Properties

Label 418.2.a.h
Level $418$
Weight $2$
Character orbit 418.a
Self dual yes
Analytic conductor $3.338$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 418 = 2 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 418.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.33774680449\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.469.1
Defining polynomial: \(x^{3} - x^{2} - 5 x + 4\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta_{1} q^{3} + q^{4} + ( 2 - \beta_{1} ) q^{5} + \beta_{1} q^{6} -\beta_{2} q^{7} + q^{8} + ( 1 + \beta_{2} ) q^{9} +O(q^{10})\) \( q + q^{2} + \beta_{1} q^{3} + q^{4} + ( 2 - \beta_{1} ) q^{5} + \beta_{1} q^{6} -\beta_{2} q^{7} + q^{8} + ( 1 + \beta_{2} ) q^{9} + ( 2 - \beta_{1} ) q^{10} - q^{11} + \beta_{1} q^{12} + ( 2 + \beta_{2} ) q^{13} -\beta_{2} q^{14} + ( -4 + 2 \beta_{1} - \beta_{2} ) q^{15} + q^{16} + ( 2 + 2 \beta_{2} ) q^{17} + ( 1 + \beta_{2} ) q^{18} - q^{19} + ( 2 - \beta_{1} ) q^{20} + ( -\beta_{1} - \beta_{2} ) q^{21} - q^{22} -2 \beta_{2} q^{23} + \beta_{1} q^{24} + ( 3 - 4 \beta_{1} + \beta_{2} ) q^{25} + ( 2 + \beta_{2} ) q^{26} + ( -\beta_{1} + \beta_{2} ) q^{27} -\beta_{2} q^{28} + ( 2 - \beta_{1} - 2 \beta_{2} ) q^{29} + ( -4 + 2 \beta_{1} - \beta_{2} ) q^{30} + ( -2 \beta_{1} + \beta_{2} ) q^{31} + q^{32} -\beta_{1} q^{33} + ( 2 + 2 \beta_{2} ) q^{34} + ( \beta_{1} - \beta_{2} ) q^{35} + ( 1 + \beta_{2} ) q^{36} + ( -6 + 2 \beta_{1} - 2 \beta_{2} ) q^{37} - q^{38} + ( 3 \beta_{1} + \beta_{2} ) q^{39} + ( 2 - \beta_{1} ) q^{40} + ( -2 + 2 \beta_{1} - \beta_{2} ) q^{41} + ( -\beta_{1} - \beta_{2} ) q^{42} + ( -3 \beta_{1} + 2 \beta_{2} ) q^{43} - q^{44} + ( 2 - 2 \beta_{1} + \beta_{2} ) q^{45} -2 \beta_{2} q^{46} + ( -2 \beta_{1} - 2 \beta_{2} ) q^{47} + \beta_{1} q^{48} + ( -3 + \beta_{1} - 2 \beta_{2} ) q^{49} + ( 3 - 4 \beta_{1} + \beta_{2} ) q^{50} + ( 4 \beta_{1} + 2 \beta_{2} ) q^{51} + ( 2 + \beta_{2} ) q^{52} + ( -6 + 2 \beta_{1} ) q^{53} + ( -\beta_{1} + \beta_{2} ) q^{54} + ( -2 + \beta_{1} ) q^{55} -\beta_{2} q^{56} -\beta_{1} q^{57} + ( 2 - \beta_{1} - 2 \beta_{2} ) q^{58} + ( -4 + 4 \beta_{1} + 4 \beta_{2} ) q^{59} + ( -4 + 2 \beta_{1} - \beta_{2} ) q^{60} + 2 q^{61} + ( -2 \beta_{1} + \beta_{2} ) q^{62} + ( -4 - \beta_{1} + \beta_{2} ) q^{63} + q^{64} + ( 4 - 3 \beta_{1} + \beta_{2} ) q^{65} -\beta_{1} q^{66} -\beta_{2} q^{67} + ( 2 + 2 \beta_{2} ) q^{68} + ( -2 \beta_{1} - 2 \beta_{2} ) q^{69} + ( \beta_{1} - \beta_{2} ) q^{70} + ( -\beta_{1} + 2 \beta_{2} ) q^{71} + ( 1 + \beta_{2} ) q^{72} + ( 2 + 2 \beta_{1} + 4 \beta_{2} ) q^{73} + ( -6 + 2 \beta_{1} - 2 \beta_{2} ) q^{74} + ( -16 + 4 \beta_{1} - 3 \beta_{2} ) q^{75} - q^{76} + \beta_{2} q^{77} + ( 3 \beta_{1} + \beta_{2} ) q^{78} + ( 4 \beta_{1} + 2 \beta_{2} ) q^{79} + ( 2 - \beta_{1} ) q^{80} + ( -7 + \beta_{1} - 3 \beta_{2} ) q^{81} + ( -2 + 2 \beta_{1} - \beta_{2} ) q^{82} + ( 5 \beta_{1} - 2 \beta_{2} ) q^{83} + ( -\beta_{1} - \beta_{2} ) q^{84} + ( 4 - 4 \beta_{1} + 2 \beta_{2} ) q^{85} + ( -3 \beta_{1} + 2 \beta_{2} ) q^{86} + ( -4 - 3 \beta_{2} ) q^{87} - q^{88} + ( 2 + 8 \beta_{1} - 2 \beta_{2} ) q^{89} + ( 2 - 2 \beta_{1} + \beta_{2} ) q^{90} + ( -4 - \beta_{1} ) q^{91} -2 \beta_{2} q^{92} + ( -8 + \beta_{1} - \beta_{2} ) q^{93} + ( -2 \beta_{1} - 2 \beta_{2} ) q^{94} + ( -2 + \beta_{1} ) q^{95} + \beta_{1} q^{96} + ( -6 + 2 \beta_{1} - 2 \beta_{2} ) q^{97} + ( -3 + \beta_{1} - 2 \beta_{2} ) q^{98} + ( -1 - \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + q^{3} + 3 q^{4} + 5 q^{5} + q^{6} + q^{7} + 3 q^{8} + 2 q^{9} + O(q^{10}) \) \( 3 q + 3 q^{2} + q^{3} + 3 q^{4} + 5 q^{5} + q^{6} + q^{7} + 3 q^{8} + 2 q^{9} + 5 q^{10} - 3 q^{11} + q^{12} + 5 q^{13} + q^{14} - 9 q^{15} + 3 q^{16} + 4 q^{17} + 2 q^{18} - 3 q^{19} + 5 q^{20} - 3 q^{22} + 2 q^{23} + q^{24} + 4 q^{25} + 5 q^{26} - 2 q^{27} + q^{28} + 7 q^{29} - 9 q^{30} - 3 q^{31} + 3 q^{32} - q^{33} + 4 q^{34} + 2 q^{35} + 2 q^{36} - 14 q^{37} - 3 q^{38} + 2 q^{39} + 5 q^{40} - 3 q^{41} - 5 q^{43} - 3 q^{44} + 3 q^{45} + 2 q^{46} + q^{48} - 6 q^{49} + 4 q^{50} + 2 q^{51} + 5 q^{52} - 16 q^{53} - 2 q^{54} - 5 q^{55} + q^{56} - q^{57} + 7 q^{58} - 12 q^{59} - 9 q^{60} + 6 q^{61} - 3 q^{62} - 14 q^{63} + 3 q^{64} + 8 q^{65} - q^{66} + q^{67} + 4 q^{68} + 2 q^{70} - 3 q^{71} + 2 q^{72} + 4 q^{73} - 14 q^{74} - 41 q^{75} - 3 q^{76} - q^{77} + 2 q^{78} + 2 q^{79} + 5 q^{80} - 17 q^{81} - 3 q^{82} + 7 q^{83} + 6 q^{85} - 5 q^{86} - 9 q^{87} - 3 q^{88} + 16 q^{89} + 3 q^{90} - 13 q^{91} + 2 q^{92} - 22 q^{93} - 5 q^{95} + q^{96} - 14 q^{97} - 6 q^{98} - 2 q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 5 x + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 4 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 4\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.16425
0.772866
2.39138
1.00000 −2.16425 1.00000 4.16425 −2.16425 −0.683969 1.00000 1.68397 4.16425
1.2 1.00000 0.772866 1.00000 1.22713 0.772866 3.40268 1.00000 −2.40268 1.22713
1.3 1.00000 2.39138 1.00000 −0.391382 2.39138 −1.71871 1.00000 2.71871 −0.391382
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(11\) \(1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 418.2.a.h 3
3.b odd 2 1 3762.2.a.bd 3
4.b odd 2 1 3344.2.a.p 3
11.b odd 2 1 4598.2.a.bm 3
19.b odd 2 1 7942.2.a.bc 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
418.2.a.h 3 1.a even 1 1 trivial
3344.2.a.p 3 4.b odd 2 1
3762.2.a.bd 3 3.b odd 2 1
4598.2.a.bm 3 11.b odd 2 1
7942.2.a.bc 3 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - T_{3}^{2} - 5 T_{3} + 4 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(418))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -1 + T )^{3} \)
$3$ \( 4 - 5 T - T^{2} + T^{3} \)
$5$ \( 2 + 3 T - 5 T^{2} + T^{3} \)
$7$ \( -4 - 7 T - T^{2} + T^{3} \)
$11$ \( ( 1 + T )^{3} \)
$13$ \( 14 + T - 5 T^{2} + T^{3} \)
$17$ \( 88 - 24 T - 4 T^{2} + T^{3} \)
$19$ \( ( 1 + T )^{3} \)
$23$ \( -32 - 28 T - 2 T^{2} + T^{3} \)
$29$ \( 86 - 19 T - 7 T^{2} + T^{3} \)
$31$ \( -76 - 25 T + 3 T^{2} + T^{3} \)
$37$ \( -128 + 16 T + 14 T^{2} + T^{3} \)
$41$ \( 22 - 25 T + 3 T^{2} + T^{3} \)
$43$ \( -268 - 67 T + 5 T^{2} + T^{3} \)
$47$ \( 128 - 52 T + T^{3} \)
$53$ \( 56 + 64 T + 16 T^{2} + T^{3} \)
$59$ \( -1792 - 160 T + 12 T^{2} + T^{3} \)
$61$ \( ( -2 + T )^{3} \)
$67$ \( -4 - 7 T - T^{2} + T^{3} \)
$71$ \( 28 - 31 T + 3 T^{2} + T^{3} \)
$73$ \( 56 - 136 T - 4 T^{2} + T^{3} \)
$79$ \( -352 - 116 T - 2 T^{2} + T^{3} \)
$83$ \( 1108 - 143 T - 7 T^{2} + T^{3} \)
$89$ \( 4424 - 280 T - 16 T^{2} + T^{3} \)
$97$ \( -128 + 16 T + 14 T^{2} + T^{3} \)
show more
show less