Properties

Label 418.2.e.c.45.1
Level $418$
Weight $2$
Character 418.45
Analytic conductor $3.338$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [418,2,Mod(45,418)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(418, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("418.45");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 418 = 2 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 418.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.33774680449\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 45.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 418.45
Dual form 418.2.e.c.353.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(2.00000 + 3.46410i) q^{5} -4.00000 q^{7} +1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(2.00000 + 3.46410i) q^{5} -4.00000 q^{7} +1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +(2.00000 - 3.46410i) q^{10} +1.00000 q^{11} +(-3.50000 + 6.06218i) q^{13} +(2.00000 + 3.46410i) q^{14} +(-0.500000 - 0.866025i) q^{16} -3.00000 q^{18} +(-0.500000 + 4.33013i) q^{19} -4.00000 q^{20} +(-0.500000 - 0.866025i) q^{22} +(-2.00000 + 3.46410i) q^{23} +(-5.50000 + 9.52628i) q^{25} +7.00000 q^{26} +(2.00000 - 3.46410i) q^{28} +(1.50000 - 2.59808i) q^{29} +(-0.500000 + 0.866025i) q^{32} +(-8.00000 - 13.8564i) q^{35} +(1.50000 + 2.59808i) q^{36} +8.00000 q^{37} +(4.00000 - 1.73205i) q^{38} +(2.00000 + 3.46410i) q^{40} +(6.00000 + 10.3923i) q^{41} +(-3.50000 - 6.06218i) q^{43} +(-0.500000 + 0.866025i) q^{44} +12.0000 q^{45} +4.00000 q^{46} +(2.50000 - 4.33013i) q^{47} +9.00000 q^{49} +11.0000 q^{50} +(-3.50000 - 6.06218i) q^{52} +(-3.00000 + 5.19615i) q^{53} +(2.00000 + 3.46410i) q^{55} -4.00000 q^{56} -3.00000 q^{58} +(-3.00000 - 5.19615i) q^{59} +(2.50000 - 4.33013i) q^{61} +(-6.00000 + 10.3923i) q^{63} +1.00000 q^{64} -28.0000 q^{65} +(4.00000 - 6.92820i) q^{67} +(-8.00000 + 13.8564i) q^{70} +(4.50000 + 7.79423i) q^{71} +(1.50000 - 2.59808i) q^{72} +(-5.00000 - 8.66025i) q^{73} +(-4.00000 - 6.92820i) q^{74} +(-3.50000 - 2.59808i) q^{76} -4.00000 q^{77} +(3.00000 + 5.19615i) q^{79} +(2.00000 - 3.46410i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(6.00000 - 10.3923i) q^{82} -3.00000 q^{83} +(-3.50000 + 6.06218i) q^{86} +1.00000 q^{88} +(0.500000 - 0.866025i) q^{89} +(-6.00000 - 10.3923i) q^{90} +(14.0000 - 24.2487i) q^{91} +(-2.00000 - 3.46410i) q^{92} -5.00000 q^{94} +(-16.0000 + 6.92820i) q^{95} +(2.50000 + 4.33013i) q^{97} +(-4.50000 - 7.79423i) q^{98} +(1.50000 - 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 4 q^{5} - 8 q^{7} + 2 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - q^{4} + 4 q^{5} - 8 q^{7} + 2 q^{8} + 3 q^{9} + 4 q^{10} + 2 q^{11} - 7 q^{13} + 4 q^{14} - q^{16} - 6 q^{18} - q^{19} - 8 q^{20} - q^{22} - 4 q^{23} - 11 q^{25} + 14 q^{26} + 4 q^{28} + 3 q^{29} - q^{32} - 16 q^{35} + 3 q^{36} + 16 q^{37} + 8 q^{38} + 4 q^{40} + 12 q^{41} - 7 q^{43} - q^{44} + 24 q^{45} + 8 q^{46} + 5 q^{47} + 18 q^{49} + 22 q^{50} - 7 q^{52} - 6 q^{53} + 4 q^{55} - 8 q^{56} - 6 q^{58} - 6 q^{59} + 5 q^{61} - 12 q^{63} + 2 q^{64} - 56 q^{65} + 8 q^{67} - 16 q^{70} + 9 q^{71} + 3 q^{72} - 10 q^{73} - 8 q^{74} - 7 q^{76} - 8 q^{77} + 6 q^{79} + 4 q^{80} - 9 q^{81} + 12 q^{82} - 6 q^{83} - 7 q^{86} + 2 q^{88} + q^{89} - 12 q^{90} + 28 q^{91} - 4 q^{92} - 10 q^{94} - 32 q^{95} + 5 q^{97} - 9 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/418\mathbb{Z}\right)^\times\).

\(n\) \(287\) \(343\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.00000 + 3.46410i 0.894427 + 1.54919i 0.834512 + 0.550990i \(0.185750\pi\)
0.0599153 + 0.998203i \(0.480917\pi\)
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 2.00000 3.46410i 0.632456 1.09545i
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −3.50000 + 6.06218i −0.970725 + 1.68135i −0.277350 + 0.960769i \(0.589456\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 2.00000 + 3.46410i 0.534522 + 0.925820i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) −3.00000 −0.707107
\(19\) −0.500000 + 4.33013i −0.114708 + 0.993399i
\(20\) −4.00000 −0.894427
\(21\) 0 0
\(22\) −0.500000 0.866025i −0.106600 0.184637i
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) −5.50000 + 9.52628i −1.10000 + 1.90526i
\(26\) 7.00000 1.37281
\(27\) 0 0
\(28\) 2.00000 3.46410i 0.377964 0.654654i
\(29\) 1.50000 2.59808i 0.278543 0.482451i −0.692480 0.721437i \(-0.743482\pi\)
0.971023 + 0.238987i \(0.0768152\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) −8.00000 13.8564i −1.35225 2.34216i
\(36\) 1.50000 + 2.59808i 0.250000 + 0.433013i
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 4.00000 1.73205i 0.648886 0.280976i
\(39\) 0 0
\(40\) 2.00000 + 3.46410i 0.316228 + 0.547723i
\(41\) 6.00000 + 10.3923i 0.937043 + 1.62301i 0.770950 + 0.636895i \(0.219782\pi\)
0.166092 + 0.986110i \(0.446885\pi\)
\(42\) 0 0
\(43\) −3.50000 6.06218i −0.533745 0.924473i −0.999223 0.0394140i \(-0.987451\pi\)
0.465478 0.885059i \(-0.345882\pi\)
\(44\) −0.500000 + 0.866025i −0.0753778 + 0.130558i
\(45\) 12.0000 1.78885
\(46\) 4.00000 0.589768
\(47\) 2.50000 4.33013i 0.364662 0.631614i −0.624059 0.781377i \(-0.714518\pi\)
0.988722 + 0.149763i \(0.0478510\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 11.0000 1.55563
\(51\) 0 0
\(52\) −3.50000 6.06218i −0.485363 0.840673i
\(53\) −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i \(-0.968532\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(54\) 0 0
\(55\) 2.00000 + 3.46410i 0.269680 + 0.467099i
\(56\) −4.00000 −0.534522
\(57\) 0 0
\(58\) −3.00000 −0.393919
\(59\) −3.00000 5.19615i −0.390567 0.676481i 0.601958 0.798528i \(-0.294388\pi\)
−0.992524 + 0.122047i \(0.961054\pi\)
\(60\) 0 0
\(61\) 2.50000 4.33013i 0.320092 0.554416i −0.660415 0.750901i \(-0.729619\pi\)
0.980507 + 0.196485i \(0.0629528\pi\)
\(62\) 0 0
\(63\) −6.00000 + 10.3923i −0.755929 + 1.30931i
\(64\) 1.00000 0.125000
\(65\) −28.0000 −3.47297
\(66\) 0 0
\(67\) 4.00000 6.92820i 0.488678 0.846415i −0.511237 0.859440i \(-0.670813\pi\)
0.999915 + 0.0130248i \(0.00414604\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −8.00000 + 13.8564i −0.956183 + 1.65616i
\(71\) 4.50000 + 7.79423i 0.534052 + 0.925005i 0.999209 + 0.0397765i \(0.0126646\pi\)
−0.465157 + 0.885228i \(0.654002\pi\)
\(72\) 1.50000 2.59808i 0.176777 0.306186i
\(73\) −5.00000 8.66025i −0.585206 1.01361i −0.994850 0.101361i \(-0.967680\pi\)
0.409644 0.912245i \(-0.365653\pi\)
\(74\) −4.00000 6.92820i −0.464991 0.805387i
\(75\) 0 0
\(76\) −3.50000 2.59808i −0.401478 0.298020i
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) 3.00000 + 5.19615i 0.337526 + 0.584613i 0.983967 0.178352i \(-0.0570765\pi\)
−0.646440 + 0.762964i \(0.723743\pi\)
\(80\) 2.00000 3.46410i 0.223607 0.387298i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 6.00000 10.3923i 0.662589 1.14764i
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −3.50000 + 6.06218i −0.377415 + 0.653701i
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 0.500000 0.866025i 0.0529999 0.0917985i −0.838308 0.545197i \(-0.816455\pi\)
0.891308 + 0.453398i \(0.149788\pi\)
\(90\) −6.00000 10.3923i −0.632456 1.09545i
\(91\) 14.0000 24.2487i 1.46760 2.54196i
\(92\) −2.00000 3.46410i −0.208514 0.361158i
\(93\) 0 0
\(94\) −5.00000 −0.515711
\(95\) −16.0000 + 6.92820i −1.64157 + 0.710819i
\(96\) 0 0
\(97\) 2.50000 + 4.33013i 0.253837 + 0.439658i 0.964579 0.263795i \(-0.0849741\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) −4.50000 7.79423i −0.454569 0.787336i
\(99\) 1.50000 2.59808i 0.150756 0.261116i
\(100\) −5.50000 9.52628i −0.550000 0.952628i
\(101\) 7.50000 12.9904i 0.746278 1.29259i −0.203317 0.979113i \(-0.565172\pi\)
0.949595 0.313478i \(-0.101494\pi\)
\(102\) 0 0
\(103\) 11.0000 1.08386 0.541931 0.840423i \(-0.317693\pi\)
0.541931 + 0.840423i \(0.317693\pi\)
\(104\) −3.50000 + 6.06218i −0.343203 + 0.594445i
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 0 0
\(109\) 2.50000 + 4.33013i 0.239457 + 0.414751i 0.960558 0.278078i \(-0.0896974\pi\)
−0.721102 + 0.692829i \(0.756364\pi\)
\(110\) 2.00000 3.46410i 0.190693 0.330289i
\(111\) 0 0
\(112\) 2.00000 + 3.46410i 0.188982 + 0.327327i
\(113\) −3.00000 −0.282216 −0.141108 0.989994i \(-0.545067\pi\)
−0.141108 + 0.989994i \(0.545067\pi\)
\(114\) 0 0
\(115\) −16.0000 −1.49201
\(116\) 1.50000 + 2.59808i 0.139272 + 0.241225i
\(117\) 10.5000 + 18.1865i 0.970725 + 1.68135i
\(118\) −3.00000 + 5.19615i −0.276172 + 0.478345i
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −5.00000 −0.452679
\(123\) 0 0
\(124\) 0 0
\(125\) −24.0000 −2.14663
\(126\) 12.0000 1.06904
\(127\) −5.00000 + 8.66025i −0.443678 + 0.768473i −0.997959 0.0638564i \(-0.979660\pi\)
0.554281 + 0.832330i \(0.312993\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 14.0000 + 24.2487i 1.22788 + 2.12675i
\(131\) 2.50000 + 4.33013i 0.218426 + 0.378325i 0.954327 0.298764i \(-0.0965744\pi\)
−0.735901 + 0.677089i \(0.763241\pi\)
\(132\) 0 0
\(133\) 2.00000 17.3205i 0.173422 1.50188i
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) 0 0
\(137\) −3.50000 + 6.06218i −0.299025 + 0.517927i −0.975913 0.218159i \(-0.929995\pi\)
0.676888 + 0.736086i \(0.263328\pi\)
\(138\) 0 0
\(139\) 10.0000 17.3205i 0.848189 1.46911i −0.0346338 0.999400i \(-0.511026\pi\)
0.882823 0.469706i \(-0.155640\pi\)
\(140\) 16.0000 1.35225
\(141\) 0 0
\(142\) 4.50000 7.79423i 0.377632 0.654077i
\(143\) −3.50000 + 6.06218i −0.292685 + 0.506945i
\(144\) −3.00000 −0.250000
\(145\) 12.0000 0.996546
\(146\) −5.00000 + 8.66025i −0.413803 + 0.716728i
\(147\) 0 0
\(148\) −4.00000 + 6.92820i −0.328798 + 0.569495i
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) 6.00000 0.488273 0.244137 0.969741i \(-0.421495\pi\)
0.244137 + 0.969741i \(0.421495\pi\)
\(152\) −0.500000 + 4.33013i −0.0405554 + 0.351220i
\(153\) 0 0
\(154\) 2.00000 + 3.46410i 0.161165 + 0.279145i
\(155\) 0 0
\(156\) 0 0
\(157\) 7.00000 + 12.1244i 0.558661 + 0.967629i 0.997609 + 0.0691164i \(0.0220180\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 3.00000 5.19615i 0.238667 0.413384i
\(159\) 0 0
\(160\) −4.00000 −0.316228
\(161\) 8.00000 13.8564i 0.630488 1.09204i
\(162\) −4.50000 + 7.79423i −0.353553 + 0.612372i
\(163\) 6.00000 0.469956 0.234978 0.972001i \(-0.424498\pi\)
0.234978 + 0.972001i \(0.424498\pi\)
\(164\) −12.0000 −0.937043
\(165\) 0 0
\(166\) 1.50000 + 2.59808i 0.116423 + 0.201650i
\(167\) 8.00000 13.8564i 0.619059 1.07224i −0.370599 0.928793i \(-0.620848\pi\)
0.989658 0.143448i \(-0.0458190\pi\)
\(168\) 0 0
\(169\) −18.0000 31.1769i −1.38462 2.39822i
\(170\) 0 0
\(171\) 10.5000 + 7.79423i 0.802955 + 0.596040i
\(172\) 7.00000 0.533745
\(173\) −1.00000 1.73205i −0.0760286 0.131685i 0.825505 0.564396i \(-0.190891\pi\)
−0.901533 + 0.432710i \(0.857557\pi\)
\(174\) 0 0
\(175\) 22.0000 38.1051i 1.66304 2.88048i
\(176\) −0.500000 0.866025i −0.0376889 0.0652791i
\(177\) 0 0
\(178\) −1.00000 −0.0749532
\(179\) −16.0000 −1.19590 −0.597948 0.801535i \(-0.704017\pi\)
−0.597948 + 0.801535i \(0.704017\pi\)
\(180\) −6.00000 + 10.3923i −0.447214 + 0.774597i
\(181\) 5.00000 8.66025i 0.371647 0.643712i −0.618172 0.786043i \(-0.712126\pi\)
0.989819 + 0.142331i \(0.0454598\pi\)
\(182\) −28.0000 −2.07550
\(183\) 0 0
\(184\) −2.00000 + 3.46410i −0.147442 + 0.255377i
\(185\) 16.0000 + 27.7128i 1.17634 + 2.03749i
\(186\) 0 0
\(187\) 0 0
\(188\) 2.50000 + 4.33013i 0.182331 + 0.315807i
\(189\) 0 0
\(190\) 14.0000 + 10.3923i 1.01567 + 0.753937i
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) 3.00000 + 5.19615i 0.215945 + 0.374027i 0.953564 0.301189i \(-0.0973836\pi\)
−0.737620 + 0.675216i \(0.764050\pi\)
\(194\) 2.50000 4.33013i 0.179490 0.310885i
\(195\) 0 0
\(196\) −4.50000 + 7.79423i −0.321429 + 0.556731i
\(197\) −3.00000 −0.213741 −0.106871 0.994273i \(-0.534083\pi\)
−0.106871 + 0.994273i \(0.534083\pi\)
\(198\) −3.00000 −0.213201
\(199\) −7.50000 + 12.9904i −0.531661 + 0.920864i 0.467656 + 0.883911i \(0.345099\pi\)
−0.999317 + 0.0369532i \(0.988235\pi\)
\(200\) −5.50000 + 9.52628i −0.388909 + 0.673610i
\(201\) 0 0
\(202\) −15.0000 −1.05540
\(203\) −6.00000 + 10.3923i −0.421117 + 0.729397i
\(204\) 0 0
\(205\) −24.0000 + 41.5692i −1.67623 + 2.90332i
\(206\) −5.50000 9.52628i −0.383203 0.663727i
\(207\) 6.00000 + 10.3923i 0.417029 + 0.722315i
\(208\) 7.00000 0.485363
\(209\) −0.500000 + 4.33013i −0.0345857 + 0.299521i
\(210\) 0 0
\(211\) 6.00000 + 10.3923i 0.413057 + 0.715436i 0.995222 0.0976347i \(-0.0311277\pi\)
−0.582165 + 0.813070i \(0.697794\pi\)
\(212\) −3.00000 5.19615i −0.206041 0.356873i
\(213\) 0 0
\(214\) 1.50000 + 2.59808i 0.102538 + 0.177601i
\(215\) 14.0000 24.2487i 0.954792 1.65375i
\(216\) 0 0
\(217\) 0 0
\(218\) 2.50000 4.33013i 0.169321 0.293273i
\(219\) 0 0
\(220\) −4.00000 −0.269680
\(221\) 0 0
\(222\) 0 0
\(223\) 0.500000 + 0.866025i 0.0334825 + 0.0579934i 0.882281 0.470723i \(-0.156007\pi\)
−0.848799 + 0.528716i \(0.822674\pi\)
\(224\) 2.00000 3.46410i 0.133631 0.231455i
\(225\) 16.5000 + 28.5788i 1.10000 + 1.90526i
\(226\) 1.50000 + 2.59808i 0.0997785 + 0.172821i
\(227\) 20.0000 1.32745 0.663723 0.747978i \(-0.268975\pi\)
0.663723 + 0.747978i \(0.268975\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 8.00000 + 13.8564i 0.527504 + 0.913664i
\(231\) 0 0
\(232\) 1.50000 2.59808i 0.0984798 0.170572i
\(233\) 9.00000 + 15.5885i 0.589610 + 1.02123i 0.994283 + 0.106773i \(0.0340517\pi\)
−0.404674 + 0.914461i \(0.632615\pi\)
\(234\) 10.5000 18.1865i 0.686406 1.18889i
\(235\) 20.0000 1.30466
\(236\) 6.00000 0.390567
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 5.00000 8.66025i 0.322078 0.557856i −0.658838 0.752285i \(-0.728952\pi\)
0.980917 + 0.194429i \(0.0622852\pi\)
\(242\) −0.500000 0.866025i −0.0321412 0.0556702i
\(243\) 0 0
\(244\) 2.50000 + 4.33013i 0.160046 + 0.277208i
\(245\) 18.0000 + 31.1769i 1.14998 + 1.99182i
\(246\) 0 0
\(247\) −24.5000 18.1865i −1.55890 1.15718i
\(248\) 0 0
\(249\) 0 0
\(250\) 12.0000 + 20.7846i 0.758947 + 1.31453i
\(251\) 6.00000 10.3923i 0.378717 0.655956i −0.612159 0.790735i \(-0.709699\pi\)
0.990876 + 0.134778i \(0.0430322\pi\)
\(252\) −6.00000 10.3923i −0.377964 0.654654i
\(253\) −2.00000 + 3.46410i −0.125739 + 0.217786i
\(254\) 10.0000 0.627456
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.00000 + 12.1244i −0.436648 + 0.756297i −0.997429 0.0716680i \(-0.977168\pi\)
0.560781 + 0.827964i \(0.310501\pi\)
\(258\) 0 0
\(259\) −32.0000 −1.98838
\(260\) 14.0000 24.2487i 0.868243 1.50384i
\(261\) −4.50000 7.79423i −0.278543 0.482451i
\(262\) 2.50000 4.33013i 0.154451 0.267516i
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) 0 0
\(265\) −24.0000 −1.47431
\(266\) −16.0000 + 6.92820i −0.981023 + 0.424795i
\(267\) 0 0
\(268\) 4.00000 + 6.92820i 0.244339 + 0.423207i
\(269\) 8.00000 + 13.8564i 0.487769 + 0.844840i 0.999901 0.0140665i \(-0.00447764\pi\)
−0.512132 + 0.858906i \(0.671144\pi\)
\(270\) 0 0
\(271\) 15.0000 + 25.9808i 0.911185 + 1.57822i 0.812393 + 0.583111i \(0.198165\pi\)
0.0987925 + 0.995108i \(0.468502\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 7.00000 0.422885
\(275\) −5.50000 + 9.52628i −0.331662 + 0.574456i
\(276\) 0 0
\(277\) −7.00000 −0.420589 −0.210295 0.977638i \(-0.567442\pi\)
−0.210295 + 0.977638i \(0.567442\pi\)
\(278\) −20.0000 −1.19952
\(279\) 0 0
\(280\) −8.00000 13.8564i −0.478091 0.828079i
\(281\) 5.00000 8.66025i 0.298275 0.516627i −0.677466 0.735554i \(-0.736922\pi\)
0.975741 + 0.218926i \(0.0702554\pi\)
\(282\) 0 0
\(283\) 16.0000 + 27.7128i 0.951101 + 1.64736i 0.743048 + 0.669238i \(0.233379\pi\)
0.208053 + 0.978117i \(0.433287\pi\)
\(284\) −9.00000 −0.534052
\(285\) 0 0
\(286\) 7.00000 0.413919
\(287\) −24.0000 41.5692i −1.41668 2.45375i
\(288\) 1.50000 + 2.59808i 0.0883883 + 0.153093i
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) −6.00000 10.3923i −0.352332 0.610257i
\(291\) 0 0
\(292\) 10.0000 0.585206
\(293\) −5.00000 −0.292103 −0.146052 0.989277i \(-0.546657\pi\)
−0.146052 + 0.989277i \(0.546657\pi\)
\(294\) 0 0
\(295\) 12.0000 20.7846i 0.698667 1.21013i
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) −3.00000 + 5.19615i −0.173785 + 0.301005i
\(299\) −14.0000 24.2487i −0.809641 1.40234i
\(300\) 0 0
\(301\) 14.0000 + 24.2487i 0.806947 + 1.39767i
\(302\) −3.00000 5.19615i −0.172631 0.299005i
\(303\) 0 0
\(304\) 4.00000 1.73205i 0.229416 0.0993399i
\(305\) 20.0000 1.14520
\(306\) 0 0
\(307\) −3.50000 6.06218i −0.199756 0.345987i 0.748694 0.662916i \(-0.230681\pi\)
−0.948449 + 0.316929i \(0.897348\pi\)
\(308\) 2.00000 3.46410i 0.113961 0.197386i
\(309\) 0 0
\(310\) 0 0
\(311\) −25.0000 −1.41762 −0.708810 0.705399i \(-0.750768\pi\)
−0.708810 + 0.705399i \(0.750768\pi\)
\(312\) 0 0
\(313\) −4.50000 + 7.79423i −0.254355 + 0.440556i −0.964720 0.263278i \(-0.915197\pi\)
0.710365 + 0.703833i \(0.248530\pi\)
\(314\) 7.00000 12.1244i 0.395033 0.684217i
\(315\) −48.0000 −2.70449
\(316\) −6.00000 −0.337526
\(317\) −6.00000 + 10.3923i −0.336994 + 0.583690i −0.983866 0.178908i \(-0.942743\pi\)
0.646872 + 0.762598i \(0.276077\pi\)
\(318\) 0 0
\(319\) 1.50000 2.59808i 0.0839839 0.145464i
\(320\) 2.00000 + 3.46410i 0.111803 + 0.193649i
\(321\) 0 0
\(322\) −16.0000 −0.891645
\(323\) 0 0
\(324\) 9.00000 0.500000
\(325\) −38.5000 66.6840i −2.13560 3.69896i
\(326\) −3.00000 5.19615i −0.166155 0.287788i
\(327\) 0 0
\(328\) 6.00000 + 10.3923i 0.331295 + 0.573819i
\(329\) −10.0000 + 17.3205i −0.551318 + 0.954911i
\(330\) 0 0
\(331\) 6.00000 0.329790 0.164895 0.986311i \(-0.447272\pi\)
0.164895 + 0.986311i \(0.447272\pi\)
\(332\) 1.50000 2.59808i 0.0823232 0.142588i
\(333\) 12.0000 20.7846i 0.657596 1.13899i
\(334\) −16.0000 −0.875481
\(335\) 32.0000 1.74835
\(336\) 0 0
\(337\) −11.0000 19.0526i −0.599208 1.03786i −0.992938 0.118633i \(-0.962149\pi\)
0.393730 0.919226i \(-0.371184\pi\)
\(338\) −18.0000 + 31.1769i −0.979071 + 1.69580i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 1.50000 12.9904i 0.0811107 0.702439i
\(343\) −8.00000 −0.431959
\(344\) −3.50000 6.06218i −0.188707 0.326851i
\(345\) 0 0
\(346\) −1.00000 + 1.73205i −0.0537603 + 0.0931156i
\(347\) 1.50000 + 2.59808i 0.0805242 + 0.139472i 0.903475 0.428640i \(-0.141007\pi\)
−0.822951 + 0.568112i \(0.807674\pi\)
\(348\) 0 0
\(349\) 13.0000 0.695874 0.347937 0.937518i \(-0.386882\pi\)
0.347937 + 0.937518i \(0.386882\pi\)
\(350\) −44.0000 −2.35190
\(351\) 0 0
\(352\) −0.500000 + 0.866025i −0.0266501 + 0.0461593i
\(353\) 31.0000 1.64996 0.824982 0.565159i \(-0.191185\pi\)
0.824982 + 0.565159i \(0.191185\pi\)
\(354\) 0 0
\(355\) −18.0000 + 31.1769i −0.955341 + 1.65470i
\(356\) 0.500000 + 0.866025i 0.0264999 + 0.0458993i
\(357\) 0 0
\(358\) 8.00000 + 13.8564i 0.422813 + 0.732334i
\(359\) 1.00000 + 1.73205i 0.0527780 + 0.0914141i 0.891207 0.453596i \(-0.149859\pi\)
−0.838429 + 0.545010i \(0.816526\pi\)
\(360\) 12.0000 0.632456
\(361\) −18.5000 4.33013i −0.973684 0.227901i
\(362\) −10.0000 −0.525588
\(363\) 0 0
\(364\) 14.0000 + 24.2487i 0.733799 + 1.27098i
\(365\) 20.0000 34.6410i 1.04685 1.81319i
\(366\) 0 0
\(367\) −17.5000 + 30.3109i −0.913493 + 1.58222i −0.104399 + 0.994535i \(0.533292\pi\)
−0.809093 + 0.587680i \(0.800041\pi\)
\(368\) 4.00000 0.208514
\(369\) 36.0000 1.87409
\(370\) 16.0000 27.7128i 0.831800 1.44072i
\(371\) 12.0000 20.7846i 0.623009 1.07908i
\(372\) 0 0
\(373\) −34.0000 −1.76045 −0.880227 0.474554i \(-0.842610\pi\)
−0.880227 + 0.474554i \(0.842610\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 2.50000 4.33013i 0.128928 0.223309i
\(377\) 10.5000 + 18.1865i 0.540778 + 0.936654i
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 2.00000 17.3205i 0.102598 0.888523i
\(381\) 0 0
\(382\) 1.50000 + 2.59808i 0.0767467 + 0.132929i
\(383\) 6.00000 + 10.3923i 0.306586 + 0.531022i 0.977613 0.210411i \(-0.0674801\pi\)
−0.671027 + 0.741433i \(0.734147\pi\)
\(384\) 0 0
\(385\) −8.00000 13.8564i −0.407718 0.706188i
\(386\) 3.00000 5.19615i 0.152696 0.264477i
\(387\) −21.0000 −1.06749
\(388\) −5.00000 −0.253837
\(389\) 9.00000 15.5885i 0.456318 0.790366i −0.542445 0.840091i \(-0.682501\pi\)
0.998763 + 0.0497253i \(0.0158346\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 9.00000 0.454569
\(393\) 0 0
\(394\) 1.50000 + 2.59808i 0.0755689 + 0.130889i
\(395\) −12.0000 + 20.7846i −0.603786 + 1.04579i
\(396\) 1.50000 + 2.59808i 0.0753778 + 0.130558i
\(397\) −4.00000 6.92820i −0.200754 0.347717i 0.748017 0.663679i \(-0.231006\pi\)
−0.948772 + 0.315963i \(0.897673\pi\)
\(398\) 15.0000 0.751882
\(399\) 0 0
\(400\) 11.0000 0.550000
\(401\) 5.00000 + 8.66025i 0.249688 + 0.432472i 0.963439 0.267927i \(-0.0863386\pi\)
−0.713751 + 0.700399i \(0.753005\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 7.50000 + 12.9904i 0.373139 + 0.646296i
\(405\) 18.0000 31.1769i 0.894427 1.54919i
\(406\) 12.0000 0.595550
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) 5.00000 8.66025i 0.247234 0.428222i −0.715523 0.698589i \(-0.753812\pi\)
0.962757 + 0.270367i \(0.0871450\pi\)
\(410\) 48.0000 2.37055
\(411\) 0 0
\(412\) −5.50000 + 9.52628i −0.270966 + 0.469326i
\(413\) 12.0000 + 20.7846i 0.590481 + 1.02274i
\(414\) 6.00000 10.3923i 0.294884 0.510754i
\(415\) −6.00000 10.3923i −0.294528 0.510138i
\(416\) −3.50000 6.06218i −0.171602 0.297223i
\(417\) 0 0
\(418\) 4.00000 1.73205i 0.195646 0.0847174i
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) 5.00000 + 8.66025i 0.243685 + 0.422075i 0.961761 0.273890i \(-0.0883103\pi\)
−0.718076 + 0.695965i \(0.754977\pi\)
\(422\) 6.00000 10.3923i 0.292075 0.505889i
\(423\) −7.50000 12.9904i −0.364662 0.631614i
\(424\) −3.00000 + 5.19615i −0.145693 + 0.252347i
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0000 + 17.3205i −0.483934 + 0.838198i
\(428\) 1.50000 2.59808i 0.0725052 0.125583i
\(429\) 0 0
\(430\) −28.0000 −1.35028
\(431\) −5.00000 + 8.66025i −0.240842 + 0.417150i −0.960954 0.276707i \(-0.910757\pi\)
0.720113 + 0.693857i \(0.244090\pi\)
\(432\) 0 0
\(433\) 2.50000 4.33013i 0.120142 0.208093i −0.799681 0.600425i \(-0.794998\pi\)
0.919824 + 0.392332i \(0.128332\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5.00000 −0.239457
\(437\) −14.0000 10.3923i −0.669711 0.497131i
\(438\) 0 0
\(439\) 18.0000 + 31.1769i 0.859093 + 1.48799i 0.872795 + 0.488087i \(0.162305\pi\)
−0.0137020 + 0.999906i \(0.504362\pi\)
\(440\) 2.00000 + 3.46410i 0.0953463 + 0.165145i
\(441\) 13.5000 23.3827i 0.642857 1.11346i
\(442\) 0 0
\(443\) 9.00000 15.5885i 0.427603 0.740630i −0.569057 0.822298i \(-0.692691\pi\)
0.996660 + 0.0816684i \(0.0260248\pi\)
\(444\) 0 0
\(445\) 4.00000 0.189618
\(446\) 0.500000 0.866025i 0.0236757 0.0410075i
\(447\) 0 0
\(448\) −4.00000 −0.188982
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 16.5000 28.5788i 0.777817 1.34722i
\(451\) 6.00000 + 10.3923i 0.282529 + 0.489355i
\(452\) 1.50000 2.59808i 0.0705541 0.122203i
\(453\) 0 0
\(454\) −10.0000 17.3205i −0.469323 0.812892i
\(455\) 112.000 5.25064
\(456\) 0 0
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) −7.00000 12.1244i −0.327089 0.566534i
\(459\) 0 0
\(460\) 8.00000 13.8564i 0.373002 0.646058i
\(461\) −20.5000 35.5070i −0.954780 1.65373i −0.734870 0.678208i \(-0.762757\pi\)
−0.219910 0.975520i \(-0.570576\pi\)
\(462\) 0 0
\(463\) 11.0000 0.511213 0.255607 0.966781i \(-0.417725\pi\)
0.255607 + 0.966781i \(0.417725\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) 9.00000 15.5885i 0.416917 0.722121i
\(467\) −34.0000 −1.57333 −0.786666 0.617379i \(-0.788195\pi\)
−0.786666 + 0.617379i \(0.788195\pi\)
\(468\) −21.0000 −0.970725
\(469\) −16.0000 + 27.7128i −0.738811 + 1.27966i
\(470\) −10.0000 17.3205i −0.461266 0.798935i
\(471\) 0 0
\(472\) −3.00000 5.19615i −0.138086 0.239172i
\(473\) −3.50000 6.06218i −0.160930 0.278739i
\(474\) 0 0
\(475\) −38.5000 28.5788i −1.76650 1.31129i
\(476\) 0 0
\(477\) 9.00000 + 15.5885i 0.412082 + 0.713746i
\(478\) 0 0
\(479\) −19.0000 + 32.9090i −0.868132 + 1.50365i −0.00422900 + 0.999991i \(0.501346\pi\)
−0.863903 + 0.503658i \(0.831987\pi\)
\(480\) 0 0
\(481\) −28.0000 + 48.4974i −1.27669 + 2.21129i
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) −0.500000 + 0.866025i −0.0227273 + 0.0393648i
\(485\) −10.0000 + 17.3205i −0.454077 + 0.786484i
\(486\) 0 0
\(487\) 3.00000 0.135943 0.0679715 0.997687i \(-0.478347\pi\)
0.0679715 + 0.997687i \(0.478347\pi\)
\(488\) 2.50000 4.33013i 0.113170 0.196016i
\(489\) 0 0
\(490\) 18.0000 31.1769i 0.813157 1.40843i
\(491\) 10.0000 + 17.3205i 0.451294 + 0.781664i 0.998467 0.0553560i \(-0.0176294\pi\)
−0.547173 + 0.837020i \(0.684296\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −3.50000 + 30.3109i −0.157472 + 1.36375i
\(495\) 12.0000 0.539360
\(496\) 0 0
\(497\) −18.0000 31.1769i −0.807410 1.39848i
\(498\) 0 0
\(499\) −9.00000 15.5885i −0.402895 0.697835i 0.591179 0.806541i \(-0.298663\pi\)
−0.994074 + 0.108705i \(0.965329\pi\)
\(500\) 12.0000 20.7846i 0.536656 0.929516i
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) 7.00000 12.1244i 0.312115 0.540598i −0.666705 0.745321i \(-0.732296\pi\)
0.978820 + 0.204723i \(0.0656294\pi\)
\(504\) −6.00000 + 10.3923i −0.267261 + 0.462910i
\(505\) 60.0000 2.66996
\(506\) 4.00000 0.177822
\(507\) 0 0
\(508\) −5.00000 8.66025i −0.221839 0.384237i
\(509\) −12.0000 + 20.7846i −0.531891 + 0.921262i 0.467416 + 0.884037i \(0.345185\pi\)
−0.999307 + 0.0372243i \(0.988148\pi\)
\(510\) 0 0
\(511\) 20.0000 + 34.6410i 0.884748 + 1.53243i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 14.0000 0.617514
\(515\) 22.0000 + 38.1051i 0.969436 + 1.67911i
\(516\) 0 0
\(517\) 2.50000 4.33013i 0.109950 0.190439i
\(518\) 16.0000 + 27.7128i 0.703000 + 1.21763i
\(519\) 0 0
\(520\) −28.0000 −1.22788
\(521\) −1.00000 −0.0438108 −0.0219054 0.999760i \(-0.506973\pi\)
−0.0219054 + 0.999760i \(0.506973\pi\)
\(522\) −4.50000 + 7.79423i −0.196960 + 0.341144i
\(523\) −6.50000 + 11.2583i −0.284225 + 0.492292i −0.972421 0.233233i \(-0.925070\pi\)
0.688196 + 0.725525i \(0.258403\pi\)
\(524\) −5.00000 −0.218426
\(525\) 0 0
\(526\) −6.00000 + 10.3923i −0.261612 + 0.453126i
\(527\) 0 0
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) 12.0000 + 20.7846i 0.521247 + 0.902826i
\(531\) −18.0000 −0.781133
\(532\) 14.0000 + 10.3923i 0.606977 + 0.450564i
\(533\) −84.0000 −3.63844
\(534\) 0 0
\(535\) −6.00000 10.3923i −0.259403 0.449299i
\(536\) 4.00000 6.92820i 0.172774 0.299253i
\(537\) 0 0
\(538\) 8.00000 13.8564i 0.344904 0.597392i
\(539\) 9.00000 0.387657
\(540\) 0 0
\(541\) 1.00000 1.73205i 0.0429934 0.0744667i −0.843728 0.536771i \(-0.819644\pi\)
0.886721 + 0.462304i \(0.152977\pi\)
\(542\) 15.0000 25.9808i 0.644305 1.11597i
\(543\) 0 0
\(544\) 0 0
\(545\) −10.0000 + 17.3205i −0.428353 + 0.741929i
\(546\) 0 0
\(547\) 20.5000 35.5070i 0.876517 1.51817i 0.0213785 0.999771i \(-0.493195\pi\)
0.855138 0.518400i \(-0.173472\pi\)
\(548\) −3.50000 6.06218i −0.149513 0.258963i
\(549\) −7.50000 12.9904i −0.320092 0.554416i
\(550\) 11.0000 0.469042
\(551\) 10.5000 + 7.79423i 0.447315 + 0.332045i
\(552\) 0 0
\(553\) −12.0000 20.7846i −0.510292 0.883852i
\(554\) 3.50000 + 6.06218i 0.148701 + 0.257557i
\(555\) 0 0
\(556\) 10.0000 + 17.3205i 0.424094 + 0.734553i
\(557\) −12.5000 + 21.6506i −0.529642 + 0.917367i 0.469760 + 0.882794i \(0.344340\pi\)
−0.999402 + 0.0345728i \(0.988993\pi\)
\(558\) 0 0
\(559\) 49.0000 2.07248
\(560\) −8.00000 + 13.8564i −0.338062 + 0.585540i
\(561\) 0 0
\(562\) −10.0000 −0.421825
\(563\) 28.0000 1.18006 0.590030 0.807382i \(-0.299116\pi\)
0.590030 + 0.807382i \(0.299116\pi\)
\(564\) 0 0
\(565\) −6.00000 10.3923i −0.252422 0.437208i
\(566\) 16.0000 27.7128i 0.672530 1.16486i
\(567\) 18.0000 + 31.1769i 0.755929 + 1.30931i
\(568\) 4.50000 + 7.79423i 0.188816 + 0.327039i
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 33.0000 1.38101 0.690504 0.723329i \(-0.257389\pi\)
0.690504 + 0.723329i \(0.257389\pi\)
\(572\) −3.50000 6.06218i −0.146342 0.253472i
\(573\) 0 0
\(574\) −24.0000 + 41.5692i −1.00174 + 1.73507i
\(575\) −22.0000 38.1051i −0.917463 1.58909i
\(576\) 1.50000 2.59808i 0.0625000 0.108253i
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) −17.0000 −0.707107
\(579\) 0 0
\(580\) −6.00000 + 10.3923i −0.249136 + 0.431517i
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) −3.00000 + 5.19615i −0.124247 + 0.215203i
\(584\) −5.00000 8.66025i −0.206901 0.358364i
\(585\) −42.0000 + 72.7461i −1.73649 + 3.00768i
\(586\) 2.50000 + 4.33013i 0.103274 + 0.178876i
\(587\) −8.00000 13.8564i −0.330195 0.571915i 0.652355 0.757914i \(-0.273781\pi\)
−0.982550 + 0.185999i \(0.940448\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −24.0000 −0.988064
\(591\) 0 0
\(592\) −4.00000 6.92820i −0.164399 0.284747i
\(593\) 18.0000 31.1769i 0.739171 1.28028i −0.213697 0.976900i \(-0.568551\pi\)
0.952869 0.303383i \(-0.0981160\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) −14.0000 + 24.2487i −0.572503 + 0.991604i
\(599\) −4.50000 + 7.79423i −0.183865 + 0.318464i −0.943193 0.332244i \(-0.892194\pi\)
0.759328 + 0.650708i \(0.225528\pi\)
\(600\) 0 0
\(601\) 32.0000 1.30531 0.652654 0.757656i \(-0.273656\pi\)
0.652654 + 0.757656i \(0.273656\pi\)
\(602\) 14.0000 24.2487i 0.570597 0.988304i
\(603\) −12.0000 20.7846i −0.488678 0.846415i
\(604\) −3.00000 + 5.19615i −0.122068 + 0.211428i
\(605\) 2.00000 + 3.46410i 0.0813116 + 0.140836i
\(606\) 0 0
\(607\) 22.0000 0.892952 0.446476 0.894795i \(-0.352679\pi\)
0.446476 + 0.894795i \(0.352679\pi\)
\(608\) −3.50000 2.59808i −0.141944 0.105366i
\(609\) 0 0
\(610\) −10.0000 17.3205i −0.404888 0.701287i
\(611\) 17.5000 + 30.3109i 0.707974 + 1.22625i
\(612\) 0 0
\(613\) −9.50000 16.4545i −0.383701 0.664590i 0.607887 0.794024i \(-0.292017\pi\)
−0.991588 + 0.129433i \(0.958684\pi\)
\(614\) −3.50000 + 6.06218i −0.141249 + 0.244650i
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) 7.50000 12.9904i 0.301939 0.522973i −0.674636 0.738150i \(-0.735700\pi\)
0.976575 + 0.215177i \(0.0690329\pi\)
\(618\) 0 0
\(619\) 26.0000 1.04503 0.522514 0.852631i \(-0.324994\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.5000 + 21.6506i 0.501204 + 0.868111i
\(623\) −2.00000 + 3.46410i −0.0801283 + 0.138786i
\(624\) 0 0
\(625\) −20.5000 35.5070i −0.820000 1.42028i
\(626\) 9.00000 0.359712
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 0 0
\(630\) 24.0000 + 41.5692i 0.956183 + 1.65616i
\(631\) −6.50000 + 11.2583i −0.258761 + 0.448187i −0.965910 0.258877i \(-0.916648\pi\)
0.707149 + 0.707064i \(0.249981\pi\)
\(632\) 3.00000 + 5.19615i 0.119334 + 0.206692i
\(633\) 0 0
\(634\) 12.0000 0.476581
\(635\) −40.0000 −1.58735
\(636\) 0 0
\(637\) −31.5000 + 54.5596i −1.24808 + 2.16173i
\(638\) −3.00000 −0.118771
\(639\) 27.0000 1.06810
\(640\) 2.00000 3.46410i 0.0790569 0.136931i
\(641\) −4.50000 7.79423i −0.177739 0.307854i 0.763367 0.645966i \(-0.223545\pi\)
−0.941106 + 0.338112i \(0.890212\pi\)
\(642\) 0 0
\(643\) −12.0000 20.7846i −0.473234 0.819665i 0.526297 0.850301i \(-0.323580\pi\)
−0.999531 + 0.0306359i \(0.990247\pi\)
\(644\) 8.00000 + 13.8564i 0.315244 + 0.546019i
\(645\) 0 0
\(646\) 0 0
\(647\) −17.0000 −0.668339 −0.334169 0.942513i \(-0.608456\pi\)
−0.334169 + 0.942513i \(0.608456\pi\)
\(648\) −4.50000 7.79423i −0.176777 0.306186i
\(649\) −3.00000 5.19615i −0.117760 0.203967i
\(650\) −38.5000 + 66.6840i −1.51009 + 2.61556i
\(651\) 0 0
\(652\) −3.00000 + 5.19615i −0.117489 + 0.203497i
\(653\) 42.0000 1.64359 0.821794 0.569785i \(-0.192974\pi\)
0.821794 + 0.569785i \(0.192974\pi\)
\(654\) 0 0
\(655\) −10.0000 + 17.3205i −0.390732 + 0.676768i
\(656\) 6.00000 10.3923i 0.234261 0.405751i
\(657\) −30.0000 −1.17041
\(658\) 20.0000 0.779681
\(659\) −17.5000 + 30.3109i −0.681703 + 1.18074i 0.292758 + 0.956187i \(0.405427\pi\)
−0.974461 + 0.224558i \(0.927906\pi\)
\(660\) 0 0
\(661\) 23.0000 39.8372i 0.894596 1.54949i 0.0602929 0.998181i \(-0.480797\pi\)
0.834303 0.551306i \(-0.185870\pi\)
\(662\) −3.00000 5.19615i −0.116598 0.201954i
\(663\) 0 0
\(664\) −3.00000 −0.116423
\(665\) 64.0000 27.7128i 2.48181 1.07466i
\(666\) −24.0000 −0.929981
\(667\) 6.00000 + 10.3923i 0.232321 + 0.402392i
\(668\) 8.00000 + 13.8564i 0.309529 + 0.536120i
\(669\) 0 0
\(670\) −16.0000 27.7128i −0.618134 1.07064i
\(671\) 2.50000 4.33013i 0.0965114 0.167163i
\(672\) 0 0
\(673\) −16.0000 −0.616755 −0.308377 0.951264i \(-0.599786\pi\)
−0.308377 + 0.951264i \(0.599786\pi\)
\(674\) −11.0000 + 19.0526i −0.423704 + 0.733877i
\(675\) 0 0
\(676\) 36.0000 1.38462
\(677\) 39.0000 1.49889 0.749446 0.662066i \(-0.230320\pi\)
0.749446 + 0.662066i \(0.230320\pi\)
\(678\) 0 0
\(679\) −10.0000 17.3205i −0.383765 0.664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14.0000 −0.535695 −0.267848 0.963461i \(-0.586312\pi\)
−0.267848 + 0.963461i \(0.586312\pi\)
\(684\) −12.0000 + 5.19615i −0.458831 + 0.198680i
\(685\) −28.0000 −1.06983
\(686\) 4.00000 + 6.92820i 0.152721 + 0.264520i
\(687\) 0 0
\(688\) −3.50000 + 6.06218i −0.133436 + 0.231118i
\(689\) −21.0000 36.3731i −0.800036 1.38570i
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) 2.00000 0.0760286
\(693\) −6.00000 + 10.3923i −0.227921 + 0.394771i
\(694\) 1.50000 2.59808i 0.0569392 0.0986216i
\(695\) 80.0000 3.03457
\(696\) 0 0
\(697\) 0 0
\(698\) −6.50000 11.2583i −0.246029 0.426134i
\(699\) 0 0
\(700\) 22.0000 + 38.1051i 0.831522 + 1.44024i
\(701\) 20.5000 + 35.5070i 0.774274 + 1.34108i 0.935201 + 0.354116i \(0.115218\pi\)
−0.160927 + 0.986966i \(0.551448\pi\)
\(702\) 0 0
\(703\) −4.00000 + 34.6410i −0.150863 + 1.30651i
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) −15.5000 26.8468i −0.583350 1.01039i
\(707\) −30.0000 + 51.9615i −1.12827 + 1.95421i
\(708\) 0 0
\(709\) 11.0000 19.0526i 0.413114 0.715534i −0.582115 0.813107i \(-0.697775\pi\)
0.995228 + 0.0975728i \(0.0311079\pi\)
\(710\) 36.0000 1.35106
\(711\) 18.0000 0.675053
\(712\) 0.500000 0.866025i 0.0187383 0.0324557i
\(713\) 0 0
\(714\) 0 0
\(715\) −28.0000 −1.04714
\(716\) 8.00000 13.8564i 0.298974 0.517838i
\(717\) 0 0
\(718\) 1.00000 1.73205i 0.0373197 0.0646396i
\(719\) −21.5000 37.2391i −0.801815 1.38878i −0.918421 0.395606i \(-0.870535\pi\)
0.116606 0.993178i \(-0.462799\pi\)
\(720\) −6.00000 10.3923i −0.223607 0.387298i
\(721\) −44.0000 −1.63865
\(722\) 5.50000 + 18.1865i 0.204689 + 0.676833i
\(723\) 0 0
\(724\) 5.00000 + 8.66025i 0.185824 + 0.321856i
\(725\) 16.5000 + 28.5788i 0.612795 + 1.06139i
\(726\) 0 0
\(727\) 9.50000 + 16.4545i 0.352335 + 0.610263i 0.986658 0.162805i \(-0.0520543\pi\)
−0.634323 + 0.773068i \(0.718721\pi\)
\(728\) 14.0000 24.2487i 0.518875 0.898717i
\(729\) −27.0000 −1.00000
\(730\) −40.0000 −1.48047
\(731\) 0 0
\(732\) 0 0
\(733\) −6.00000 −0.221615 −0.110808 0.993842i \(-0.535344\pi\)
−0.110808 + 0.993842i \(0.535344\pi\)
\(734\) 35.0000 1.29187
\(735\) 0 0
\(736\) −2.00000 3.46410i −0.0737210 0.127688i
\(737\) 4.00000 6.92820i 0.147342 0.255204i
\(738\) −18.0000 31.1769i −0.662589 1.14764i
\(739\) 5.50000 + 9.52628i 0.202321 + 0.350430i 0.949276 0.314445i \(-0.101818\pi\)
−0.746955 + 0.664875i \(0.768485\pi\)
\(740\) −32.0000 −1.17634
\(741\) 0 0
\(742\) −24.0000 −0.881068
\(743\) −18.0000 31.1769i −0.660356 1.14377i −0.980522 0.196409i \(-0.937072\pi\)
0.320166 0.947361i \(-0.396261\pi\)
\(744\) 0 0
\(745\) 12.0000 20.7846i 0.439646 0.761489i
\(746\) 17.0000 + 29.4449i 0.622414 + 1.07805i
\(747\) −4.50000 + 7.79423i −0.164646 + 0.285176i
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 13.5000 23.3827i 0.492622 0.853246i −0.507342 0.861745i \(-0.669372\pi\)
0.999964 + 0.00849853i \(0.00270520\pi\)
\(752\) −5.00000 −0.182331
\(753\) 0 0
\(754\) 10.5000 18.1865i 0.382387 0.662314i
\(755\) 12.0000 + 20.7846i 0.436725 + 0.756429i
\(756\) 0 0
\(757\) −15.0000 25.9808i −0.545184 0.944287i −0.998595 0.0529853i \(-0.983126\pi\)
0.453411 0.891302i \(-0.350207\pi\)
\(758\) 14.0000 + 24.2487i 0.508503 + 0.880753i
\(759\) 0 0
\(760\) −16.0000 + 6.92820i −0.580381 + 0.251312i
\(761\) 4.00000 0.145000 0.0724999 0.997368i \(-0.476902\pi\)
0.0724999 + 0.997368i \(0.476902\pi\)
\(762\) 0 0
\(763\) −10.0000 17.3205i −0.362024 0.627044i
\(764\) 1.50000 2.59808i 0.0542681 0.0939951i
\(765\) 0 0
\(766\) 6.00000 10.3923i 0.216789 0.375489i
\(767\) 42.0000 1.51653
\(768\) 0 0
\(769\) 9.00000 15.5885i 0.324548 0.562134i −0.656873 0.754002i \(-0.728121\pi\)
0.981421 + 0.191867i \(0.0614544\pi\)
\(770\) −8.00000 + 13.8564i −0.288300 + 0.499350i
\(771\) 0 0
\(772\) −6.00000 −0.215945
\(773\) 16.0000 27.7128i 0.575480 0.996761i −0.420509 0.907288i \(-0.638149\pi\)
0.995989 0.0894724i \(-0.0285181\pi\)
\(774\) 10.5000 + 18.1865i 0.377415 + 0.653701i
\(775\) 0 0
\(776\) 2.50000 + 4.33013i 0.0897448 + 0.155443i
\(777\) 0 0
\(778\) −18.0000 −0.645331
\(779\) −48.0000 + 20.7846i −1.71978 + 0.744686i
\(780\) 0 0
\(781\) 4.50000 + 7.79423i 0.161023 + 0.278899i
\(782\) 0 0