Properties

Label 418.2.u.b.5.5
Level $418$
Weight $2$
Character 418.5
Analytic conductor $3.338$
Analytic rank $0$
Dimension $264$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 418 = 2 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 418.u (of order \(45\), degree \(24\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.33774680449\)
Analytic rank: \(0\)
Dimension: \(264\)
Relative dimension: \(11\) over \(\Q(\zeta_{45})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{45}]$

Embedding invariants

Embedding label 5.5
Character \(\chi\) \(=\) 418.5
Dual form 418.2.u.b.251.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.615661 - 0.788011i) q^{2} +(-0.215741 + 0.208339i) q^{3} +(-0.241922 + 0.970296i) q^{4} +(-0.160523 + 0.100306i) q^{5} +(0.296996 + 0.0417401i) q^{6} +(-1.81207 - 0.806787i) q^{7} +(0.913545 - 0.406737i) q^{8} +(-0.101559 + 2.90828i) q^{9} +O(q^{10})\) \(q+(-0.615661 - 0.788011i) q^{2} +(-0.215741 + 0.208339i) q^{3} +(-0.241922 + 0.970296i) q^{4} +(-0.160523 + 0.100306i) q^{5} +(0.296996 + 0.0417401i) q^{6} +(-1.81207 - 0.806787i) q^{7} +(0.913545 - 0.406737i) q^{8} +(-0.101559 + 2.90828i) q^{9} +(0.177870 + 0.0647394i) q^{10} +(-2.25551 - 2.43160i) q^{11} +(-0.149958 - 0.259734i) q^{12} +(-2.74105 + 1.45744i) q^{13} +(0.479867 + 1.92464i) q^{14} +(0.0137338 - 0.0550832i) q^{15} +(-0.882948 - 0.469472i) q^{16} +(-0.0244707 - 0.700748i) q^{17} +(2.35428 - 1.71048i) q^{18} +(-4.35542 - 0.174113i) q^{19} +(-0.0584924 - 0.180021i) q^{20} +(0.559023 - 0.203468i) q^{21} +(-0.527495 + 3.27441i) q^{22} +(0.196066 - 0.164519i) q^{23} +(-0.112350 + 0.278077i) q^{24} +(-2.17615 + 4.46177i) q^{25} +(2.83604 + 1.26269i) q^{26} +(-1.18604 - 1.31723i) q^{27} +(1.22120 - 1.56307i) q^{28} +(-8.18525 + 2.34708i) q^{29} +(-0.0518615 + 0.0230902i) q^{30} +(0.876837 - 0.973827i) q^{31} +(0.173648 + 0.984808i) q^{32} +(0.993202 + 0.0546856i) q^{33} +(-0.537132 + 0.450707i) q^{34} +(0.371805 - 0.0522538i) q^{35} +(-2.79732 - 0.802119i) q^{36} +(-1.02976 + 0.748166i) q^{37} +(2.54426 + 3.53931i) q^{38} +(0.287715 - 0.885496i) q^{39} +(-0.105847 + 0.156925i) q^{40} +(-1.49356 + 1.44231i) q^{41} +(-0.504504 - 0.315249i) q^{42} +(-0.430035 - 0.360842i) q^{43} +(2.90503 - 1.60026i) q^{44} +(-0.275415 - 0.477033i) q^{45} +(-0.250353 - 0.0532141i) q^{46} +(4.83523 + 7.16853i) q^{47} +(0.288297 - 0.0826678i) q^{48} +(-2.05121 - 2.27810i) q^{49} +(4.85569 - 1.03211i) q^{50} +(0.151272 + 0.146082i) q^{51} +(-0.751030 - 3.01221i) q^{52} +(6.32283 + 3.95094i) q^{53} +(-0.307794 + 1.74559i) q^{54} +(0.605965 + 0.164087i) q^{55} -1.98356 q^{56} +(0.975917 - 0.869839i) q^{57} +(6.88887 + 5.00506i) q^{58} +(-2.40614 + 3.56726i) q^{59} +(0.0501245 + 0.0266517i) q^{60} +(-1.78117 - 4.40856i) q^{61} +(-1.30722 - 0.0914098i) q^{62} +(2.53039 - 5.18808i) q^{63} +(0.669131 - 0.743145i) q^{64} +(0.293811 - 0.508896i) q^{65} +(-0.568383 - 0.816322i) q^{66} +(-7.50231 - 2.73062i) q^{67} +(0.685853 + 0.145783i) q^{68} +(-0.00802381 + 0.0763415i) q^{69} +(-0.270082 - 0.260816i) q^{70} +(11.9870 - 7.49029i) q^{71} +(1.09012 + 2.69815i) q^{72} +(0.166785 + 0.341959i) q^{73} +(1.22355 + 0.350847i) q^{74} +(-0.460074 - 1.41596i) q^{75} +(1.22261 - 4.18392i) q^{76} +(2.12537 + 6.22595i) q^{77} +(-0.874916 + 0.318443i) q^{78} +(-3.75945 + 0.528356i) q^{79} +(0.188824 - 0.0132039i) q^{80} +(-8.17858 - 0.571902i) q^{81} +(2.05609 + 0.288964i) q^{82} +(13.5235 - 2.87451i) q^{83} +(0.0621840 + 0.591641i) q^{84} +(0.0742173 + 0.110032i) q^{85} +(-0.0195916 + 0.561029i) q^{86} +(1.27691 - 2.21167i) q^{87} +(-3.04953 - 1.30398i) q^{88} +(-1.30973 - 7.42784i) q^{89} +(-0.206344 + 0.510720i) q^{90} +(6.14283 - 0.429548i) q^{91} +(0.112199 + 0.230042i) q^{92} +(0.0137160 + 0.392773i) q^{93} +(2.67201 - 8.22360i) q^{94} +(0.716610 - 0.408925i) q^{95} +(-0.242637 - 0.176286i) q^{96} +(-2.30385 - 2.94879i) q^{97} +(-0.532316 + 3.01891i) q^{98} +(7.30083 - 6.31270i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 264 q + 6 q^{3} - 9 q^{6} - 15 q^{7} + 33 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 264 q + 6 q^{3} - 9 q^{6} - 15 q^{7} + 33 q^{8} + 6 q^{9} + 3 q^{11} - 6 q^{13} + 18 q^{14} - 39 q^{15} - 3 q^{17} - 78 q^{18} - 45 q^{19} - 24 q^{20} + 48 q^{21} + 6 q^{23} - 9 q^{24} + 30 q^{25} + 18 q^{26} - 24 q^{27} + 6 q^{28} - 3 q^{31} - 63 q^{33} - 36 q^{34} + 42 q^{35} - 9 q^{36} + 60 q^{37} - 3 q^{38} + 36 q^{39} + 39 q^{41} + 6 q^{42} - 60 q^{43} + 60 q^{44} - 108 q^{45} - 12 q^{46} - 24 q^{47} - 12 q^{48} + 6 q^{49} + 18 q^{50} + 96 q^{51} + 3 q^{52} - 117 q^{53} + 54 q^{54} + 102 q^{55} - 96 q^{57} - 60 q^{58} - 141 q^{59} + 36 q^{60} + 24 q^{61} - 27 q^{62} - 81 q^{63} + 33 q^{64} - 102 q^{65} + 72 q^{66} + 102 q^{67} - 21 q^{68} - 6 q^{69} - 33 q^{70} - 66 q^{71} - 12 q^{72} + 36 q^{73} + 18 q^{74} + 6 q^{76} - 174 q^{77} + 18 q^{78} + 36 q^{79} + 60 q^{81} - 36 q^{82} - 24 q^{83} + 48 q^{84} + 174 q^{85} - 21 q^{86} + 12 q^{87} + 3 q^{88} + 30 q^{89} - 48 q^{90} - 18 q^{91} + 18 q^{92} - 123 q^{93} - 120 q^{94} - 18 q^{95} - 24 q^{97} - 84 q^{98} - 141 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/418\mathbb{Z}\right)^\times\).

\(n\) \(287\) \(343\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.615661 0.788011i −0.435338 0.557208i
\(3\) −0.215741 + 0.208339i −0.124558 + 0.120284i −0.754329 0.656497i \(-0.772038\pi\)
0.629771 + 0.776781i \(0.283149\pi\)
\(4\) −0.241922 + 0.970296i −0.120961 + 0.485148i
\(5\) −0.160523 + 0.100306i −0.0717881 + 0.0448582i −0.565338 0.824859i \(-0.691254\pi\)
0.493550 + 0.869717i \(0.335699\pi\)
\(6\) 0.296996 + 0.0417401i 0.121248 + 0.0170403i
\(7\) −1.81207 0.806787i −0.684899 0.304937i 0.0346288 0.999400i \(-0.488975\pi\)
−0.719528 + 0.694463i \(0.755642\pi\)
\(8\) 0.913545 0.406737i 0.322987 0.143803i
\(9\) −0.101559 + 2.90828i −0.0338531 + 0.969426i
\(10\) 0.177870 + 0.0647394i 0.0562474 + 0.0204724i
\(11\) −2.25551 2.43160i −0.680062 0.733155i
\(12\) −0.149958 0.259734i −0.0432890 0.0749788i
\(13\) −2.74105 + 1.45744i −0.760230 + 0.404222i −0.803854 0.594826i \(-0.797221\pi\)
0.0436240 + 0.999048i \(0.486110\pi\)
\(14\) 0.479867 + 1.92464i 0.128250 + 0.514382i
\(15\) 0.0137338 0.0550832i 0.00354605 0.0142224i
\(16\) −0.882948 0.469472i −0.220737 0.117368i
\(17\) −0.0244707 0.700748i −0.00593501 0.169956i −0.998739 0.0502051i \(-0.984012\pi\)
0.992804 0.119751i \(-0.0382097\pi\)
\(18\) 2.35428 1.71048i 0.554909 0.403165i
\(19\) −4.35542 0.174113i −0.999202 0.0399444i
\(20\) −0.0584924 0.180021i −0.0130793 0.0402539i
\(21\) 0.559023 0.203468i 0.121989 0.0444003i
\(22\) −0.527495 + 3.27441i −0.112462 + 0.698106i
\(23\) 0.196066 0.164519i 0.0408825 0.0343045i −0.622117 0.782924i \(-0.713727\pi\)
0.663000 + 0.748619i \(0.269283\pi\)
\(24\) −0.112350 + 0.278077i −0.0229334 + 0.0567621i
\(25\) −2.17615 + 4.46177i −0.435230 + 0.892353i
\(26\) 2.83604 + 1.26269i 0.556193 + 0.247633i
\(27\) −1.18604 1.31723i −0.228254 0.253502i
\(28\) 1.22120 1.56307i 0.230785 0.295392i
\(29\) −8.18525 + 2.34708i −1.51996 + 0.435842i −0.928760 0.370681i \(-0.879124\pi\)
−0.591203 + 0.806523i \(0.701347\pi\)
\(30\) −0.0518615 + 0.0230902i −0.00946858 + 0.00421568i
\(31\) 0.876837 0.973827i 0.157485 0.174904i −0.659239 0.751934i \(-0.729121\pi\)
0.816724 + 0.577029i \(0.195788\pi\)
\(32\) 0.173648 + 0.984808i 0.0306970 + 0.174091i
\(33\) 0.993202 + 0.0546856i 0.172894 + 0.00951953i
\(34\) −0.537132 + 0.450707i −0.0921173 + 0.0772956i
\(35\) 0.371805 0.0522538i 0.0628465 0.00883250i
\(36\) −2.79732 0.802119i −0.466220 0.133686i
\(37\) −1.02976 + 0.748166i −0.169292 + 0.122998i −0.669205 0.743078i \(-0.733365\pi\)
0.499913 + 0.866075i \(0.333365\pi\)
\(38\) 2.54426 + 3.53931i 0.412734 + 0.574152i
\(39\) 0.287715 0.885496i 0.0460713 0.141793i
\(40\) −0.105847 + 0.156925i −0.0167359 + 0.0248120i
\(41\) −1.49356 + 1.44231i −0.233255 + 0.225252i −0.802095 0.597196i \(-0.796281\pi\)
0.568840 + 0.822448i \(0.307392\pi\)
\(42\) −0.504504 0.315249i −0.0778466 0.0486440i
\(43\) −0.430035 0.360842i −0.0655798 0.0550279i 0.609409 0.792856i \(-0.291407\pi\)
−0.674988 + 0.737828i \(0.735851\pi\)
\(44\) 2.90503 1.60026i 0.437949 0.241248i
\(45\) −0.275415 0.477033i −0.0410564 0.0711118i
\(46\) −0.250353 0.0532141i −0.0369125 0.00784599i
\(47\) 4.83523 + 7.16853i 0.705291 + 1.04564i 0.996046 + 0.0888398i \(0.0283159\pi\)
−0.290755 + 0.956798i \(0.593906\pi\)
\(48\) 0.288297 0.0826678i 0.0416121 0.0119321i
\(49\) −2.05121 2.27810i −0.293030 0.325443i
\(50\) 4.85569 1.03211i 0.686699 0.145962i
\(51\) 0.151272 + 0.146082i 0.0211824 + 0.0204556i
\(52\) −0.751030 3.01221i −0.104149 0.417719i
\(53\) 6.32283 + 3.95094i 0.868507 + 0.542704i 0.889427 0.457078i \(-0.151104\pi\)
−0.0209196 + 0.999781i \(0.506659\pi\)
\(54\) −0.307794 + 1.74559i −0.0418854 + 0.237544i
\(55\) 0.605965 + 0.164087i 0.0817083 + 0.0221254i
\(56\) −1.98356 −0.265064
\(57\) 0.975917 0.869839i 0.129263 0.115213i
\(58\) 6.88887 + 5.00506i 0.904553 + 0.657196i
\(59\) −2.40614 + 3.56726i −0.313253 + 0.464417i −0.952480 0.304601i \(-0.901477\pi\)
0.639227 + 0.769018i \(0.279255\pi\)
\(60\) 0.0501245 + 0.0266517i 0.00647105 + 0.00344072i
\(61\) −1.78117 4.40856i −0.228056 0.564458i 0.769158 0.639059i \(-0.220676\pi\)
−0.997213 + 0.0746011i \(0.976232\pi\)
\(62\) −1.30722 0.0914098i −0.166017 0.0116091i
\(63\) 2.53039 5.18808i 0.318800 0.653636i
\(64\) 0.669131 0.743145i 0.0836413 0.0928931i
\(65\) 0.293811 0.508896i 0.0364428 0.0631208i
\(66\) −0.568383 0.816322i −0.0699632 0.100482i
\(67\) −7.50231 2.73062i −0.916553 0.333598i −0.159687 0.987168i \(-0.551048\pi\)
−0.756866 + 0.653570i \(0.773271\pi\)
\(68\) 0.685853 + 0.145783i 0.0831719 + 0.0176787i
\(69\) −0.00802381 + 0.0763415i −0.000965953 + 0.00919043i
\(70\) −0.270082 0.260816i −0.0322810 0.0311734i
\(71\) 11.9870 7.49029i 1.42259 0.888934i 0.422742 0.906250i \(-0.361068\pi\)
0.999850 + 0.0173164i \(0.00551225\pi\)
\(72\) 1.09012 + 2.69815i 0.128472 + 0.317980i
\(73\) 0.166785 + 0.341959i 0.0195207 + 0.0400233i 0.908332 0.418251i \(-0.137357\pi\)
−0.888811 + 0.458274i \(0.848468\pi\)
\(74\) 1.22355 + 0.350847i 0.142235 + 0.0407851i
\(75\) −0.460074 1.41596i −0.0531248 0.163501i
\(76\) 1.22261 4.18392i 0.140243 0.479929i
\(77\) 2.12537 + 6.22595i 0.242208 + 0.709513i
\(78\) −0.874916 + 0.318443i −0.0990647 + 0.0360566i
\(79\) −3.75945 + 0.528356i −0.422971 + 0.0594446i −0.347448 0.937699i \(-0.612952\pi\)
−0.0755230 + 0.997144i \(0.524063\pi\)
\(80\) 0.188824 0.0132039i 0.0211112 0.00147624i
\(81\) −8.17858 0.571902i −0.908731 0.0635446i
\(82\) 2.05609 + 0.288964i 0.227057 + 0.0319108i
\(83\) 13.5235 2.87451i 1.48440 0.315519i 0.606777 0.794872i \(-0.292462\pi\)
0.877622 + 0.479353i \(0.159129\pi\)
\(84\) 0.0621840 + 0.591641i 0.00678483 + 0.0645533i
\(85\) 0.0742173 + 0.110032i 0.00805000 + 0.0119346i
\(86\) −0.0195916 + 0.561029i −0.00211261 + 0.0604973i
\(87\) 1.27691 2.21167i 0.136899 0.237116i
\(88\) −3.04953 1.30398i −0.325081 0.139004i
\(89\) −1.30973 7.42784i −0.138831 0.787349i −0.972115 0.234504i \(-0.924653\pi\)
0.833284 0.552845i \(-0.186458\pi\)
\(90\) −0.206344 + 0.510720i −0.0217506 + 0.0538347i
\(91\) 6.14283 0.429548i 0.643943 0.0450289i
\(92\) 0.112199 + 0.230042i 0.0116976 + 0.0239836i
\(93\) 0.0137160 + 0.392773i 0.00142228 + 0.0407287i
\(94\) 2.67201 8.22360i 0.275597 0.848200i
\(95\) 0.716610 0.408925i 0.0735226 0.0419548i
\(96\) −0.242637 0.176286i −0.0247640 0.0179921i
\(97\) −2.30385 2.94879i −0.233921 0.299405i 0.656700 0.754152i \(-0.271952\pi\)
−0.890621 + 0.454747i \(0.849730\pi\)
\(98\) −0.532316 + 3.01891i −0.0537721 + 0.304956i
\(99\) 7.30083 6.31270i 0.733761 0.634450i
\(100\) −3.80278 3.19091i −0.380278 0.319091i
\(101\) 4.57883 2.43460i 0.455610 0.242252i −0.225772 0.974180i \(-0.572490\pi\)
0.681382 + 0.731928i \(0.261379\pi\)
\(102\) 0.0219816 0.209141i 0.00217651 0.0207081i
\(103\) −0.279165 2.65608i −0.0275070 0.261711i −0.999629 0.0272360i \(-0.991329\pi\)
0.972122 0.234475i \(-0.0753372\pi\)
\(104\) −1.91128 + 2.44632i −0.187416 + 0.239882i
\(105\) −0.0693271 + 0.0887346i −0.00676563 + 0.00865961i
\(106\) −0.779337 7.41490i −0.0756959 0.720199i
\(107\) 1.43121 13.6171i 0.138361 1.31641i −0.676365 0.736567i \(-0.736446\pi\)
0.814725 0.579847i \(-0.196888\pi\)
\(108\) 1.56504 0.832145i 0.150596 0.0800732i
\(109\) −9.83619 8.25354i −0.942136 0.790546i 0.0358199 0.999358i \(-0.488596\pi\)
−0.977956 + 0.208813i \(0.933040\pi\)
\(110\) −0.243767 0.578529i −0.0232423 0.0551605i
\(111\) 0.0662900 0.375949i 0.00629197 0.0356835i
\(112\) 1.22120 + 1.56307i 0.115393 + 0.147696i
\(113\) 5.17143 + 3.75726i 0.486487 + 0.353454i 0.803832 0.594857i \(-0.202791\pi\)
−0.317345 + 0.948310i \(0.602791\pi\)
\(114\) −1.28628 0.233507i −0.120471 0.0218699i
\(115\) −0.0149709 + 0.0460756i −0.00139604 + 0.00429657i
\(116\) −0.297173 8.50993i −0.0275918 0.790127i
\(117\) −3.96027 8.11975i −0.366127 0.750671i
\(118\) 4.29241 0.300154i 0.395148 0.0276314i
\(119\) −0.521012 + 1.28955i −0.0477611 + 0.118213i
\(120\) −0.00985793 0.0559071i −0.000899901 0.00510359i
\(121\) −0.825346 + 10.9690i −0.0750315 + 0.997181i
\(122\) −2.37739 + 4.11776i −0.215239 + 0.372805i
\(123\) 0.0217323 0.622333i 0.00195954 0.0561139i
\(124\) 0.732774 + 1.08638i 0.0658050 + 0.0975599i
\(125\) −0.197148 1.87574i −0.0176335 0.167771i
\(126\) −5.64612 + 1.20012i −0.502997 + 0.106915i
\(127\) 5.36716 + 0.754305i 0.476258 + 0.0669337i 0.373218 0.927743i \(-0.378254\pi\)
0.103040 + 0.994677i \(0.467143\pi\)
\(128\) −0.997564 0.0697565i −0.0881730 0.00616566i
\(129\) 0.167954 0.0117445i 0.0147875 0.00103404i
\(130\) −0.581904 + 0.0817813i −0.0510364 + 0.00717269i
\(131\) −12.6510 + 4.60458i −1.10532 + 0.402304i −0.829275 0.558840i \(-0.811247\pi\)
−0.276046 + 0.961144i \(0.589024\pi\)
\(132\) −0.293338 + 0.950470i −0.0255318 + 0.0827278i
\(133\) 7.75187 + 3.82940i 0.672172 + 0.332051i
\(134\) 2.46713 + 7.59303i 0.213127 + 0.655938i
\(135\) 0.322514 + 0.0924793i 0.0277576 + 0.00795935i
\(136\) −0.307375 0.630212i −0.0263572 0.0540403i
\(137\) 3.41058 + 8.44148i 0.291385 + 0.721204i 0.999880 + 0.0154880i \(0.00493017\pi\)
−0.708495 + 0.705716i \(0.750625\pi\)
\(138\) 0.0650978 0.0406777i 0.00554150 0.00346271i
\(139\) 8.85886 + 8.55491i 0.751399 + 0.725618i 0.968085 0.250624i \(-0.0806357\pi\)
−0.216686 + 0.976241i \(0.569525\pi\)
\(140\) −0.0392461 + 0.373402i −0.00331690 + 0.0315582i
\(141\) −2.53664 0.539179i −0.213624 0.0454071i
\(142\) −13.2823 4.83438i −1.11463 0.405692i
\(143\) 9.72638 + 3.37786i 0.813361 + 0.282471i
\(144\) 1.45503 2.52018i 0.121252 0.210015i
\(145\) 1.07849 1.19779i 0.0895641 0.0994710i
\(146\) 0.166785 0.341959i 0.0138032 0.0283008i
\(147\) 0.917147 + 0.0641331i 0.0756450 + 0.00528961i
\(148\) −0.476820 1.18017i −0.0391944 0.0970095i
\(149\) 19.3455 + 10.2862i 1.58484 + 0.842677i 0.999491 + 0.0318985i \(0.0101553\pi\)
0.585353 + 0.810778i \(0.300956\pi\)
\(150\) −0.832544 + 1.23430i −0.0679769 + 0.100780i
\(151\) −15.1844 11.0321i −1.23569 0.897779i −0.238384 0.971171i \(-0.576618\pi\)
−0.997303 + 0.0733920i \(0.976618\pi\)
\(152\) −4.04969 + 1.61245i −0.328473 + 0.130787i
\(153\) 2.04046 0.164961
\(154\) 3.59761 5.50789i 0.289904 0.443838i
\(155\) −0.0430720 + 0.244274i −0.00345963 + 0.0196205i
\(156\) 0.789589 + 0.493390i 0.0632177 + 0.0395028i
\(157\) 5.07836 + 20.3682i 0.405297 + 1.62556i 0.732615 + 0.680643i \(0.238300\pi\)
−0.327318 + 0.944914i \(0.606145\pi\)
\(158\) 2.73090 + 2.63719i 0.217258 + 0.209804i
\(159\) −2.18723 + 0.464909i −0.173458 + 0.0368697i
\(160\) −0.126657 0.140666i −0.0100131 0.0111207i
\(161\) −0.488017 + 0.139937i −0.0384611 + 0.0110285i
\(162\) 4.58457 + 6.79690i 0.360198 + 0.534015i
\(163\) −16.1320 3.42897i −1.26356 0.268578i −0.473054 0.881033i \(-0.656849\pi\)
−0.790505 + 0.612455i \(0.790182\pi\)
\(164\) −1.03815 1.79812i −0.0810656 0.140410i
\(165\) −0.164917 + 0.0908457i −0.0128388 + 0.00707233i
\(166\) −10.5911 8.88695i −0.822025 0.689761i
\(167\) 16.2835 + 10.1750i 1.26005 + 0.787368i 0.984748 0.173989i \(-0.0556656\pi\)
0.275305 + 0.961357i \(0.411221\pi\)
\(168\) 0.427935 0.413252i 0.0330159 0.0318831i
\(169\) −1.88030 + 2.78765i −0.144638 + 0.214435i
\(170\) 0.0410134 0.126226i 0.00314559 0.00968112i
\(171\) 0.948704 12.6491i 0.0725492 0.967300i
\(172\) 0.454159 0.329966i 0.0346293 0.0251596i
\(173\) −10.5897 3.03655i −0.805120 0.230864i −0.152257 0.988341i \(-0.548654\pi\)
−0.652863 + 0.757476i \(0.726432\pi\)
\(174\) −2.52896 + 0.355422i −0.191720 + 0.0269445i
\(175\) 7.54304 6.32936i 0.570200 0.478455i
\(176\) 0.849931 + 3.20587i 0.0640660 + 0.241652i
\(177\) −0.224093 1.27090i −0.0168439 0.0955264i
\(178\) −5.04687 + 5.60511i −0.378279 + 0.420121i
\(179\) −14.7683 + 6.57527i −1.10383 + 0.491459i −0.876034 0.482249i \(-0.839820\pi\)
−0.227800 + 0.973708i \(0.573153\pi\)
\(180\) 0.529491 0.151829i 0.0394660 0.0113167i
\(181\) 2.27514 2.91205i 0.169110 0.216451i −0.695989 0.718053i \(-0.745034\pi\)
0.865098 + 0.501602i \(0.167256\pi\)
\(182\) −4.12039 4.57616i −0.305424 0.339207i
\(183\) 1.30275 + 0.580020i 0.0963017 + 0.0428763i
\(184\) 0.112199 0.230042i 0.00827143 0.0169589i
\(185\) 0.0902550 0.223389i 0.00663568 0.0164239i
\(186\) 0.301065 0.252624i 0.0220752 0.0185233i
\(187\) −1.64875 + 1.64005i −0.120568 + 0.119932i
\(188\) −8.12534 + 2.95738i −0.592602 + 0.215689i
\(189\) 1.08647 + 3.34381i 0.0790290 + 0.243226i
\(190\) −0.763426 0.312937i −0.0553848 0.0227028i
\(191\) −5.97042 + 4.33777i −0.432005 + 0.313870i −0.782450 0.622713i \(-0.786030\pi\)
0.350445 + 0.936583i \(0.386030\pi\)
\(192\) 0.0104669 + 0.299733i 0.000755383 + 0.0216313i
\(193\) −8.95376 4.76080i −0.644506 0.342690i 0.114834 0.993385i \(-0.463367\pi\)
−0.759339 + 0.650695i \(0.774478\pi\)
\(194\) −0.905289 + 3.63092i −0.0649960 + 0.260685i
\(195\) 0.0426356 + 0.171002i 0.00305320 + 0.0122457i
\(196\) 2.70666 1.43916i 0.193333 0.102797i
\(197\) 9.18177 + 15.9033i 0.654174 + 1.13306i 0.982100 + 0.188360i \(0.0603170\pi\)
−0.327926 + 0.944703i \(0.606350\pi\)
\(198\) −9.46932 1.86665i −0.672955 0.132657i
\(199\) −1.00582 0.366088i −0.0713005 0.0259513i 0.306124 0.951992i \(-0.400968\pi\)
−0.377424 + 0.926040i \(0.623190\pi\)
\(200\) −0.173247 + 4.96115i −0.0122504 + 0.350806i
\(201\) 2.18745 0.973915i 0.154291 0.0686946i
\(202\) −4.73750 2.10927i −0.333329 0.148408i
\(203\) 16.7259 + 2.35067i 1.17393 + 0.164985i
\(204\) −0.178339 + 0.111438i −0.0124862 + 0.00780225i
\(205\) 0.0950781 0.381338i 0.00664055 0.0266338i
\(206\) −1.92115 + 1.85523i −0.133853 + 0.129260i
\(207\) 0.458554 + 0.586922i 0.0318717 + 0.0407939i
\(208\) 3.10443 0.215253
\(209\) 9.40032 + 10.9833i 0.650234 + 0.759734i
\(210\) 0.112606 0.00777054
\(211\) −12.0247 15.3909i −0.827813 1.05955i −0.997257 0.0740121i \(-0.976420\pi\)
0.169445 0.985540i \(-0.445803\pi\)
\(212\) −5.36321 + 5.17919i −0.368347 + 0.355708i
\(213\) −1.02556 + 4.11331i −0.0702705 + 0.281839i
\(214\) −11.6116 + 7.25571i −0.793750 + 0.495990i
\(215\) 0.105225 + 0.0147884i 0.00717630 + 0.00100856i
\(216\) −1.61927 0.720947i −0.110178 0.0490542i
\(217\) −2.37456 + 1.05722i −0.161196 + 0.0717690i
\(218\) −0.448118 + 12.8324i −0.0303503 + 0.869120i
\(219\) −0.107226 0.0390270i −0.00724564 0.00263720i
\(220\) −0.305809 + 0.548269i −0.0206176 + 0.0369643i
\(221\) 1.08838 + 1.88512i 0.0732120 + 0.126807i
\(222\) −0.337064 + 0.179220i −0.0226223 + 0.0120285i
\(223\) 4.54580 + 18.2322i 0.304409 + 1.22092i 0.906401 + 0.422417i \(0.138818\pi\)
−0.601992 + 0.798502i \(0.705626\pi\)
\(224\) 0.479867 1.92464i 0.0320624 0.128595i
\(225\) −12.7551 6.78198i −0.850337 0.452132i
\(226\) −0.223086 6.38834i −0.0148395 0.424946i
\(227\) 1.63721 1.18950i 0.108665 0.0789499i −0.532126 0.846665i \(-0.678607\pi\)
0.640791 + 0.767716i \(0.278607\pi\)
\(228\) 0.607905 + 1.15736i 0.0402595 + 0.0766481i
\(229\) 8.71046 + 26.8080i 0.575604 + 1.77153i 0.634115 + 0.773239i \(0.281365\pi\)
−0.0585115 + 0.998287i \(0.518635\pi\)
\(230\) 0.0455250 0.0165698i 0.00300183 0.00109258i
\(231\) −1.75563 0.900397i −0.115512 0.0592417i
\(232\) −6.52295 + 5.47341i −0.428253 + 0.359347i
\(233\) −1.30604 + 3.23257i −0.0855617 + 0.211773i −0.963899 0.266269i \(-0.914209\pi\)
0.878337 + 0.478042i \(0.158653\pi\)
\(234\) −3.96027 + 8.11975i −0.258891 + 0.530805i
\(235\) −1.49521 0.665711i −0.0975369 0.0434262i
\(236\) −2.87919 3.19767i −0.187420 0.208151i
\(237\) 0.700989 0.897226i 0.0455342 0.0582811i
\(238\) 1.33695 0.383363i 0.0866614 0.0248497i
\(239\) −4.50058 + 2.00379i −0.291118 + 0.129614i −0.547100 0.837067i \(-0.684268\pi\)
0.255981 + 0.966682i \(0.417601\pi\)
\(240\) −0.0379862 + 0.0421880i −0.00245200 + 0.00272322i
\(241\) 3.82287 + 21.6806i 0.246253 + 1.39657i 0.817566 + 0.575835i \(0.195323\pi\)
−0.571313 + 0.820732i \(0.693566\pi\)
\(242\) 9.15182 6.10280i 0.588301 0.392303i
\(243\) 5.95708 4.99858i 0.382147 0.320659i
\(244\) 4.70851 0.661738i 0.301431 0.0423634i
\(245\) 0.557773 + 0.159939i 0.0356348 + 0.0102181i
\(246\) −0.503785 + 0.366021i −0.0321201 + 0.0233366i
\(247\) 12.1922 5.87052i 0.775770 0.373532i
\(248\) 0.404940 1.24628i 0.0257137 0.0791387i
\(249\) −2.31870 + 3.43762i −0.146942 + 0.217850i
\(250\) −1.35673 + 1.31017i −0.0858069 + 0.0828627i
\(251\) −16.9226 10.5744i −1.06815 0.667452i −0.122440 0.992476i \(-0.539072\pi\)
−0.945706 + 0.325024i \(0.894628\pi\)
\(252\) 4.42181 + 3.71034i 0.278548 + 0.233729i
\(253\) −0.842271 0.105680i −0.0529532 0.00664402i
\(254\) −2.70995 4.69378i −0.170038 0.294514i
\(255\) −0.0389356 0.00827601i −0.00243824 0.000518264i
\(256\) 0.559193 + 0.829038i 0.0349496 + 0.0518148i
\(257\) −30.6836 + 8.79838i −1.91399 + 0.548828i −0.931053 + 0.364883i \(0.881109\pi\)
−0.982937 + 0.183945i \(0.941113\pi\)
\(258\) −0.112657 0.125119i −0.00701374 0.00778955i
\(259\) 2.46961 0.524933i 0.153454 0.0326177i
\(260\) 0.422700 + 0.408197i 0.0262148 + 0.0253153i
\(261\) −5.99468 24.0434i −0.371062 1.48825i
\(262\) 11.4172 + 7.13425i 0.705356 + 0.440755i
\(263\) 0.580192 3.29043i 0.0357762 0.202897i −0.961680 0.274173i \(-0.911596\pi\)
0.997457 + 0.0712760i \(0.0227071\pi\)
\(264\) 0.929578 0.354014i 0.0572116 0.0217880i
\(265\) −1.41126 −0.0866931
\(266\) −1.75492 8.46617i −0.107601 0.519094i
\(267\) 1.83007 + 1.32962i 0.111998 + 0.0813716i
\(268\) 4.46448 6.61886i 0.272711 0.404311i
\(269\) −18.6987 9.94228i −1.14008 0.606192i −0.211521 0.977374i \(-0.567842\pi\)
−0.928560 + 0.371182i \(0.878953\pi\)
\(270\) −0.125685 0.311080i −0.00764892 0.0189317i
\(271\) −10.2299 0.715346i −0.621423 0.0434541i −0.244425 0.969668i \(-0.578599\pi\)
−0.376998 + 0.926214i \(0.623044\pi\)
\(272\) −0.307375 + 0.630212i −0.0186374 + 0.0382122i
\(273\) −1.23577 + 1.37246i −0.0747921 + 0.0830650i
\(274\) 4.55221 7.88467i 0.275009 0.476330i
\(275\) 15.7576 4.77204i 0.950216 0.287765i
\(276\) −0.0721327 0.0262541i −0.00434188 0.00158031i
\(277\) −12.6862 2.69653i −0.762238 0.162019i −0.189639 0.981854i \(-0.560732\pi\)
−0.572599 + 0.819835i \(0.694065\pi\)
\(278\) 1.28730 12.2478i 0.0772069 0.734575i
\(279\) 2.74311 + 2.64899i 0.164226 + 0.158591i
\(280\) 0.318407 0.198963i 0.0190285 0.0118903i
\(281\) 0.356294 + 0.881860i 0.0212547 + 0.0526073i 0.937438 0.348152i \(-0.113191\pi\)
−0.916183 + 0.400759i \(0.868746\pi\)
\(282\) 1.13683 + 2.33085i 0.0676974 + 0.138800i
\(283\) −7.99109 2.29141i −0.475021 0.136210i 0.0295804 0.999562i \(-0.490583\pi\)
−0.504602 + 0.863352i \(0.668361\pi\)
\(284\) 4.36789 + 13.4430i 0.259186 + 0.797694i
\(285\) −0.0694072 + 0.237519i −0.00411133 + 0.0140694i
\(286\) −3.32637 9.74411i −0.196692 0.576181i
\(287\) 3.87008 1.40859i 0.228444 0.0831467i
\(288\) −2.88173 + 0.405001i −0.169808 + 0.0238649i
\(289\) 16.4681 1.15156i 0.968714 0.0677391i
\(290\) −1.60786 0.112432i −0.0944167 0.00660226i
\(291\) 1.11138 + 0.156195i 0.0651504 + 0.00915629i
\(292\) −0.372151 + 0.0791031i −0.0217785 + 0.00462916i
\(293\) −0.718104 6.83230i −0.0419521 0.399147i −0.995268 0.0971715i \(-0.969020\pi\)
0.953316 0.301976i \(-0.0976462\pi\)
\(294\) −0.514114 0.762206i −0.0299838 0.0444527i
\(295\) 0.0284247 0.813977i 0.00165495 0.0473916i
\(296\) −0.636428 + 1.10233i −0.0369916 + 0.0640714i
\(297\) −0.527853 + 5.85502i −0.0306292 + 0.339743i
\(298\) −3.80465 21.5773i −0.220398 1.24994i
\(299\) −0.297649 + 0.736708i −0.0172135 + 0.0426049i
\(300\) 1.48520 0.103856i 0.0857483 0.00599610i
\(301\) 0.488132 + 1.00082i 0.0281355 + 0.0576863i
\(302\) 0.655026 + 18.7575i 0.0376925 + 1.07937i
\(303\) −0.480618 + 1.47919i −0.0276108 + 0.0849773i
\(304\) 3.76387 + 2.19848i 0.215873 + 0.126091i
\(305\) 0.728124 + 0.529013i 0.0416922 + 0.0302912i
\(306\) −1.25623 1.60790i −0.0718139 0.0919176i
\(307\) 2.69921 15.3080i 0.154052 0.873672i −0.805596 0.592466i \(-0.798154\pi\)
0.959647 0.281206i \(-0.0907344\pi\)
\(308\) −6.55519 + 0.556041i −0.373516 + 0.0316834i
\(309\) 0.613592 + 0.514864i 0.0349060 + 0.0292896i
\(310\) 0.219008 0.116449i 0.0124388 0.00661384i
\(311\) 1.29934 12.3624i 0.0736790 0.701009i −0.893870 0.448326i \(-0.852020\pi\)
0.967549 0.252683i \(-0.0813129\pi\)
\(312\) −0.0973229 0.925965i −0.00550982 0.0524225i
\(313\) −1.35046 + 1.72851i −0.0763324 + 0.0977010i −0.824661 0.565627i \(-0.808634\pi\)
0.748329 + 0.663328i \(0.230857\pi\)
\(314\) 12.9238 16.5417i 0.729332 0.933502i
\(315\) 0.114208 + 1.08662i 0.00643491 + 0.0612240i
\(316\) 0.396831 3.77559i 0.0223235 0.212394i
\(317\) 12.2451 6.51082i 0.687752 0.365684i −0.0885270 0.996074i \(-0.528216\pi\)
0.776279 + 0.630390i \(0.217105\pi\)
\(318\) 1.71294 + 1.43733i 0.0960572 + 0.0806015i
\(319\) 24.1691 + 14.6094i 1.35321 + 0.817968i
\(320\) −0.0328690 + 0.186410i −0.00183744 + 0.0104206i
\(321\) 2.52820 + 3.23594i 0.141110 + 0.180613i
\(322\) 0.410725 + 0.298409i 0.0228888 + 0.0166297i
\(323\) −0.0154296 + 3.05631i −0.000858527 + 0.170058i
\(324\) 2.53349 7.79728i 0.140749 0.433182i
\(325\) −0.537833 15.4015i −0.0298336 0.854323i
\(326\) 7.22981 + 14.8233i 0.400422 + 0.820987i
\(327\) 3.84160 0.268631i 0.212441 0.0148553i
\(328\) −0.777793 + 1.92511i −0.0429464 + 0.106296i
\(329\) −2.97832 16.8909i −0.164200 0.931226i
\(330\) 0.173120 + 0.0740262i 0.00952997 + 0.00407501i
\(331\) −3.17272 + 5.49530i −0.174388 + 0.302049i −0.939949 0.341314i \(-0.889128\pi\)
0.765561 + 0.643363i \(0.222461\pi\)
\(332\) −0.482508 + 13.8172i −0.0264811 + 0.758318i
\(333\) −2.07129 3.07082i −0.113506 0.168280i
\(334\) −2.00706 19.0959i −0.109822 1.04488i
\(335\) 1.47819 0.314199i 0.0807621 0.0171665i
\(336\) −0.589111 0.0827941i −0.0321386 0.00451679i
\(337\) 18.1796 + 1.27124i 0.990308 + 0.0692491i 0.555711 0.831376i \(-0.312446\pi\)
0.434597 + 0.900625i \(0.356891\pi\)
\(338\) 3.35432 0.234557i 0.182451 0.0127582i
\(339\) −1.89847 + 0.266813i −0.103111 + 0.0144913i
\(340\) −0.124718 + 0.0453937i −0.00676379 + 0.00246182i
\(341\) −4.34567 + 0.0643591i −0.235331 + 0.00348524i
\(342\) −10.5517 + 7.03997i −0.570571 + 0.380678i
\(343\) 6.16968 + 18.9883i 0.333131 + 1.02527i
\(344\) −0.539625 0.154735i −0.0290946 0.00834274i
\(345\) −0.00636949 0.0130594i −0.000342922 0.000703094i
\(346\) 4.12684 + 10.2143i 0.221860 + 0.549123i
\(347\) −22.1482 + 13.8397i −1.18898 + 0.742956i −0.972402 0.233310i \(-0.925044\pi\)
−0.216576 + 0.976266i \(0.569489\pi\)
\(348\) 1.83706 + 1.77403i 0.0984767 + 0.0950978i
\(349\) 1.83736 17.4813i 0.0983516 0.935753i −0.828415 0.560115i \(-0.810757\pi\)
0.926766 0.375638i \(-0.122576\pi\)
\(350\) −9.63156 2.04725i −0.514829 0.109430i
\(351\) 5.17080 + 1.88202i 0.275997 + 0.100455i
\(352\) 2.00299 2.64349i 0.106760 0.140898i
\(353\) −1.40856 + 2.43969i −0.0749699 + 0.129852i −0.901073 0.433667i \(-0.857219\pi\)
0.826103 + 0.563519i \(0.190553\pi\)
\(354\) −0.863514 + 0.959030i −0.0458953 + 0.0509719i
\(355\) −1.17286 + 2.40473i −0.0622492 + 0.127630i
\(356\) 7.52405 + 0.526133i 0.398774 + 0.0278850i
\(357\) −0.156259 0.386756i −0.00827013 0.0204693i
\(358\) 14.2737 + 7.58944i 0.754386 + 0.401114i
\(359\) 1.41152 2.09266i 0.0744971 0.110447i −0.789948 0.613174i \(-0.789892\pi\)
0.864445 + 0.502728i \(0.167670\pi\)
\(360\) −0.445631 0.323770i −0.0234868 0.0170642i
\(361\) 18.9394 + 1.51667i 0.996809 + 0.0798249i
\(362\) −3.69544 −0.194228
\(363\) −2.10720 2.53841i −0.110600 0.133232i
\(364\) −1.06930 + 6.06427i −0.0560463 + 0.317854i
\(365\) −0.0610733 0.0381629i −0.00319672 0.00199754i
\(366\) −0.344988 1.38367i −0.0180328 0.0723257i
\(367\) −6.65392 6.42561i −0.347332 0.335414i 0.500444 0.865769i \(-0.333170\pi\)
−0.847776 + 0.530354i \(0.822059\pi\)
\(368\) −0.250353 + 0.0532141i −0.0130505 + 0.00277398i
\(369\) −4.04297 4.49017i −0.210468 0.233749i
\(370\) −0.231599 + 0.0664101i −0.0120403 + 0.00345250i
\(371\) −8.26986 12.2606i −0.429350 0.636537i
\(372\) −0.384425 0.0817120i −0.0199315 0.00423657i
\(373\) −8.10742 14.0425i −0.419786 0.727091i 0.576131 0.817357i \(-0.304562\pi\)
−0.995918 + 0.0902658i \(0.971228\pi\)
\(374\) 2.30744 + 0.289514i 0.119315 + 0.0149704i
\(375\) 0.433322 + 0.363600i 0.0223766 + 0.0187762i
\(376\) 7.33291 + 4.58211i 0.378166 + 0.236304i
\(377\) 19.0154 18.3630i 0.979345 0.945742i
\(378\) 1.96606 2.91480i 0.101123 0.149921i
\(379\) 5.07678 15.6247i 0.260777 0.802588i −0.731860 0.681455i \(-0.761347\pi\)
0.992636 0.121133i \(-0.0386526\pi\)
\(380\) 0.223415 + 0.794251i 0.0114609 + 0.0407442i
\(381\) −1.31507 + 0.955452i −0.0673729 + 0.0489493i
\(382\) 7.09397 + 2.03416i 0.362959 + 0.104077i
\(383\) −2.95858 + 0.415802i −0.151177 + 0.0212465i −0.214355 0.976756i \(-0.568765\pi\)
0.0631788 + 0.998002i \(0.479876\pi\)
\(384\) 0.229748 0.192782i 0.0117243 0.00983786i
\(385\) −0.965670 0.786221i −0.0492151 0.0400696i
\(386\) 1.76092 + 9.98670i 0.0896287 + 0.508309i
\(387\) 1.09310 1.21402i 0.0555656 0.0617119i
\(388\) 3.41855 1.52204i 0.173551 0.0772698i
\(389\) −19.6789 + 5.64283i −0.997760 + 0.286103i −0.734490 0.678619i \(-0.762579\pi\)
−0.263269 + 0.964722i \(0.584801\pi\)
\(390\) 0.108502 0.138877i 0.00549423 0.00703229i
\(391\) −0.120084 0.133367i −0.00607291 0.00674465i
\(392\) −2.80046 1.24685i −0.141445 0.0629752i
\(393\) 1.77002 3.62909i 0.0892859 0.183063i
\(394\) 6.87910 17.0264i 0.346564 0.857777i
\(395\) 0.550480 0.461908i 0.0276977 0.0232411i
\(396\) 4.35895 + 8.61115i 0.219046 + 0.432726i
\(397\) 10.3522 3.76788i 0.519561 0.189105i −0.0689104 0.997623i \(-0.521952\pi\)
0.588471 + 0.808518i \(0.299730\pi\)
\(398\) 0.330762 + 1.01798i 0.0165796 + 0.0510268i
\(399\) −2.47021 + 0.788854i −0.123665 + 0.0394921i
\(400\) 4.01610 2.91787i 0.200805 0.145893i
\(401\) −1.16944 33.4884i −0.0583991 1.67233i −0.576564 0.817052i \(-0.695607\pi\)
0.518165 0.855281i \(-0.326615\pi\)
\(402\) −2.11418 1.12413i −0.105446 0.0560666i
\(403\) −0.984159 + 3.94725i −0.0490244 + 0.196626i
\(404\) 1.25457 + 5.03180i 0.0624171 + 0.250341i
\(405\) 1.37021 0.728556i 0.0680865 0.0362022i
\(406\) −8.44512 14.6274i −0.419124 0.725945i
\(407\) 4.14188 + 0.816472i 0.205305 + 0.0404710i
\(408\) 0.197611 + 0.0719245i 0.00978320 + 0.00356079i
\(409\) −0.0255918 + 0.732853i −0.00126543 + 0.0362373i −0.999859 0.0167751i \(-0.994660\pi\)
0.998594 + 0.0530124i \(0.0168823\pi\)
\(410\) −0.359034 + 0.159852i −0.0177314 + 0.00789454i
\(411\) −2.49449 1.11062i −0.123044 0.0547827i
\(412\) 2.64472 + 0.371691i 0.130296 + 0.0183119i
\(413\) 7.23812 4.52288i 0.356165 0.222556i
\(414\) 0.180187 0.722690i 0.00885571 0.0355183i
\(415\) −1.88250 + 1.81791i −0.0924085 + 0.0892379i
\(416\) −1.91128 2.44632i −0.0937081 0.119941i
\(417\) −3.69354 −0.180873
\(418\) 2.86758 14.1696i 0.140258 0.693057i
\(419\) 5.95186 0.290767 0.145384 0.989375i \(-0.453558\pi\)
0.145384 + 0.989375i \(0.453558\pi\)
\(420\) −0.0693271 0.0887346i −0.00338281 0.00432980i
\(421\) −10.3875 + 10.0311i −0.506257 + 0.488887i −0.903357 0.428888i \(-0.858905\pi\)
0.397100 + 0.917775i \(0.370016\pi\)
\(422\) −4.72505 + 18.9511i −0.230012 + 0.922527i
\(423\) −21.3391 + 13.3342i −1.03754 + 0.648330i
\(424\) 7.38318 + 1.03764i 0.358559 + 0.0503922i
\(425\) 3.17983 + 1.41575i 0.154244 + 0.0686740i
\(426\) 3.87273 1.72425i 0.187635 0.0835403i
\(427\) −0.329151 + 9.42566i −0.0159287 + 0.456140i
\(428\) 12.8664 + 4.68297i 0.621919 + 0.226360i
\(429\) −2.80212 + 1.29764i −0.135287 + 0.0626506i
\(430\) −0.0531296 0.0920232i −0.00256214 0.00443775i
\(431\) −6.03478 + 3.20875i −0.290685 + 0.154560i −0.608410 0.793623i \(-0.708192\pi\)
0.317725 + 0.948183i \(0.397081\pi\)
\(432\) 0.428810 + 1.71986i 0.0206311 + 0.0827470i
\(433\) −3.41088 + 13.6803i −0.163917 + 0.657433i 0.830960 + 0.556333i \(0.187792\pi\)
−0.994876 + 0.101101i \(0.967764\pi\)
\(434\) 2.29503 + 1.22029i 0.110165 + 0.0585758i
\(435\) 0.0168704 + 0.483104i 0.000808873 + 0.0231631i
\(436\) 10.3880 7.54730i 0.497493 0.361450i
\(437\) −0.882593 + 0.682410i −0.0422202 + 0.0326441i
\(438\) 0.0352611 + 0.108522i 0.00168484 + 0.00518540i
\(439\) −14.0338 + 5.10788i −0.669796 + 0.243786i −0.654460 0.756097i \(-0.727104\pi\)
−0.0153357 + 0.999882i \(0.504882\pi\)
\(440\) 0.620317 0.0965676i 0.0295724 0.00460368i
\(441\) 6.83367 5.73413i 0.325413 0.273054i
\(442\) 0.815425 2.01825i 0.0387858 0.0959983i
\(443\) 14.4586 29.6445i 0.686949 1.40845i −0.215002 0.976614i \(-0.568976\pi\)
0.901950 0.431840i \(-0.142135\pi\)
\(444\) 0.348745 + 0.155271i 0.0165507 + 0.00736885i
\(445\) 0.955298 + 1.06097i 0.0452854 + 0.0502946i
\(446\) 11.5685 14.8070i 0.547785 0.701133i
\(447\) −6.31662 + 1.81126i −0.298766 + 0.0856698i
\(448\) −1.81207 + 0.806787i −0.0856124 + 0.0381171i
\(449\) 3.61502 4.01489i 0.170603 0.189474i −0.651780 0.758408i \(-0.725977\pi\)
0.822383 + 0.568934i \(0.192644\pi\)
\(450\) 2.50852 + 14.2265i 0.118253 + 0.670645i
\(451\) 6.87587 + 0.378585i 0.323772 + 0.0178269i
\(452\) −4.89674 + 4.10885i −0.230323 + 0.193264i
\(453\) 5.57430 0.783417i 0.261904 0.0368082i
\(454\) −1.94530 0.557807i −0.0912976 0.0261792i
\(455\) −0.942978 + 0.685114i −0.0442075 + 0.0321186i
\(456\) 0.537749 1.19158i 0.0251824 0.0558008i
\(457\) −4.37686 + 13.4706i −0.204741 + 0.630128i 0.794983 + 0.606632i \(0.207480\pi\)
−0.999724 + 0.0234959i \(0.992520\pi\)
\(458\) 15.7623 23.3686i 0.736525 1.09194i
\(459\) −0.894027 + 0.863352i −0.0417296 + 0.0402978i
\(460\) −0.0410851 0.0256728i −0.00191560 0.00119700i
\(461\) 20.6565 + 17.3329i 0.962070 + 0.807272i 0.981289 0.192543i \(-0.0616735\pi\)
−0.0192189 + 0.999815i \(0.506118\pi\)
\(462\) 0.371355 + 1.93780i 0.0172770 + 0.0901546i
\(463\) 3.33073 + 5.76899i 0.154792 + 0.268108i 0.932983 0.359920i \(-0.117196\pi\)
−0.778191 + 0.628027i \(0.783863\pi\)
\(464\) 8.32904 + 1.77039i 0.386666 + 0.0821884i
\(465\) −0.0415992 0.0616734i −0.00192912 0.00286003i
\(466\) 3.35138 0.960992i 0.155250 0.0445171i
\(467\) 9.16225 + 10.1757i 0.423979 + 0.470876i 0.916853 0.399224i \(-0.130721\pi\)
−0.492875 + 0.870100i \(0.664054\pi\)
\(468\) 8.83663 1.87828i 0.408473 0.0868237i
\(469\) 11.3917 + 11.0008i 0.526020 + 0.507972i
\(470\) 0.395957 + 1.58810i 0.0182641 + 0.0732534i
\(471\) −5.33909 3.33623i −0.246012 0.153725i
\(472\) −0.747189 + 4.23752i −0.0343921 + 0.195048i
\(473\) 0.0925249 + 1.85956i 0.00425430 + 0.0855025i
\(474\) −1.13860 −0.0522974
\(475\) 10.2549 19.0540i 0.470527 0.874256i
\(476\) −1.12520 0.817506i −0.0515735 0.0374703i
\(477\) −12.1326 + 17.9873i −0.555513 + 0.823581i
\(478\) 4.34984 + 2.31285i 0.198957 + 0.105787i
\(479\) 7.40013 + 18.3160i 0.338120 + 0.836878i 0.996453 + 0.0841504i \(0.0268176\pi\)
−0.658333 + 0.752727i \(0.728738\pi\)
\(480\) 0.0566312 + 0.00396004i 0.00258485 + 0.000180750i
\(481\) 1.73222 3.55158i 0.0789824 0.161938i
\(482\) 14.7309 16.3603i 0.670975 0.745193i
\(483\) 0.0761310 0.131863i 0.00346408 0.00599997i
\(484\) −10.4435 3.45447i −0.474704 0.157021i
\(485\) 0.665602 + 0.242259i 0.0302234 + 0.0110004i
\(486\) −7.60648 1.61681i −0.345037 0.0733399i
\(487\) −0.248828 + 2.36744i −0.0112755 + 0.107279i −0.998712 0.0507369i \(-0.983843\pi\)
0.987437 + 0.158016i \(0.0505097\pi\)
\(488\) −3.42031 3.30295i −0.154830 0.149518i
\(489\) 4.19473 2.62116i 0.189692 0.118533i
\(490\) −0.217366 0.538000i −0.00981959 0.0243043i
\(491\) −5.42311 11.1190i −0.244742 0.501795i 0.740694 0.671842i \(-0.234497\pi\)
−0.985436 + 0.170047i \(0.945608\pi\)
\(492\) 0.598589 + 0.171643i 0.0269865 + 0.00773825i
\(493\) 1.84501 + 5.67837i 0.0830952 + 0.255741i
\(494\) −12.1323 5.99332i −0.545857 0.269652i
\(495\) −0.538751 + 1.74565i −0.0242150 + 0.0784611i
\(496\) −1.23139 + 0.448188i −0.0552908 + 0.0201242i
\(497\) −27.7643 + 3.90202i −1.24540 + 0.175030i
\(498\) 4.13642 0.289247i 0.185357 0.0129615i
\(499\) −34.1696 2.38937i −1.52964 0.106963i −0.720037 0.693936i \(-0.755875\pi\)
−0.809607 + 0.586973i \(0.800319\pi\)
\(500\) 1.86772 + 0.262490i 0.0835268 + 0.0117389i
\(501\) −5.63287 + 1.19730i −0.251658 + 0.0534915i
\(502\) 2.08584 + 19.8455i 0.0930957 + 0.885747i
\(503\) 19.7149 + 29.2286i 0.879046 + 1.30324i 0.952061 + 0.305908i \(0.0989600\pi\)
−0.0730155 + 0.997331i \(0.523262\pi\)
\(504\) 0.201449 5.76875i 0.00897325 0.256960i
\(505\) −0.490802 + 0.850093i −0.0218404 + 0.0378287i
\(506\) 0.435277 + 0.728782i 0.0193504 + 0.0323983i
\(507\) −0.175119 0.993149i −0.00777731 0.0441073i
\(508\) −2.03033 + 5.02525i −0.0900814 + 0.222959i
\(509\) −33.3080 + 2.32912i −1.47635 + 0.103236i −0.785095 0.619375i \(-0.787386\pi\)
−0.691254 + 0.722612i \(0.742942\pi\)
\(510\) 0.0174495 + 0.0357769i 0.000772679 + 0.00158423i
\(511\) −0.0263378 0.754215i −0.00116511 0.0333645i
\(512\) 0.309017 0.951057i 0.0136568 0.0420312i
\(513\) 4.93637 + 5.94362i 0.217946 + 0.262417i
\(514\) 25.8239 + 18.7622i 1.13904 + 0.827564i
\(515\) 0.311233 + 0.398360i 0.0137146 + 0.0175538i
\(516\) −0.0292361 + 0.165806i −0.00128705 + 0.00729920i
\(517\) 6.52507 27.9260i 0.286972 1.22819i
\(518\) −1.93410 1.62290i −0.0849794 0.0713062i
\(519\) 2.91726 1.55114i 0.128054 0.0680873i
\(520\) 0.0614233 0.584404i 0.00269359 0.0256278i
\(521\) −1.68067 15.9905i −0.0736315 0.700557i −0.967610 0.252448i \(-0.918764\pi\)
0.893979 0.448109i \(-0.147902\pi\)
\(522\) −15.2557 + 19.5264i −0.667725 + 0.854649i
\(523\) −19.3652 + 24.7864i −0.846782 + 1.08383i 0.148700 + 0.988882i \(0.452491\pi\)
−0.995482 + 0.0949497i \(0.969731\pi\)
\(524\) −1.40726 13.3891i −0.0614763 0.584908i
\(525\) −0.308692 + 2.93701i −0.0134724 + 0.128182i
\(526\) −2.95010 + 1.56859i −0.128630 + 0.0683940i
\(527\) −0.703864 0.590612i −0.0306608 0.0257275i
\(528\) −0.851272 0.514565i −0.0370469 0.0223935i
\(529\) −3.98253 + 22.5861i −0.173154 + 0.982003i
\(530\) 0.868860 + 1.11209i 0.0377409 + 0.0483061i
\(531\) −10.1302 7.36003i −0.439613 0.319398i
\(532\) −5.59100 + 6.59519i −0.242401 + 0.285938i
\(533\) 1.99183 6.13023i 0.0862759 0.265530i
\(534\) −0.0789457 2.26071i −0.00341632 0.0978305i
\(535\) 1.13613 + 2.32942i 0.0491193 + 0.100709i
\(536\) −7.96434 + 0.556921i −0.344007 + 0.0240553i
\(537\) 1.81624 4.49536i 0.0783767 0.193989i
\(538\) 3.67745 + 20.8559i 0.158546 + 0.899160i
\(539\) −0.912899 + 10.1260i −0.0393214 + 0.436158i
\(540\) −0.167755 + 0.290561i −0.00721904 + 0.0125037i
\(541\) 0.364871 10.4485i 0.0156870 0.449218i −0.965980 0.258616i \(-0.916734\pi\)
0.981667 0.190602i \(-0.0610441\pi\)
\(542\) 5.73447 + 8.50170i 0.246316 + 0.365179i
\(543\) 0.115851 + 1.10225i 0.00497164 + 0.0473020i
\(544\) 0.685853 0.145783i 0.0294057 0.00625038i
\(545\) 2.40681 + 0.338255i 0.103097 + 0.0144893i
\(546\) 1.84233 + 0.128828i 0.0788443 + 0.00551333i
\(547\) −19.3583 + 1.35367i −0.827702 + 0.0578786i −0.477322 0.878729i \(-0.658392\pi\)
−0.350381 + 0.936607i \(0.613948\pi\)
\(548\) −9.01582 + 1.26709i −0.385137 + 0.0541275i
\(549\) 13.0022 4.73242i 0.554921 0.201975i
\(550\) −13.4617 9.47916i −0.574010 0.404193i
\(551\) 36.0589 8.79737i 1.53616 0.374781i
\(552\) 0.0237208 + 0.0730050i 0.00100962 + 0.00310730i
\(553\) 7.23866 + 2.07565i 0.307819 + 0.0882657i
\(554\) 5.68549 + 11.6570i 0.241553 + 0.495258i
\(555\) 0.0270689 + 0.0669978i 0.00114901 + 0.00284390i
\(556\) −10.4439 + 6.52610i −0.442922 + 0.276768i
\(557\) −30.7444 29.6896i −1.30268 1.25799i −0.946159 0.323701i \(-0.895073\pi\)
−0.356524 0.934286i \(-0.616038\pi\)
\(558\) 0.398606 3.79248i 0.0168743 0.160548i
\(559\) 1.70465 + 0.362335i 0.0720992 + 0.0153252i
\(560\) −0.352816 0.128414i −0.0149092 0.00542650i
\(561\) 0.0140165 0.697323i 0.000591777 0.0294410i
\(562\) 0.475558 0.823691i 0.0200602 0.0347453i
\(563\) −15.8723 + 17.6280i −0.668939 + 0.742932i −0.978113 0.208073i \(-0.933281\pi\)
0.309174 + 0.951006i \(0.399947\pi\)
\(564\) 1.13683 2.33085i 0.0478693 0.0981466i
\(565\) −1.20701 0.0844023i −0.0507792 0.00355083i
\(566\) 3.11415 + 7.70780i 0.130898 + 0.323983i
\(567\) 14.3588 + 7.63470i 0.603012 + 0.320627i
\(568\) 7.90407 11.7183i 0.331647 0.491687i
\(569\) −7.31452 5.31431i −0.306641 0.222787i 0.423813 0.905750i \(-0.360691\pi\)
−0.730454 + 0.682962i \(0.760691\pi\)
\(570\) 0.229899 0.0915379i 0.00962942 0.00383410i
\(571\) −42.9002 −1.79532 −0.897660 0.440689i \(-0.854734\pi\)
−0.897660 + 0.440689i \(0.854734\pi\)
\(572\) −5.63054 + 8.62028i −0.235425 + 0.360432i
\(573\) 0.384341 2.17970i 0.0160561 0.0910584i
\(574\) −3.49265 2.18245i −0.145780 0.0910936i
\(575\) 0.307376 + 1.23282i 0.0128185 + 0.0514120i
\(576\) 2.09332 + 2.02149i 0.0872215 + 0.0842288i
\(577\) 28.2618 6.00723i 1.17655 0.250084i 0.422170 0.906517i \(-0.361269\pi\)
0.754385 + 0.656432i \(0.227935\pi\)
\(578\) −11.0462 12.2681i −0.459463 0.510286i
\(579\) 2.92355 0.838315i 0.121499 0.0348392i
\(580\) 0.901299 + 1.33623i 0.0374244 + 0.0554840i
\(581\) −26.8247 5.70177i −1.11288 0.236549i
\(582\) −0.561152 0.971945i −0.0232605 0.0402884i
\(583\) −4.65410 24.2860i −0.192753 1.00582i
\(584\) 0.291453 + 0.244558i 0.0120604 + 0.0101199i
\(585\) 1.45017 + 0.906168i 0.0599573 + 0.0374654i
\(586\) −4.94182 + 4.77226i −0.204145 + 0.197140i
\(587\) 23.5373 34.8955i 0.971488 1.44029i 0.0750204 0.997182i \(-0.476098\pi\)
0.896468 0.443109i \(-0.146124\pi\)
\(588\) −0.284106 + 0.874388i −0.0117163 + 0.0360592i
\(589\) −3.98855 + 4.08875i −0.164345 + 0.168474i
\(590\) −0.658923 + 0.478735i −0.0271274 + 0.0197092i
\(591\) −5.29416 1.51807i −0.217772 0.0624452i
\(592\) 1.26047 0.177147i 0.0518049 0.00728071i
\(593\) 3.06648 2.57308i 0.125925 0.105664i −0.577650 0.816284i \(-0.696030\pi\)
0.703575 + 0.710621i \(0.251586\pi\)
\(594\) 4.93880 3.18876i 0.202641 0.130836i
\(595\) −0.0457151 0.259263i −0.00187413 0.0106287i
\(596\) −14.6607 + 16.2824i −0.600527 + 0.666953i
\(597\) 0.293266 0.130571i 0.0120026 0.00534390i
\(598\) 0.763785 0.219012i 0.0312335 0.00895606i
\(599\) −8.84493 + 11.3210i −0.361394 + 0.462563i −0.934003 0.357266i \(-0.883709\pi\)
0.572609 + 0.819829i \(0.305931\pi\)
\(600\) −0.996222 1.10642i −0.0406706 0.0451693i
\(601\) 27.4887 + 12.2388i 1.12129 + 0.499230i 0.881778 0.471664i \(-0.156347\pi\)
0.239510 + 0.970894i \(0.423013\pi\)
\(602\) 0.488132 1.00082i 0.0198948 0.0407904i
\(603\) 8.70332 21.5415i 0.354427 0.877237i
\(604\) 14.3778 12.0644i 0.585025 0.490895i
\(605\) −0.967768 1.84356i −0.0393453 0.0749515i
\(606\) 1.46152 0.531948i 0.0593700 0.0216089i
\(607\) 12.7485 + 39.2359i 0.517447 + 1.59254i 0.778786 + 0.627290i \(0.215836\pi\)
−0.261339 + 0.965247i \(0.584164\pi\)
\(608\) −0.584843 4.31949i −0.0237185 0.175178i
\(609\) −4.09819 + 2.97751i −0.166067 + 0.120655i
\(610\) −0.0314099 0.899462i −0.00127175 0.0364182i
\(611\) −23.7013 12.6022i −0.958853 0.509831i
\(612\) −0.493631 + 1.97985i −0.0199539 + 0.0800305i
\(613\) 3.29204 + 13.2036i 0.132964 + 0.533290i 0.999421 + 0.0340372i \(0.0108365\pi\)
−0.866457 + 0.499253i \(0.833608\pi\)
\(614\) −13.7246 + 7.29752i −0.553881 + 0.294504i
\(615\) 0.0589351 + 0.102079i 0.00237649 + 0.00411621i
\(616\) 4.47394 + 4.82322i 0.180260 + 0.194333i
\(617\) 1.71530 + 0.624319i 0.0690555 + 0.0251341i 0.376317 0.926491i \(-0.377190\pi\)
−0.307261 + 0.951625i \(0.599413\pi\)
\(618\) 0.0279540 0.800499i 0.00112448 0.0322008i
\(619\) −30.1004 + 13.4016i −1.20984 + 0.538654i −0.909710 0.415245i \(-0.863696\pi\)
−0.300128 + 0.953899i \(0.597029\pi\)
\(620\) −0.226597 0.100888i −0.00910037 0.00405175i
\(621\) −0.449252 0.0631383i −0.0180279 0.00253365i
\(622\) −10.5417 + 6.58717i −0.422683 + 0.264122i
\(623\) −3.61936 + 14.5165i −0.145007 + 0.581590i
\(624\) −0.669753 + 0.646773i −0.0268116 + 0.0258916i
\(625\) −15.0615 19.2778i −0.602458 0.771111i
\(626\) 2.19351 0.0876702
\(627\) −4.31629 0.411108i −0.172376 0.0164181i
\(628\) −20.9917 −0.837661
\(629\) 0.549475 + 0.703296i 0.0219090 + 0.0280422i
\(630\) 0.785954 0.758987i 0.0313131 0.0302388i
\(631\) 6.82916 27.3902i 0.271864 1.09039i −0.666712 0.745316i \(-0.732299\pi\)
0.938576 0.345073i \(-0.112146\pi\)
\(632\) −3.21952 + 2.01178i −0.128066 + 0.0800243i
\(633\) 5.80073 + 0.815239i 0.230558 + 0.0324029i
\(634\) −12.6694 5.64079i −0.503167 0.224024i
\(635\) −0.937214 + 0.417274i −0.0371922 + 0.0165590i
\(636\) 0.0780384 2.23473i 0.00309443 0.0886128i
\(637\) 8.94267 + 3.25486i 0.354321 + 0.128962i
\(638\) −3.36763 28.0399i −0.133326 1.11011i
\(639\) 20.5665 + 35.6222i 0.813597 + 1.40919i
\(640\) 0.167129 0.0888640i 0.00660635 0.00351266i
\(641\) −4.33275 17.3777i −0.171133 0.686378i −0.993143 0.116905i \(-0.962703\pi\)
0.822010 0.569473i \(-0.192853\pi\)
\(642\) 0.993445 3.98449i 0.0392081 0.157255i
\(643\) −16.8084 8.93718i −0.662858 0.352448i 0.103713 0.994607i \(-0.466928\pi\)
−0.766571 + 0.642159i \(0.778039\pi\)
\(644\) −0.0177179 0.507374i −0.000698183 0.0199933i
\(645\) −0.0257824 + 0.0187320i −0.00101518 + 0.000737572i
\(646\) 2.41791 1.86950i 0.0951313 0.0735544i
\(647\) 5.48128 + 16.8696i 0.215491 + 0.663214i 0.999118 + 0.0419825i \(0.0133674\pi\)
−0.783627 + 0.621232i \(0.786633\pi\)
\(648\) −7.70412 + 2.80407i −0.302646 + 0.110154i
\(649\) 14.1012 2.19520i 0.553521 0.0861693i
\(650\) −11.8055 + 9.90595i −0.463048 + 0.388543i
\(651\) 0.292030 0.722800i 0.0114456 0.0283288i
\(652\) 7.22981 14.8233i 0.283141 0.580526i
\(653\) 36.8944 + 16.4264i 1.44379 + 0.642816i 0.971156 0.238443i \(-0.0766370\pi\)
0.472633 + 0.881259i \(0.343304\pi\)
\(654\) −2.57681 2.86184i −0.100761 0.111907i
\(655\) 1.56891 2.00811i 0.0613023 0.0784633i
\(656\) 1.99586 0.572304i 0.0779253 0.0223447i
\(657\) −1.01145 + 0.450327i −0.0394605 + 0.0175689i
\(658\) −11.4766 + 12.7460i −0.447403 + 0.496892i
\(659\) 5.06067 + 28.7005i 0.197136 + 1.11801i 0.909344 + 0.416044i \(0.136584\pi\)
−0.712209 + 0.701968i \(0.752305\pi\)
\(660\) −0.0482502 0.181996i −0.00187814 0.00708418i
\(661\) 17.0692 14.3228i 0.663915 0.557091i −0.247342 0.968928i \(-0.579557\pi\)
0.911257 + 0.411837i \(0.135113\pi\)
\(662\) 6.28368 0.883113i 0.244222 0.0343232i
\(663\) −0.627551 0.179947i −0.0243720 0.00698857i
\(664\) 11.1852 8.12651i 0.434069 0.315370i
\(665\) −1.62846 + 0.162851i −0.0631491 + 0.00631509i
\(666\) −1.14462 + 3.52278i −0.0443532 + 0.136505i
\(667\) −1.21871 + 1.80681i −0.0471886 + 0.0699599i
\(668\) −13.8121 + 13.3382i −0.534407 + 0.516071i
\(669\) −4.77919 2.98637i −0.184774 0.115460i
\(670\) −1.15766 0.971389i −0.0447242 0.0375280i
\(671\) −6.70239 + 14.2746i −0.258743 + 0.551067i
\(672\) 0.297450 + 0.515199i 0.0114744 + 0.0198742i
\(673\) −37.3213 7.93288i −1.43863 0.305790i −0.578424 0.815736i \(-0.696332\pi\)
−0.860206 + 0.509946i \(0.829665\pi\)
\(674\) −10.1907 15.1084i −0.392533 0.581954i
\(675\) 8.45820 2.42535i 0.325556 0.0933518i
\(676\) −2.24996 2.49884i −0.0865370 0.0961091i
\(677\) −11.3641 + 2.41552i −0.436760 + 0.0928361i −0.421044 0.907040i \(-0.638336\pi\)
−0.0157160 + 0.999876i \(0.505003\pi\)
\(678\) 1.37907 + 1.33175i 0.0529628 + 0.0511456i
\(679\) 1.79570 + 7.20215i 0.0689125 + 0.276393i
\(680\) 0.112555 + 0.0703320i 0.00431628 + 0.00269711i
\(681\) −0.105394 + 0.597717i −0.00403869 + 0.0229046i
\(682\) 2.72618 + 3.38481i 0.104391 + 0.129611i
\(683\) −16.6749 −0.638048 −0.319024 0.947747i \(-0.603355\pi\)
−0.319024 + 0.947747i \(0.603355\pi\)
\(684\) 12.0438 + 3.98061i 0.460508 + 0.152203i
\(685\) −1.39421 1.01295i −0.0532699 0.0387028i
\(686\) 11.1646 16.5522i 0.426265 0.631964i
\(687\) −7.46436 3.96887i −0.284783 0.151422i
\(688\) 0.210293 + 0.520494i 0.00801736 + 0.0198437i
\(689\) −23.0894 1.61457i −0.879638 0.0615103i
\(690\) −0.00636949 + 0.0130594i −0.000242482 + 0.000497163i
\(691\) −4.23438 + 4.70275i −0.161083 + 0.178901i −0.818283 0.574815i \(-0.805074\pi\)
0.657200 + 0.753716i \(0.271741\pi\)
\(692\) 5.50823 9.54053i 0.209391 0.362677i
\(693\) −18.3226 + 5.54886i −0.696020 + 0.210784i
\(694\) 24.5417 + 8.93243i 0.931589 + 0.339071i
\(695\) −2.28016 0.484663i −0.0864914 0.0183843i
\(696\) 0.266946 2.53982i 0.0101186 0.0962717i
\(697\) 1.04725 + 1.01132i 0.0396674 + 0.0383063i
\(698\) −14.9067 + 9.31471i −0.564225 + 0.352567i
\(699\) −0.391702 0.969496i −0.0148155 0.0366697i
\(700\) 4.31652 + 8.85019i 0.163149 + 0.334506i
\(701\) 14.9086 + 4.27496i 0.563088 + 0.161463i 0.545094 0.838375i \(-0.316494\pi\)
0.0179945 + 0.999838i \(0.494272\pi\)
\(702\) −1.70041 5.23333i −0.0641779 0.197519i
\(703\) 4.61531 3.07928i 0.174070 0.116137i
\(704\) −3.31626 + 0.0491136i −0.124986 + 0.00185104i
\(705\) 0.461272 0.167889i 0.0173725 0.00632307i
\(706\) 2.78970 0.392066i 0.104992 0.0147556i
\(707\) −10.2614 + 0.717545i −0.385919 + 0.0269861i
\(708\) 1.28736 + 0.0900209i 0.0483819 + 0.00338319i
\(709\) 12.4931 + 1.75579i 0.469188 + 0.0659401i 0.369806 0.929109i \(-0.379424\pi\)
0.0993828 + 0.995049i \(0.468313\pi\)
\(710\) 2.61704 0.556269i 0.0982157 0.0208764i
\(711\) −1.15480 10.9872i −0.0433083 0.412051i
\(712\) −4.21767 6.25295i −0.158064 0.234339i
\(713\) 0.0117051 0.335190i 0.000438359 0.0125530i
\(714\) −0.208565 + 0.361245i −0.00780534 + 0.0135192i
\(715\) −1.90013 + 0.433389i −0.0710607 + 0.0162078i
\(716\) −2.80718 15.9203i −0.104909 0.594970i
\(717\) 0.553493 1.36994i 0.0206706 0.0511615i
\(718\) −2.51806 + 0.176080i −0.0939731 + 0.00657124i
\(719\) −11.9615 24.5247i −0.446088 0.914616i −0.996801 0.0799214i \(-0.974533\pi\)
0.550713 0.834695i \(-0.314356\pi\)
\(720\) 0.0192237 + 0.550494i 0.000716424 + 0.0205157i
\(721\) −1.63702 + 5.03824i −0.0609659 + 0.187634i
\(722\) −10.4651 15.8582i −0.389470 0.590181i
\(723\) −5.34165 3.88093i −0.198658 0.144333i
\(724\) 2.27514 + 2.91205i 0.0845549 + 0.108225i
\(725\) 7.34019 41.6283i 0.272608 1.54604i
\(726\) −0.702972 + 3.22330i −0.0260897 + 0.119628i
\(727\) 20.4229 + 17.1368i 0.757444 + 0.635571i 0.937460 0.348093i \(-0.113171\pi\)
−0.180016 + 0.983664i \(0.557615\pi\)
\(728\) 5.43704 2.89092i 0.201510 0.107145i
\(729\) 2.32716 22.1414i 0.0861910 0.820053i
\(730\) 0.00752776 + 0.0716218i 0.000278615 + 0.00265084i
\(731\) −0.242336 + 0.310177i −0.00896314 + 0.0114723i
\(732\) −0.877953 + 1.12373i −0.0324501 + 0.0415342i
\(733\) 4.31188 + 41.0248i 0.159263 + 1.51528i 0.723877 + 0.689929i \(0.242358\pi\)
−0.564614 + 0.825355i \(0.690975\pi\)
\(734\) −0.966892 + 9.19936i −0.0356886 + 0.339555i
\(735\) −0.153656 + 0.0817004i −0.00566769 + 0.00301356i
\(736\) 0.196066 + 0.164519i 0.00722708 + 0.00606424i
\(737\) 10.2818 + 24.4015i 0.378734 + 0.898842i
\(738\) −1.04920 + 5.95033i −0.0386217 + 0.219035i
\(739\) 14.7147 + 18.8340i 0.541290 + 0.692820i 0.978431 0.206573i \(-0.0662312\pi\)
−0.437141 + 0.899393i \(0.644009\pi\)
\(740\) 0.194919 + 0.141617i 0.00716536 + 0.00520594i
\(741\) −1.40730 + 3.80661i −0.0516984 + 0.139839i
\(742\) −4.57003 + 14.0651i −0.167771 + 0.516346i
\(743\) 1.35053 + 38.6742i 0.0495463 + 1.41882i 0.728705 + 0.684828i \(0.240123\pi\)
−0.679158 + 0.733992i \(0.737655\pi\)
\(744\) 0.172285 + 0.353238i 0.00631629 + 0.0129503i
\(745\) −4.13716 + 0.289298i −0.151574 + 0.0105991i
\(746\) −6.07419 + 15.0341i −0.222392 + 0.550439i
\(747\) 6.98644 + 39.6221i 0.255621 + 1.44970i
\(748\) −1.19246 1.99653i −0.0436008 0.0730005i
\(749\) −13.5796 + 23.5205i −0.496186 + 0.859420i
\(750\) 0.0197413 0.565317i 0.000720850 0.0206424i
\(751\) 8.11082 + 12.0248i 0.295968 + 0.438791i 0.947465 0.319861i \(-0.103636\pi\)
−0.651496 + 0.758652i \(0.725858\pi\)
\(752\) −0.903838 8.59944i −0.0329596 0.313589i
\(753\) 5.85396 1.24430i 0.213330 0.0453447i
\(754\) −26.1773 3.67898i −0.953321 0.133981i
\(755\) 3.54403 + 0.247822i 0.128980 + 0.00901918i
\(756\) −3.50733 + 0.245256i −0.127560 + 0.00891988i
\(757\) 34.8470 4.89742i 1.26653 0.178000i 0.526271 0.850317i \(-0.323590\pi\)
0.740264 + 0.672317i \(0.234701\pi\)
\(758\) −15.4380 + 5.61898i −0.560734 + 0.204091i
\(759\) 0.203730 0.152678i 0.00739492 0.00554187i
\(760\) 0.488331 0.665043i 0.0177136 0.0241236i
\(761\) −14.0531 43.2509i −0.509423 1.56784i −0.793205 0.608955i \(-0.791589\pi\)
0.283781 0.958889i \(-0.408411\pi\)
\(762\) 1.56254 + 0.448052i 0.0566049 + 0.0162312i
\(763\) 11.1650 + 22.8917i 0.404202 + 0.828736i
\(764\) −2.76454 6.84248i −0.100018 0.247552i
\(765\) −0.327540 + 0.204670i −0.0118422 + 0.00739985i
\(766\) 2.14914 + 2.07540i 0.0776517 + 0.0749873i
\(767\) 1.39629 13.2848i 0.0504172 0.479688i
\(768\) −0.293361 0.0623559i −0.0105858 0.00225007i
\(769\) 13.6242 + 4.95880i 0.491300 + 0.178819i 0.575777 0.817607i \(-0.304700\pi\)
−0.0844766 + 0.996425i \(0.526922\pi\)
\(770\) −0.0250251 +