1.33201
\(320\) −1.27561e13 −0.212516
\(321\) −4.37759e13 −0.716898
\(322\) −1.47430e13 −0.237344
\(323\) 1.30920e14 2.07202
\(324\) 3.57047e12 0.0555556
\(325\) −1.74988e14 −2.67701
\(326\) 2.27874e13 0.342766
\(327\) −5.57639e13 −0.824784
\(328\) −8.03172e12 −0.116816
\(329\) 1.17628e13 0.168242
\(330\) −6.71696e13 −0.944814
\(331\) 4.82151e13 0.667006 0.333503 0.942749i \(-0.391769\pi\)
0.333503 + 0.942749i \(0.391769\pi\)
\(332\) −3.96480e13 −0.539463
\(333\) 2.43551e13 0.325946
\(334\) −6.31437e13 −0.831237
\(335\) 3.47270e13 0.449698
\(336\) 4.28249e12 0.0545545
\(337\) −4.41136e13 −0.552851 −0.276425 0.961035i \(-0.589150\pi\)
−0.276425 + 0.961035i \(0.589150\pi\)
\(338\) 5.76527e13 0.710850
\(339\) −5.58993e13 −0.678123
\(340\) 1.24497e14 1.48602
\(341\) −1.47053e14 −1.72713
\(342\) −2.41729e13 −0.279373
\(343\) 4.74756e12 0.0539949
\(344\) 1.67064e13 0.186987
\(345\) 7.91349e13 0.871692
\(346\) 8.04158e13 0.871812
\(347\) −1.59407e14 −1.70096 −0.850480 0.526008i \(-0.823688\pi\)
−0.850480 + 0.526008i \(0.823688\pi\)
\(348\) −2.68945e13 −0.282473
\(349\) 9.46284e13 0.978321 0.489161 0.872194i \(-0.337303\pi\)
0.489161 + 0.872194i \(0.337303\pi\)
\(350\) 4.96445e13 0.505239
\(351\) −2.72017e13 −0.272525
\(352\) 2.43978e13 0.240639
\(353\) 1.17261e14 1.13866 0.569330 0.822109i \(-0.307203\pi\)
0.569330 + 0.822109i \(0.307203\pi\)
\(354\) 1.91464e13 0.183050
\(355\) 1.33874e14 1.26020
\(356\) 9.29625e13 0.861654
\(357\) −4.17963e13 −0.381472
\(358\) 2.91757e13 0.262220
\(359\) −1.59450e14 −1.41126 −0.705628 0.708582i \(-0.749335\pi\)
−0.705628 + 0.708582i \(0.749335\pi\)
\(360\) −2.29868e13 −0.200362
\(361\) 4.71654e13 0.404887
\(362\) −7.60223e13 −0.642753
\(363\) 5.91407e13 0.492493
\(364\) −3.26263e13 −0.267615
\(365\) −3.33737e13 −0.269646
\(366\) 7.04095e13 0.560383
\(367\) 1.29687e14 1.01680 0.508398 0.861122i \(-0.330238\pi\)
0.508398 + 0.861122i \(0.330238\pi\)
\(368\) −2.87439e13 −0.222015
\(369\) −1.44734e13 −0.110135
\(370\) −1.56799e14 −1.17553
\(371\) −8.12903e13 −0.600457
\(372\) −5.03246e13 −0.366264
\(373\) −2.41174e13 −0.172954 −0.0864772 0.996254i \(-0.527561\pi\)
−0.0864772 + 0.996254i \(0.527561\pi\)
\(374\) −2.38118e14 −1.68267
\(375\) −1.25514e14 −0.874021
\(376\) 2.29336e13 0.157376
\(377\) 2.04896e14 1.38566
\(378\) 7.71719e12 0.0514344
\(379\) 9.25071e13 0.607658 0.303829 0.952727i \(-0.401735\pi\)
0.303829 + 0.952727i \(0.401735\pi\)
\(380\) 1.55626e14 1.00756
\(381\) 2.26174e13 0.144330
\(382\) 1.02789e14 0.646546
\(383\) −1.09560e14 −0.679296 −0.339648 0.940553i \(-0.610308\pi\)
−0.339648 + 0.940553i \(0.610308\pi\)
\(384\) 8.34942e12 0.0510310
\(385\) −1.45180e14 −0.874727
\(386\) 3.32888e13 0.197728
\(387\) 3.01055e13 0.176293
\(388\) 1.33693e14 0.771854
\(389\) −5.16713e13 −0.294121 −0.147061 0.989127i \(-0.546981\pi\)
−0.147061 + 0.989127i \(0.546981\pi\)
\(390\) 1.75126e14 0.982867
\(391\) 2.80535e14 1.55244
\(392\) 9.25615e12 0.0505076
\(393\) −8.04066e12 −0.0432646
\(394\) −2.86980e13 −0.152273
\(395\) −3.03814e14 −1.58973
\(396\) 4.39656e13 0.226876
\(397\) 1.26534e14 0.643962 0.321981 0.946746i \(-0.395651\pi\)
0.321981 + 0.946746i \(0.395651\pi\)
\(398\) 2.52014e13 0.126493
\(399\) −5.22471e13 −0.258649
\(400\) 9.67901e13 0.472608
\(401\) −4.13529e13 −0.199164 −0.0995821 0.995029i \(-0.531751\pi\)
−0.0995821 + 0.995029i \(0.531751\pi\)
\(402\) −2.27304e13 −0.107985
\(403\) 3.83400e14 1.79669
\(404\) 1.06152e14 0.490715
\(405\) −4.14230e13 −0.188903
\(406\) −5.81296e13 −0.261519
\(407\) 2.99900e14 1.33109
\(408\) −8.14888e13 −0.356835
\(409\) −2.70220e14 −1.16745 −0.583727 0.811950i \(-0.698406\pi\)
−0.583727 + 0.811950i \(0.698406\pi\)
\(410\) 9.31805e13 0.397204
\(411\) −4.78844e13 −0.201402
\(412\) −1.00513e14 −0.417145
\(413\) 4.13830e13 0.169472
\(414\) −5.17974e13 −0.209318
\(415\) 4.59979e14 1.83431
\(416\) −6.36103e13 −0.250331
\(417\) 2.21904e14 0.861820
\(418\) −2.97657e14 −1.14090
\(419\) 2.26272e14 0.855961 0.427981 0.903788i \(-0.359225\pi\)
0.427981 + 0.903788i \(0.359225\pi\)
\(420\) −4.96836e13 −0.185499
\(421\) −2.05280e14 −0.756475 −0.378237 0.925709i \(-0.623470\pi\)
−0.378237 + 0.925709i \(0.623470\pi\)
\(422\) 5.62286e13 0.204521
\(423\) 4.13270e13 0.148376
\(424\) −1.58489e14 −0.561676
\(425\) −9.44654e14 −3.30471
\(426\) −8.76267e13 −0.302610
\(427\) 1.52183e14 0.518814
\(428\) −1.84471e14 −0.620852
\(429\) −3.34953e14 −1.11293
\(430\) −1.93821e14 −0.635805
\(431\) 4.30539e14 1.39440 0.697201 0.716876i \(-0.254429\pi\)
0.697201 + 0.716876i \(0.254429\pi\)
\(432\) 1.50459e13 0.0481125
\(433\) 2.23687e14 0.706250 0.353125 0.935576i \(-0.385119\pi\)
0.353125 + 0.935576i \(0.385119\pi\)
\(434\) −1.08771e14 −0.339095
\(435\) 3.12018e14 0.960481
\(436\) −2.34988e14 −0.714284
\(437\) 3.50680e14 1.05260
\(438\) 2.18446e13 0.0647495
\(439\) 4.42276e14 1.29461 0.647304 0.762232i \(-0.275896\pi\)
0.647304 + 0.762232i \(0.275896\pi\)
\(440\) −2.83052e14 −0.818233
\(441\) 1.66799e13 0.0476190
\(442\) 6.20825e14 1.75044
\(443\) 2.83290e14 0.788880 0.394440 0.918922i \(-0.370939\pi\)
0.394440 + 0.918922i \(0.370939\pi\)
\(444\) 1.02632e14 0.282278
\(445\) −1.07851e15 −2.92984
\(446\) −2.42202e14 −0.649884
\(447\) −2.88032e14 −0.763396
\(448\) 1.80464e13 0.0472456
\(449\) 4.89597e14 1.26615 0.633073 0.774092i \(-0.281793\pi\)
0.633073 + 0.774092i \(0.281793\pi\)
\(450\) 1.74419e14 0.445579
\(451\) −1.78221e14 −0.449767
\(452\) −2.35559e14 −0.587272
\(453\) −2.21428e14 −0.545372
\(454\) −1.05067e13 −0.0255657
\(455\) 3.78516e14 0.909958
\(456\) −1.01864e14 −0.241944
\(457\) 3.34142e14 0.784136 0.392068 0.919936i \(-0.371760\pi\)
0.392068 + 0.919936i \(0.371760\pi\)
\(458\) −4.97528e13 −0.115361
\(459\) −1.46845e14 −0.336427
\(460\) 3.33474e14 0.754907
\(461\) 6.71303e13 0.150163 0.0750817 0.997177i \(-0.476078\pi\)
0.0750817 + 0.997177i \(0.476078\pi\)
\(462\) 9.50269e13 0.210047
\(463\) 1.60328e14 0.350198 0.175099 0.984551i \(-0.443976\pi\)
0.175099 + 0.984551i \(0.443976\pi\)
\(464\) −1.13333e14 −0.244629
\(465\) 5.83844e14 1.24539
\(466\) −3.48496e13 −0.0734641
\(467\) 3.69287e14 0.769345 0.384673 0.923053i \(-0.374314\pi\)
0.384673 + 0.923053i \(0.374314\pi\)
\(468\) −1.14628e14 −0.236014
\(469\) −4.91294e13 −0.0999748
\(470\) −2.66065e14 −0.535118
\(471\) 4.57780e14 0.910002
\(472\) 8.06830e13 0.158526
\(473\) 3.70710e14 0.719942
\(474\) 1.98860e14 0.381739
\(475\) −1.18086e15 −2.24069
\(476\) −1.76129e14 −0.330365
\(477\) −2.85602e14 −0.529553
\(478\) −1.25205e14 −0.229493
\(479\) −2.72584e14 −0.493917 −0.246959 0.969026i \(-0.579431\pi\)
−0.246959 + 0.969026i \(0.579431\pi\)
\(480\) −9.68663e13 −0.173519
\(481\) −7.81905e14 −1.38470
\(482\) −4.23250e14 −0.741035
\(483\) −1.11955e14 −0.193791
\(484\) 2.49218e14 0.426511
\(485\) −1.55105e15 −2.62450
\(486\) 2.71132e13 0.0453609
\(487\) −1.20046e15 −1.98582 −0.992908 0.118882i \(-0.962069\pi\)
−0.992908 + 0.118882i \(0.962069\pi\)
\(488\) 2.96705e14 0.485306
\(489\) 1.73042e14 0.279868
\(490\) −1.07386e14 −0.171739
\(491\) 3.66278e14 0.579245 0.289623 0.957141i \(-0.406470\pi\)
0.289623 + 0.957141i \(0.406470\pi\)
\(492\) −6.09909e13 −0.0953799
\(493\) 1.10611e15 1.71057
\(494\) 7.76056e14 1.18685
\(495\) −5.10069e14 −0.771437
\(496\) −2.12068e14 −0.317194
\(497\) −1.89396e14 −0.280163
\(498\) −3.01077e14 −0.440470
\(499\) −2.21334e14 −0.320255 −0.160128 0.987096i \(-0.551191\pi\)
−0.160128 + 0.987096i \(0.551191\pi\)
\(500\) −5.28917e14 −0.756924
\(501\) −4.79498e14 −0.678702
\(502\) 7.05040e14 0.987060
\(503\) −1.20493e15 −1.66854 −0.834271 0.551355i \(-0.814111\pi\)
−0.834271 + 0.551355i \(0.814111\pi\)
\(504\) 3.25202e13 0.0445435
\(505\) −1.23152e15 −1.66856
\(506\) −6.37816e14 −0.854806
\(507\) 4.37800e14 0.580406
\(508\) 9.53095e13 0.124993
\(509\) 6.59225e14 0.855236 0.427618 0.903959i \(-0.359353\pi\)
0.427618 + 0.903959i \(0.359353\pi\)
\(510\) 9.45397e14 1.21333
\(511\) 4.72148e13 0.0599464
\(512\) 3.51844e13 0.0441942
\(513\) −1.83563e14 −0.228107
\(514\) −1.05846e15 −1.30130
\(515\) 1.16611e15 1.41840
\(516\) 1.26864e14 0.152675
\(517\) 5.08888e14 0.605932
\(518\) 2.21828e14 0.261338
\(519\) 6.10658e14 0.711832
\(520\) 7.37979e14 0.851188
\(521\) 5.58029e14 0.636868 0.318434 0.947945i \(-0.396843\pi\)
0.318434 + 0.947945i \(0.396843\pi\)
\(522\) −2.04230e14 −0.230638
\(523\) −1.74176e15 −1.94639 −0.973195 0.229981i \(-0.926134\pi\)
−0.973195 + 0.229981i \(0.926134\pi\)
\(524\) −3.38833e13 −0.0374683
\(525\) 3.76988e14 0.412526
\(526\) −3.95814e14 −0.428618
\(527\) 2.06974e15 2.21798
\(528\) 1.85271e14 0.196481
\(529\) −2.01376e14 −0.211350
\(530\) 1.83872e15 1.90984
\(531\) 1.45393e14 0.149460
\(532\) −2.20169e14 −0.223997
\(533\) 4.64661e14 0.467882
\(534\) 7.05934e14 0.703538
\(535\) 2.14016e15 2.11106
\(536\) −9.57857e13 −0.0935178
\(537\) 2.21553e14 0.214101
\(538\) −1.01239e15 −0.968382
\(539\) 2.05391e14 0.194465
\(540\) −1.74556e14 −0.163595
\(541\) −1.48330e15 −1.37608 −0.688041 0.725672i \(-0.741529\pi\)
−0.688041 + 0.725672i \(0.741529\pi\)
\(542\) −2.03493e14 −0.186876
\(543\) −5.77295e14 −0.524806
\(544\) −3.43393e14 −0.309028
\(545\) 2.72623e15 2.42875
\(546\) −2.47756e14 −0.218506
\(547\) −3.46714e14 −0.302720 −0.151360 0.988479i \(-0.548365\pi\)
−0.151360 + 0.988479i \(0.548365\pi\)
\(548\) −2.01785e14 −0.174420
\(549\) 5.34672e14 0.457551
\(550\) 2.14774e15 1.81964
\(551\) 1.38268e15 1.15982
\(552\) −2.18274e14 −0.181274
\(553\) 4.29815e14 0.353422
\(554\) −3.70438e14 −0.301586
\(555\) −1.19069e15 −0.959816
\(556\) 9.35101e14 0.746358
\(557\) 1.20099e15 0.949150 0.474575 0.880215i \(-0.342602\pi\)
0.474575 + 0.880215i \(0.342602\pi\)
\(558\) −3.82153e14 −0.299053
\(559\) −9.66521e14 −0.748939
\(560\) −2.09366e14 −0.160647
\(561\) −1.80821e15 −1.37389
\(562\) −3.09204e14 −0.232646
\(563\) −1.44205e15 −1.07445 −0.537224 0.843440i \(-0.680527\pi\)
−0.537224 + 0.843440i \(0.680527\pi\)
\(564\) 1.74152e14 0.128497
\(565\) 2.73286e15 1.99687
\(566\) 6.22475e14 0.450435
\(567\) 5.86024e13 0.0419961
\(568\) −3.69258e14 −0.262068
\(569\) −2.07341e15 −1.45736 −0.728682 0.684852i \(-0.759867\pi\)
−0.728682 + 0.684852i \(0.759867\pi\)
\(570\) 1.18178e15 0.822672
\(571\) −1.77668e15 −1.22493 −0.612463 0.790499i \(-0.709821\pi\)
−0.612463 + 0.790499i \(0.709821\pi\)
\(572\) −1.41149e15 −0.963828
\(573\) 7.80557e14 0.527903
\(574\) −1.31825e14 −0.0883046
\(575\) −2.53033e15 −1.67882
\(576\) 6.34034e13 0.0416667
\(577\) −3.41044e14 −0.221995 −0.110998 0.993821i \(-0.535405\pi\)
−0.110998 + 0.993821i \(0.535405\pi\)
\(578\) 2.25475e15 1.45377
\(579\) 2.52787e14 0.161444
\(580\) 1.31484e15 0.831801
\(581\) −6.50746e14 −0.407796
\(582\) 1.01523e15 0.630216
\(583\) −3.51681e15 −2.16258
\(584\) 9.20529e13 0.0560747
\(585\) 1.32986e15 0.802508
\(586\) 9.45171e13 0.0565033
\(587\) 3.92265e14 0.232311 0.116155 0.993231i \(-0.462943\pi\)
0.116155 + 0.993231i \(0.462943\pi\)
\(588\) 7.02889e13 0.0412393
\(589\) 2.58726e15 1.50385
\(590\) −9.36048e14 −0.539029
\(591\) −2.17925e14 −0.124330
\(592\) 4.32490e14 0.244460
\(593\) −1.25539e14 −0.0703034 −0.0351517 0.999382i \(-0.511191\pi\)
−0.0351517 + 0.999382i \(0.511191\pi\)
\(594\) 3.33863e14 0.185244
\(595\) 2.04338e15 1.12332
\(596\) −1.21377e15 −0.661121
\(597\) 1.91373e14 0.103281
\(598\) 1.66293e15 0.889234
\(599\) −3.25775e15 −1.72612 −0.863058 0.505105i \(-0.831454\pi\)
−0.863058 + 0.505105i \(0.831454\pi\)
\(600\) 7.35000e14 0.385883
\(601\) 6.02750e14 0.313565 0.156783 0.987633i \(-0.449888\pi\)
0.156783 + 0.987633i \(0.449888\pi\)
\(602\) 2.74204e14 0.141349
\(603\) −1.72609e14 −0.0881695
\(604\) −9.33097e14 −0.472306
\(605\) −2.89132e15 −1.45025
\(606\) 8.06089e14 0.400667
\(607\) 2.75962e15 1.35929 0.679643 0.733543i \(-0.262135\pi\)
0.679643 + 0.733543i \(0.262135\pi\)
\(608\) −4.29255e14 −0.209530
\(609\) −4.41422e14 −0.213530
\(610\) −3.44224e15 −1.65016
\(611\) −1.32678e15 −0.630337
\(612\) −6.18806e14 −0.291354
\(613\) −4.01542e14 −0.187369 −0.0936846 0.995602i \(-0.529865\pi\)
−0.0936846 + 0.995602i \(0.529865\pi\)
\(614\) −9.43179e14 −0.436182
\(615\) 7.07589e14 0.324316
\(616\) 4.00443e14 0.181906
\(617\) 3.13173e14 0.140999 0.0704994 0.997512i \(-0.477541\pi\)
0.0704994 + 0.997512i \(0.477541\pi\)
\(618\) −7.63270e14 −0.340598
\(619\) −3.78436e14 −0.167376 −0.0836882 0.996492i \(-0.526670\pi\)
−0.0836882 + 0.996492i \(0.526670\pi\)
\(620\) 2.46032e15 1.07854
\(621\) −3.93336e14 −0.170907
\(622\) −2.74497e15 −1.18220
\(623\) 1.52580e15 0.651349
\(624\) −4.83041e14 −0.204394
\(625\) 1.62912e15 0.683303
\(626\) −1.39380e15 −0.579484
\(627\) −2.26033e15 −0.931538
\(628\) 1.92908e15 0.788085
\(629\) −4.22103e15 −1.70938
\(630\) −3.77285e14 −0.151459
\(631\) 3.27226e14 0.130223 0.0651113 0.997878i \(-0.479260\pi\)
0.0651113 + 0.997878i \(0.479260\pi\)
\(632\) 8.37995e14 0.330596
\(633\) 4.26986e14 0.166991
\(634\) 2.47663e14 0.0960220
\(635\) −1.10574e15 −0.425008
\(636\) −1.20352e15 −0.458607
\(637\) −5.35498e14 −0.202298
\(638\) −2.51482e15 −0.941875
\(639\) −6.65415e14 −0.247080
\(640\) −4.08194e14 −0.150271
\(641\) 1.30890e15 0.477737 0.238868 0.971052i \(-0.423224\pi\)
0.238868 + 0.971052i \(0.423224\pi\)
\(642\) −1.40083e15 −0.506924
\(643\) −4.99571e15 −1.79241 −0.896204 0.443642i \(-0.853686\pi\)
−0.896204 + 0.443642i \(0.853686\pi\)
\(644\) −4.71776e14 −0.167828
\(645\) −1.47183e15 −0.519132
\(646\) 4.18945e15 1.46514
\(647\) 4.61019e15 1.59862 0.799310 0.600919i \(-0.205199\pi\)
0.799310 + 0.600919i \(0.205199\pi\)
\(648\) 1.14255e14 0.0392837
\(649\) 1.79033e15 0.610360
\(650\) −5.59962e15 −1.89293
\(651\) −8.25982e14 −0.276870
\(652\) 7.29197e14 0.242372
\(653\) −2.26916e15 −0.747897 −0.373948 0.927449i \(-0.621996\pi\)
−0.373948 + 0.927449i \(0.621996\pi\)
\(654\) −1.78444e15 −0.583210
\(655\) 3.93099e14 0.127402
\(656\) −2.57015e14 −0.0826014
\(657\) 1.65882e14 0.0528677
\(658\) 3.76411e14 0.118965
\(659\) 3.90658e15 1.22441 0.612206 0.790698i \(-0.290282\pi\)
0.612206 + 0.790698i \(0.290282\pi\)
\(660\) −2.14943e15 −0.668084
\(661\) 2.21657e15 0.683240 0.341620 0.939838i \(-0.389024\pi\)
0.341620 + 0.939838i \(0.389024\pi\)
\(662\) 1.54288e15 0.471644
\(663\) 4.71439e15 1.42923
\(664\) −1.26874e15 −0.381458
\(665\) 2.55430e15 0.761646
\(666\) 7.79362e14 0.230479
\(667\) 2.96280e15 0.868981
\(668\) −2.02060e15 −0.587773
\(669\) −1.83922e15 −0.530628
\(670\) 1.11126e15 0.317984
\(671\) 6.58378e15 1.86853
\(672\) 1.37040e14 0.0385758
\(673\) −1.17493e15 −0.328041 −0.164020 0.986457i \(-0.552446\pi\)
−0.164020 + 0.986457i \(0.552446\pi\)
\(674\) −1.41164e15 −0.390925
\(675\) 1.32449e15 0.363814
\(676\) 1.84489e15 0.502647
\(677\) −9.32497e13 −0.0252005 −0.0126003 0.999921i \(-0.504011\pi\)
−0.0126003 + 0.999921i \(0.504011\pi\)
\(678\) −1.78878e15 −0.479505
\(679\) 2.19432e15 0.583467
\(680\) 3.98390e15 1.05077
\(681\) −7.97849e13 −0.0208743
\(682\) −4.70570e15 −1.22127
\(683\) −5.24115e15 −1.34931 −0.674656 0.738132i \(-0.735708\pi\)
−0.674656 + 0.738132i \(0.735708\pi\)
\(684\) −7.73531e14 −0.197547
\(685\) 2.34102e15 0.593071
\(686\) 1.51922e14 0.0381802
\(687\) −3.77811e14 −0.0941916
\(688\) 5.34606e14 0.132220
\(689\) 9.16908e15 2.24968
\(690\) 2.53232e15 0.616379
\(691\) −7.37295e15 −1.78038 −0.890189 0.455592i \(-0.849428\pi\)
−0.890189 + 0.455592i \(0.849428\pi\)
\(692\) 2.57331e15 0.616464
\(693\) 7.21611e14 0.171502
\(694\) −5.10101e15 −1.20276
\(695\) −1.08486e16 −2.53781
\(696\) −8.60624e14 −0.199739
\(697\) 2.50842e15 0.577590
\(698\) 3.02811e15 0.691778
\(699\) −2.64639e14 −0.0599832
\(700\) 1.58862e15 0.357258
\(701\) 5.62192e14 0.125440 0.0627199 0.998031i \(-0.480023\pi\)
0.0627199 + 0.998031i \(0.480023\pi\)
\(702\) −8.70455e14 −0.192705
\(703\) −5.27645e15 −1.15901
\(704\) 7.80728e14 0.170157
\(705\) −2.02043e15 −0.436922
\(706\) 3.75236e15 0.805154
\(707\) 1.74228e15 0.370946
\(708\) 6.12686e14 0.129436
\(709\) 7.37200e15 1.54536 0.772682 0.634793i \(-0.218915\pi\)
0.772682 + 0.634793i \(0.218915\pi\)
\(710\) 4.28397e15 0.891099
\(711\) 1.51009e15 0.311689
\(712\) 2.97480e15 0.609281
\(713\) 5.54395e15 1.12675
\(714\) −1.33748e15 −0.269742
\(715\) 1.63755e16 3.27726
\(716\) 9.33623e14 0.185417
\(717\) −9.50777e14 −0.187380
\(718\) −5.10241e15 −0.997909
\(719\) 1.30322e15 0.252935 0.126468 0.991971i \(-0.459636\pi\)
0.126468 + 0.991971i \(0.459636\pi\)
\(720\) −7.35578e14 −0.141677
\(721\) −1.64973e15 −0.315332
\(722\) 1.50929e15 0.286298
\(723\) −3.21406e15 −0.605052
\(724\) −2.43272e15 −0.454495
\(725\) −9.97673e15 −1.84982
\(726\) 1.89250e15 0.348245
\(727\) −6.80280e15 −1.24236 −0.621182 0.783667i \(-0.713347\pi\)
−0.621182 + 0.783667i \(0.713347\pi\)
\(728\) −1.04404e15 −0.189232
\(729\) 2.05891e14 0.0370370
\(730\) −1.06796e15 −0.190668
\(731\) −5.21766e15 −0.924549
\(732\) 2.25310e15 0.396251
\(733\) 4.47676e15 0.781433 0.390716 0.920511i \(-0.372227\pi\)
0.390716 + 0.920511i \(0.372227\pi\)
\(734\) 4.14999e15 0.718983
\(735\) −8.15461e14 −0.140224
\(736\) −9.19804e14 −0.156988
\(737\) −2.12545e15 −0.360064
\(738\) −4.63149e14 −0.0778773
\(739\) 4.60655e15 0.768832 0.384416 0.923160i \(-0.374403\pi\)
0.384416 + 0.923160i \(0.374403\pi\)
\(740\) −5.01756e15 −0.831225
\(741\) 5.89317e15 0.969056
\(742\) −2.60129e15 −0.424587
\(743\) −5.69608e15 −0.922864 −0.461432 0.887175i \(-0.652664\pi\)
−0.461432 + 0.887175i \(0.652664\pi\)
\(744\) −1.61039e15 −0.258988
\(745\) 1.40816e16 2.24798
\(746\) −7.71756e14 −0.122297
\(747\) −2.28630e15 −0.359642
\(748\) −7.61977e15 −1.18982
\(749\) −3.02774e15 −0.469320
\(750\) −4.01646e15 −0.618026
\(751\) 5.99691e14 0.0916026 0.0458013 0.998951i \(-0.485416\pi\)
0.0458013 + 0.998951i \(0.485416\pi\)
\(752\) 7.33874e14 0.111282
\(753\) 5.35390e15 0.805931
\(754\) 6.55669e15 0.979810
\(755\) 1.08254e16 1.60596
\(756\) 2.46950e14 0.0363696
\(757\) 9.66233e15 1.41271 0.706357 0.707856i \(-0.250337\pi\)
0.706357 + 0.707856i \(0.250337\pi\)
\(758\) 2.96023e15 0.429679
\(759\) −4.84342e15 −0.697946
\(760\) 4.98003e15 0.712454
\(761\) −1.14206e16 −1.62208 −0.811041 0.584989i \(-0.801099\pi\)
−0.811041 + 0.584989i \(0.801099\pi\)
\(762\) 7.23757e14 0.102056
\(763\) −3.85689e15 −0.539948
\(764\) 3.28926e15 0.457177
\(765\) 7.17911e15 0.990679
\(766\) −3.50592e15 −0.480335
\(767\) −4.66777e15 −0.634943
\(768\) 2.67181e14 0.0360844
\(769\) −1.12027e16 −1.50220 −0.751098 0.660191i \(-0.770475\pi\)
−0.751098 + 0.660191i \(0.770475\pi\)
\(770\) −4.64576e15 −0.618526
\(771\) −8.03771e15 −1.06251
\(772\) 1.06524e15 0.139815
\(773\) 1.34319e16 1.75045 0.875226 0.483714i \(-0.160712\pi\)
0.875226 + 0.483714i \(0.160712\pi\)
\(774\) 9.63377e14 0.124658
\(775\) −1.86683e16 −2.39854
\(776\) 4.27819e15 0.545783
\(777\) 1.68451e15 0.213382
\(778\) −1.65348e15 −0.207975
\(779\) 3.13562e15 0.391623
\(780\) 5.60403e15 0.694992
\(781\) −8.19371e15 −1.00902
\(782\) 8.97712e15 1.09774
\(783\) −1.55087e15 −0.188316
\(784\) 2.96197e14 0.0357143
\(785\) −2.23804e16 −2.67969
\(786\) −2.57301e14 −0.0305927
\(787\) 8.66322e14 0.102287 0.0511433 0.998691i \(-0.483713\pi\)
0.0511433 + 0.998691i \(0.483713\pi\)
\(788\) −9.18335e14 −0.107673
\(789\) −3.00571e15 −0.349965
\(790\) −9.72205e15 −1.12411
\(791\) −3.86626e15 −0.443936
\(792\) 1.40690e15 0.160426
\(793\) −1.71653e16 −1.94379
\(794\) 4.04909e15 0.455350
\(795\) 1.39628e16 1.55938
\(796\) 8.06445e14 0.0894444
\(797\) −7.66872e14 −0.0844700 −0.0422350 0.999108i \(-0.513448\pi\)
−0.0422350 + 0.999108i \(0.513448\pi\)
\(798\) −1.67191e15 −0.182893
\(799\) −7.16248e15 −0.778137
\(800\) 3.09728e15 0.334184
\(801\) 5.36069e15 0.574436
\(802\) −1.32329e15 −0.140830
\(803\) 2.04262e15 0.215900
\(804\) −7.27373e14 −0.0763570
\(805\) 5.47333e15 0.570656
\(806\) 1.22688e16 1.27045
\(807\) −7.68786e15 −0.790680
\(808\) 3.39685e15 0.346988
\(809\) 8.15810e15 0.827699 0.413849 0.910345i \(-0.364184\pi\)
0.413849 + 0.910345i \(0.364184\pi\)
\(810\) −1.32554e15 −0.133575
\(811\) 5.27977e15 0.528445 0.264223 0.964462i \(-0.414885\pi\)
0.264223 + 0.964462i \(0.414885\pi\)
\(812\) −1.86015e15 −0.184922
\(813\) −1.54527e15 −0.152584
\(814\) 9.59680e15 0.941223
\(815\) −8.45983e15 −0.824128
\(816\) −2.60764e15 −0.252320
\(817\) −6.52228e15 −0.626871
\(818\) −8.64705e15 −0.825515
\(819\) −1.88140e15 −0.178410
\(820\) 2.98178e15 0.280866
\(821\) 1.67086e16 1.56334 0.781669 0.623694i \(-0.214369\pi\)
0.781669 + 0.623694i \(0.214369\pi\)
\(822\) −1.53230e15 −0.142413
\(823\) −9.88154e15 −0.912275 −0.456137 0.889909i \(-0.650767\pi\)
−0.456137 + 0.889909i \(0.650767\pi\)
\(824\) −3.21641e15 −0.294966
\(825\) 1.63094e16 1.48573
\(826\) 1.32426e15 0.119834
\(827\) 1.12760e16 1.01362 0.506810 0.862058i \(-0.330825\pi\)
0.506810 + 0.862058i \(0.330825\pi\)
\(828\) −1.65752e15 −0.148010
\(829\) −1.73581e16 −1.53975 −0.769877 0.638192i \(-0.779682\pi\)
−0.769877 + 0.638192i \(0.779682\pi\)
\(830\) 1.47193e16 1.29706
\(831\) −2.81301e15 −0.246244
\(832\) −2.03553e15 −0.177010
\(833\) −2.89083e15 −0.249732
\(834\) 7.10092e15 0.609399
\(835\) 2.34421e16 1.99858
\(836\) −9.52501e15 −0.806735
\(837\) −2.90197e15 −0.244176
\(838\) 7.24071e15 0.605256
\(839\) 6.05657e14 0.0502963 0.0251481 0.999684i \(-0.491994\pi\)
0.0251481 + 0.999684i \(0.491994\pi\)
\(840\) −1.58987e15 −0.131168
\(841\) −5.18593e14 −0.0425059
\(842\) −6.56895e15 −0.534909
\(843\) −2.34802e15 −0.189955
\(844\) 1.79932e15 0.144619
\(845\) −2.14036e16 −1.70913
\(846\) 1.32247e15 0.104917
\(847\) 4.09044e15 0.322412
\(848\) −5.07164e15 −0.397165
\(849\) 4.72692e15 0.367778
\(850\) −3.02289e16 −2.33679
\(851\) −1.13063e16 −0.868379
\(852\) −2.80406e15 −0.213978
\(853\) −1.65022e16 −1.25119 −0.625594 0.780149i \(-0.715143\pi\)
−0.625594 + 0.780149i \(0.715143\pi\)
\(854\) 4.86984e15 0.366857
\(855\) 8.97417e15 0.671708
\(856\) −5.90308e15 −0.439009
\(857\) −1.00335e16 −0.741411 −0.370705 0.928751i \(-0.620884\pi\)
−0.370705 + 0.928751i \(0.620884\pi\)
\(858\) −1.07185e16 −0.786962
\(859\) 4.67219e14 0.0340846 0.0170423 0.999855i \(-0.494575\pi\)
0.0170423 + 0.999855i \(0.494575\pi\)
\(860\) −6.20226e15 −0.449582
\(861\) −1.00105e15 −0.0721004
\(862\) 1.37773e16 0.985991
\(863\) −2.29922e15 −0.163501 −0.0817507 0.996653i \(-0.526051\pi\)
−0.0817507 + 0.996653i \(0.526051\pi\)
\(864\) 4.81469e14 0.0340207
\(865\) −2.98544e16 −2.09614
\(866\) 7.15800e15 0.499394
\(867\) 1.71220e16 1.18700
\(868\) −3.48068e15 −0.239776
\(869\) 1.85948e16 1.27287
\(870\) 9.98458e15 0.679163
\(871\) 5.54151e15 0.374566
\(872\) −7.51963e15 −0.505075
\(873\) 7.70943e15 0.514569
\(874\) 1.12218e16 0.744300
\(875\) −8.68116e15 −0.572181
\(876\) 6.99027e14 0.0457848
\(877\) 9.62704e15 0.626607 0.313303 0.949653i \(-0.398564\pi\)
0.313303 + 0.949653i \(0.398564\pi\)
\(878\) 1.41528e16 0.915427
\(879\) 7.17739e14 0.0461347
\(880\) −9.05767e15 −0.578578
\(881\) −1.96850e15 −0.124959 −0.0624795 0.998046i \(-0.519901\pi\)
−0.0624795 + 0.998046i \(0.519901\pi\)
\(882\) 5.33756e14 0.0336718
\(883\) 1.44941e16 0.908674 0.454337 0.890830i \(-0.349876\pi\)
0.454337 + 0.890830i \(0.349876\pi\)
\(884\) 1.98664e16 1.23775
\(885\) −7.10812e15 −0.440115
\(886\) 9.06528e15 0.557822
\(887\) −1.24437e15 −0.0760977 −0.0380488 0.999276i \(-0.512114\pi\)
−0.0380488 + 0.999276i \(0.512114\pi\)
\(888\) 3.28422e15 0.199600
\(889\) 1.56432e15 0.0944859
\(890\) −3.45123e16 −2.07171
\(891\) 2.53528e15 0.151251
\(892\) −7.75046e15 −0.459538
\(893\) −8.95338e15 −0.527599
\(894\) −9.21704e15 −0.539803
\(895\) −1.08315e16 −0.630466
\(896\) 5.77484e14 0.0334077
\(897\) 1.26278e16 0.726057
\(898\) 1.56671e16 0.895300
\(899\) 2.18591e16 1.24152
\(900\) 5.58141e15 0.315072
\(901\) 4.94983e16 2.77718
\(902\) −5.70307e15 −0.318033
\(903\) 2.08224e15 0.115411
\(904\) −7.53790e15 −0.415264
\(905\) 2.82233e16 1.54540
\(906\) −7.08570e15 −0.385636
\(907\) −1.98585e16 −1.07425 −0.537126 0.843502i \(-0.680490\pi\)
−0.537126 + 0.843502i \(0.680490\pi\)
\(908\) −3.36213e14 −0.0180777
\(909\) 6.12124e15 0.327143
\(910\) 1.21125e16 0.643437
\(911\) −1.70455e16 −0.900033 −0.450016 0.893020i \(-0.648582\pi\)
−0.450016 + 0.893020i \(0.648582\pi\)
\(912\) −3.25966e15 −0.171080
\(913\) −2.81528e16 −1.46870
\(914\) 1.06925e16 0.554468
\(915\) −2.61395e16 −1.34735
\(916\) −1.59209e15 −0.0815723
\(917\) −5.56129e14 −0.0283233
\(918\) −4.69905e15 −0.237890
\(919\) 2.89063e16 1.45465 0.727323 0.686296i \(-0.240764\pi\)
0.727323 + 0.686296i \(0.240764\pi\)
\(920\) 1.06712e16 0.533800
\(921\) −7.16226e15 −0.356141
\(922\) 2.14817e15 0.106181
\(923\) 2.13628e16 1.04966
\(924\) 3.04086e15 0.148525
\(925\) 3.80722e16 1.84854
\(926\) 5.13049e15 0.247627
\(927\) −5.79608e15 −0.278097
\(928\) −3.62666e15 −0.172979
\(929\) 1.45121e16 0.688089 0.344044 0.938953i \(-0.388203\pi\)
0.344044 + 0.938953i \(0.388203\pi\)
\(930\) 1.86830e16 0.880625
\(931\) −3.61365e15 −0.169326
\(932\) −1.11519e15 −0.0519469
\(933\) −2.08446e16 −0.965262
\(934\) 1.18172e16 0.544009
\(935\) 8.84012e16 4.04571
\(936\) −3.66809e15 −0.166887
\(937\) −6.48764e15 −0.293440 −0.146720 0.989178i \(-0.546872\pi\)
−0.146720 + 0.989178i \(0.546872\pi\)
\(938\) −1.57214e15 −0.0706928
\(939\) −1.05842e16 −0.473147
\(940\) −8.51409e15 −0.378386
\(941\) −2.22072e16 −0.981185 −0.490593 0.871389i \(-0.663220\pi\)
−0.490593 + 0.871389i \(0.663220\pi\)
\(942\) 1.46490e16 0.643468
\(943\) 6.71899e15 0.293420
\(944\) 2.58185e15 0.112095
\(945\) −2.86501e15 −0.123666
\(946\) 1.18627e16 0.509076
\(947\) 1.75990e16 0.750867 0.375434 0.926849i \(-0.377494\pi\)
0.375434 + 0.926849i \(0.377494\pi\)
\(948\) 6.36352e15 0.269930
\(949\) −5.32556e15 −0.224595
\(950\) −3.77874e16 −1.58441
\(951\) 1.88069e15 0.0784016
\(952\) −5.63614e15 −0.233603
\(953\) −5.29841e15 −0.218340 −0.109170 0.994023i \(-0.534819\pi\)
−0.109170 + 0.994023i \(0.534819\pi\)
\(954\) −9.13926e15 −0.374451
\(955\) −3.81606e16 −1.55452
\(956\) −4.00656e15 −0.162276
\(957\) −1.90969e16 −0.769038
\(958\) −8.72267e15 −0.349252
\(959\) −3.31191e15 −0.131849
\(960\) −3.09972e15 −0.122696
\(961\) 1.54939e16 0.609793
\(962\) −2.50210e16 −0.979131
\(963\) −1.06375e16 −0.413901
\(964\) −1.35440e16 −0.523991
\(965\) −1.23585e16 −0.475406
\(966\) −3.58255e15 −0.137031
\(967\) −5.31526e15 −0.202152 −0.101076 0.994879i \(-0.532229\pi\)
−0.101076 + 0.994879i \(0.532229\pi\)
\(968\) 7.97499e15 0.301589
\(969\) 3.18136e16 1.19628
\(970\) −4.96336e16 −1.85580
\(971\) 3.87082e16 1.43912 0.719560 0.694431i \(-0.244344\pi\)
0.719560 + 0.694431i \(0.244344\pi\)
\(972\) 8.67624e14 0.0320750
\(973\) 1.53479e16 0.564194
\(974\) −3.84148e16 −1.40418
\(975\) −4.25221e16 −1.54557
\(976\) 9.49456e15 0.343163
\(977\) −5.46075e16 −1.96260 −0.981301 0.192478i \(-0.938348\pi\)
−0.981301 + 0.192478i \(0.938348\pi\)
\(978\) 5.53734e15 0.197896
\(979\) 6.60097e16 2.34587
\(980\) −3.43635e15 −0.121438
\(981\) −1.35506e16 −0.476189
\(982\) 1.17209e16 0.409588
\(983\) −1.13343e16 −0.393867 −0.196933 0.980417i \(-0.563098\pi\)
−0.196933 + 0.980417i \(0.563098\pi\)
\(984\) −1.95171e15 −0.0674438
\(985\) 1.06541e16 0.366116
\(986\) 3.53956e16 1.20956
\(987\) 2.85837e15 0.0971346
\(988\) 2.48338e16 0.839227
\(989\) −1.39759e16 −0.469677
\(990\) −1.63222e16 −0.545488
\(991\) −1.87120e16 −0.621891 −0.310946 0.950428i \(-0.600646\pi\)
−0.310946 + 0.950428i \(0.600646\pi\)
\(992\) −6.78616e15 −0.224290
\(993\) 1.17163e16 0.385096
\(994\) −6.06067e15 −0.198105
\(995\) −9.35603e15 −0.304134
\(996\) −9.63447e15 −0.311459
\(997\) 1.48619e15 0.0477807 0.0238903 0.999715i \(-0.492395\pi\)
0.0238903 + 0.999715i \(0.492395\pi\)
\(998\) −7.08270e15 −0.226454
\(999\) 5.91828e15 0.188185
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 42.12.a.f.1.1 1
3.2 odd 2 126.12.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.12.a.f.1.1 1 1.1 even 1 trivial
126.12.a.c.1.1 1 3.2 odd 2