Properties

Label 418.2.a.g
Level $418$
Weight $2$
Character orbit 418.a
Self dual yes
Analytic conductor $3.338$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [418,2,Mod(1,418)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(418, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("418.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 418 = 2 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 418.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.33774680449\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta_1 q^{3} + q^{4} + ( - \beta_{2} - \beta_1 - 1) q^{5} - \beta_1 q^{6} + (\beta_{2} - \beta_1 - 2) q^{7} - q^{8} + (\beta_{2} + \beta_1 + 1) q^{9} + (\beta_{2} + \beta_1 + 1) q^{10}+ \cdots + ( - \beta_{2} - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - 3 q^{5} - 6 q^{7} - 3 q^{8} + 3 q^{9} + 3 q^{10} - 3 q^{11} + 6 q^{14} - 9 q^{15} + 3 q^{16} - 9 q^{17} - 3 q^{18} - 3 q^{19} - 3 q^{20} - 15 q^{21} + 3 q^{22} - 15 q^{23} + 12 q^{25}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 6x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.14510
−0.523976
2.66908
−1.00000 −2.14510 1.00000 −1.60147 2.14510 2.89167 −1.00000 1.60147 1.60147
1.2 −1.00000 −0.523976 1.00000 2.72545 0.523976 −4.67750 −1.00000 −2.72545 −2.72545
1.3 −1.00000 2.66908 1.00000 −4.12398 −2.66908 −4.21417 −1.00000 4.12398 4.12398
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 418.2.a.g 3
3.b odd 2 1 3762.2.a.bg 3
4.b odd 2 1 3344.2.a.q 3
11.b odd 2 1 4598.2.a.bo 3
19.b odd 2 1 7942.2.a.bi 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
418.2.a.g 3 1.a even 1 1 trivial
3344.2.a.q 3 4.b odd 2 1
3762.2.a.bg 3 3.b odd 2 1
4598.2.a.bo 3 11.b odd 2 1
7942.2.a.bi 3 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 6T_{3} - 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(418))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 6T - 3 \) Copy content Toggle raw display
$5$ \( T^{3} + 3 T^{2} + \cdots - 18 \) Copy content Toggle raw display
$7$ \( T^{3} + 6 T^{2} + \cdots - 57 \) Copy content Toggle raw display
$11$ \( (T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 18T - 29 \) Copy content Toggle raw display
$17$ \( T^{3} + 9 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$19$ \( (T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 15 T^{2} + \cdots + 76 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} + \cdots + 147 \) Copy content Toggle raw display
$31$ \( T^{3} + 3 T^{2} + \cdots - 134 \) Copy content Toggle raw display
$37$ \( T^{3} + 6 T^{2} + \cdots - 96 \) Copy content Toggle raw display
$41$ \( T^{3} + 9 T^{2} + \cdots - 122 \) Copy content Toggle raw display
$43$ \( T^{3} + 21 T^{2} + \cdots - 184 \) Copy content Toggle raw display
$47$ \( T^{3} + 12 T^{2} + \cdots - 672 \) Copy content Toggle raw display
$53$ \( T^{3} + 9 T^{2} + \cdots - 452 \) Copy content Toggle raw display
$59$ \( T^{3} + 3 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$61$ \( T^{3} - 24 T^{2} + \cdots - 192 \) Copy content Toggle raw display
$67$ \( T^{3} - 96T + 123 \) Copy content Toggle raw display
$71$ \( T^{3} - 21 T^{2} + \cdots + 1306 \) Copy content Toggle raw display
$73$ \( T^{3} + 3 T^{2} + \cdots - 12 \) Copy content Toggle raw display
$79$ \( T^{3} + 6 T^{2} + \cdots - 944 \) Copy content Toggle raw display
$83$ \( T^{3} + 33 T^{2} + \cdots + 1104 \) Copy content Toggle raw display
$89$ \( T^{3} - 6 T^{2} + \cdots + 144 \) Copy content Toggle raw display
$97$ \( T^{3} - 12 T^{2} + \cdots + 256 \) Copy content Toggle raw display
show more
show less