Properties

Label 418.2.e.c
Level $418$
Weight $2$
Character orbit 418.e
Analytic conductor $3.338$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 418 = 2 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 418.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.33774680449\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} + ( - 4 \zeta_{6} + 4) q^{5} - 4 q^{7} + q^{8} + 3 \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} + ( - 4 \zeta_{6} + 4) q^{5} - 4 q^{7} + q^{8} + 3 \zeta_{6} q^{9} + 4 \zeta_{6} q^{10} + q^{11} - 7 \zeta_{6} q^{13} + ( - 4 \zeta_{6} + 4) q^{14} + (\zeta_{6} - 1) q^{16} - 3 q^{18} + ( - 5 \zeta_{6} + 2) q^{19} - 4 q^{20} + (\zeta_{6} - 1) q^{22} - 4 \zeta_{6} q^{23} - 11 \zeta_{6} q^{25} + 7 q^{26} + 4 \zeta_{6} q^{28} + 3 \zeta_{6} q^{29} - \zeta_{6} q^{32} + (16 \zeta_{6} - 16) q^{35} + ( - 3 \zeta_{6} + 3) q^{36} + 8 q^{37} + (2 \zeta_{6} + 3) q^{38} + ( - 4 \zeta_{6} + 4) q^{40} + ( - 12 \zeta_{6} + 12) q^{41} + (7 \zeta_{6} - 7) q^{43} - \zeta_{6} q^{44} + 12 q^{45} + 4 q^{46} + 5 \zeta_{6} q^{47} + 9 q^{49} + 11 q^{50} + (7 \zeta_{6} - 7) q^{52} - 6 \zeta_{6} q^{53} + ( - 4 \zeta_{6} + 4) q^{55} - 4 q^{56} - 3 q^{58} + (6 \zeta_{6} - 6) q^{59} + 5 \zeta_{6} q^{61} - 12 \zeta_{6} q^{63} + q^{64} - 28 q^{65} + 8 \zeta_{6} q^{67} - 16 \zeta_{6} q^{70} + ( - 9 \zeta_{6} + 9) q^{71} + 3 \zeta_{6} q^{72} + (10 \zeta_{6} - 10) q^{73} + (8 \zeta_{6} - 8) q^{74} + (3 \zeta_{6} - 5) q^{76} - 4 q^{77} + ( - 6 \zeta_{6} + 6) q^{79} + 4 \zeta_{6} q^{80} + (9 \zeta_{6} - 9) q^{81} + 12 \zeta_{6} q^{82} - 3 q^{83} - 7 \zeta_{6} q^{86} + q^{88} + \zeta_{6} q^{89} + (12 \zeta_{6} - 12) q^{90} + 28 \zeta_{6} q^{91} + (4 \zeta_{6} - 4) q^{92} - 5 q^{94} + ( - 8 \zeta_{6} - 12) q^{95} + ( - 5 \zeta_{6} + 5) q^{97} + (9 \zeta_{6} - 9) q^{98} + 3 \zeta_{6} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 4 q^{5} - 8 q^{7} + 2 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - q^{4} + 4 q^{5} - 8 q^{7} + 2 q^{8} + 3 q^{9} + 4 q^{10} + 2 q^{11} - 7 q^{13} + 4 q^{14} - q^{16} - 6 q^{18} - q^{19} - 8 q^{20} - q^{22} - 4 q^{23} - 11 q^{25} + 14 q^{26} + 4 q^{28} + 3 q^{29} - q^{32} - 16 q^{35} + 3 q^{36} + 16 q^{37} + 8 q^{38} + 4 q^{40} + 12 q^{41} - 7 q^{43} - q^{44} + 24 q^{45} + 8 q^{46} + 5 q^{47} + 18 q^{49} + 22 q^{50} - 7 q^{52} - 6 q^{53} + 4 q^{55} - 8 q^{56} - 6 q^{58} - 6 q^{59} + 5 q^{61} - 12 q^{63} + 2 q^{64} - 56 q^{65} + 8 q^{67} - 16 q^{70} + 9 q^{71} + 3 q^{72} - 10 q^{73} - 8 q^{74} - 7 q^{76} - 8 q^{77} + 6 q^{79} + 4 q^{80} - 9 q^{81} + 12 q^{82} - 6 q^{83} - 7 q^{86} + 2 q^{88} + q^{89} - 12 q^{90} + 28 q^{91} - 4 q^{92} - 10 q^{94} - 32 q^{95} + 5 q^{97} - 9 q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/418\mathbb{Z}\right)^\times\).

\(n\) \(287\) \(343\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
45.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i 2.00000 + 3.46410i 0 −4.00000 1.00000 1.50000 2.59808i 2.00000 3.46410i
353.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i 2.00000 3.46410i 0 −4.00000 1.00000 1.50000 + 2.59808i 2.00000 + 3.46410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 418.2.e.c 2
19.c even 3 1 inner 418.2.e.c 2
19.c even 3 1 7942.2.a.o 1
19.d odd 6 1 7942.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
418.2.e.c 2 1.a even 1 1 trivial
418.2.e.c 2 19.c even 3 1 inner
7942.2.a.d 1 19.d odd 6 1
7942.2.a.o 1 19.c even 3 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(418, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5}^{2} - 4T_{5} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$7$ \( (T + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + T + 19 \) Copy content Toggle raw display
$23$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$29$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 8)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$43$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$47$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$53$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$59$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$61$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$67$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$71$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$73$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$79$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$83$ \( (T + 3)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$97$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
show more
show less