Properties

Label 418.2.a.e.1.2
Level $418$
Weight $2$
Character 418.1
Self dual yes
Analytic conductor $3.338$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [418,2,Mod(1,418)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(418, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("418.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 418 = 2 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 418.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.33774680449\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 418.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.56155 q^{3} +1.00000 q^{4} +2.00000 q^{5} -2.56155 q^{6} -0.561553 q^{7} -1.00000 q^{8} +3.56155 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +2.56155 q^{3} +1.00000 q^{4} +2.00000 q^{5} -2.56155 q^{6} -0.561553 q^{7} -1.00000 q^{8} +3.56155 q^{9} -2.00000 q^{10} +1.00000 q^{11} +2.56155 q^{12} +0.561553 q^{13} +0.561553 q^{14} +5.12311 q^{15} +1.00000 q^{16} -0.561553 q^{17} -3.56155 q^{18} -1.00000 q^{19} +2.00000 q^{20} -1.43845 q^{21} -1.00000 q^{22} +1.43845 q^{23} -2.56155 q^{24} -1.00000 q^{25} -0.561553 q^{26} +1.43845 q^{27} -0.561553 q^{28} -5.68466 q^{29} -5.12311 q^{30} +2.00000 q^{31} -1.00000 q^{32} +2.56155 q^{33} +0.561553 q^{34} -1.12311 q^{35} +3.56155 q^{36} -5.12311 q^{37} +1.00000 q^{38} +1.43845 q^{39} -2.00000 q^{40} +2.00000 q^{41} +1.43845 q^{42} +1.00000 q^{44} +7.12311 q^{45} -1.43845 q^{46} +8.00000 q^{47} +2.56155 q^{48} -6.68466 q^{49} +1.00000 q^{50} -1.43845 q^{51} +0.561553 q^{52} +12.8078 q^{53} -1.43845 q^{54} +2.00000 q^{55} +0.561553 q^{56} -2.56155 q^{57} +5.68466 q^{58} -7.68466 q^{59} +5.12311 q^{60} +6.24621 q^{61} -2.00000 q^{62} -2.00000 q^{63} +1.00000 q^{64} +1.12311 q^{65} -2.56155 q^{66} -7.68466 q^{67} -0.561553 q^{68} +3.68466 q^{69} +1.12311 q^{70} +6.00000 q^{71} -3.56155 q^{72} -9.68466 q^{73} +5.12311 q^{74} -2.56155 q^{75} -1.00000 q^{76} -0.561553 q^{77} -1.43845 q^{78} -4.00000 q^{79} +2.00000 q^{80} -7.00000 q^{81} -2.00000 q^{82} +14.2462 q^{83} -1.43845 q^{84} -1.12311 q^{85} -14.5616 q^{87} -1.00000 q^{88} -0.876894 q^{89} -7.12311 q^{90} -0.315342 q^{91} +1.43845 q^{92} +5.12311 q^{93} -8.00000 q^{94} -2.00000 q^{95} -2.56155 q^{96} -7.12311 q^{97} +6.68466 q^{98} +3.56155 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} + 4 q^{5} - q^{6} + 3 q^{7} - 2 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} + 4 q^{5} - q^{6} + 3 q^{7} - 2 q^{8} + 3 q^{9} - 4 q^{10} + 2 q^{11} + q^{12} - 3 q^{13} - 3 q^{14} + 2 q^{15} + 2 q^{16} + 3 q^{17} - 3 q^{18} - 2 q^{19} + 4 q^{20} - 7 q^{21} - 2 q^{22} + 7 q^{23} - q^{24} - 2 q^{25} + 3 q^{26} + 7 q^{27} + 3 q^{28} + q^{29} - 2 q^{30} + 4 q^{31} - 2 q^{32} + q^{33} - 3 q^{34} + 6 q^{35} + 3 q^{36} - 2 q^{37} + 2 q^{38} + 7 q^{39} - 4 q^{40} + 4 q^{41} + 7 q^{42} + 2 q^{44} + 6 q^{45} - 7 q^{46} + 16 q^{47} + q^{48} - q^{49} + 2 q^{50} - 7 q^{51} - 3 q^{52} + 5 q^{53} - 7 q^{54} + 4 q^{55} - 3 q^{56} - q^{57} - q^{58} - 3 q^{59} + 2 q^{60} - 4 q^{61} - 4 q^{62} - 4 q^{63} + 2 q^{64} - 6 q^{65} - q^{66} - 3 q^{67} + 3 q^{68} - 5 q^{69} - 6 q^{70} + 12 q^{71} - 3 q^{72} - 7 q^{73} + 2 q^{74} - q^{75} - 2 q^{76} + 3 q^{77} - 7 q^{78} - 8 q^{79} + 4 q^{80} - 14 q^{81} - 4 q^{82} + 12 q^{83} - 7 q^{84} + 6 q^{85} - 25 q^{87} - 2 q^{88} - 10 q^{89} - 6 q^{90} - 13 q^{91} + 7 q^{92} + 2 q^{93} - 16 q^{94} - 4 q^{95} - q^{96} - 6 q^{97} + q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.56155 1.47891 0.739457 0.673204i \(-0.235083\pi\)
0.739457 + 0.673204i \(0.235083\pi\)
\(4\) 1.00000 0.500000
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) −2.56155 −1.04575
\(7\) −0.561553 −0.212247 −0.106124 0.994353i \(-0.533844\pi\)
−0.106124 + 0.994353i \(0.533844\pi\)
\(8\) −1.00000 −0.353553
\(9\) 3.56155 1.18718
\(10\) −2.00000 −0.632456
\(11\) 1.00000 0.301511
\(12\) 2.56155 0.739457
\(13\) 0.561553 0.155747 0.0778734 0.996963i \(-0.475187\pi\)
0.0778734 + 0.996963i \(0.475187\pi\)
\(14\) 0.561553 0.150081
\(15\) 5.12311 1.32278
\(16\) 1.00000 0.250000
\(17\) −0.561553 −0.136197 −0.0680983 0.997679i \(-0.521693\pi\)
−0.0680983 + 0.997679i \(0.521693\pi\)
\(18\) −3.56155 −0.839466
\(19\) −1.00000 −0.229416
\(20\) 2.00000 0.447214
\(21\) −1.43845 −0.313895
\(22\) −1.00000 −0.213201
\(23\) 1.43845 0.299937 0.149968 0.988691i \(-0.452083\pi\)
0.149968 + 0.988691i \(0.452083\pi\)
\(24\) −2.56155 −0.522875
\(25\) −1.00000 −0.200000
\(26\) −0.561553 −0.110130
\(27\) 1.43845 0.276829
\(28\) −0.561553 −0.106124
\(29\) −5.68466 −1.05561 −0.527807 0.849364i \(-0.676986\pi\)
−0.527807 + 0.849364i \(0.676986\pi\)
\(30\) −5.12311 −0.935347
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −1.00000 −0.176777
\(33\) 2.56155 0.445909
\(34\) 0.561553 0.0963055
\(35\) −1.12311 −0.189839
\(36\) 3.56155 0.593592
\(37\) −5.12311 −0.842233 −0.421117 0.907006i \(-0.638362\pi\)
−0.421117 + 0.907006i \(0.638362\pi\)
\(38\) 1.00000 0.162221
\(39\) 1.43845 0.230336
\(40\) −2.00000 −0.316228
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 1.43845 0.221957
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 1.00000 0.150756
\(45\) 7.12311 1.06185
\(46\) −1.43845 −0.212087
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 2.56155 0.369728
\(49\) −6.68466 −0.954951
\(50\) 1.00000 0.141421
\(51\) −1.43845 −0.201423
\(52\) 0.561553 0.0778734
\(53\) 12.8078 1.75928 0.879641 0.475638i \(-0.157783\pi\)
0.879641 + 0.475638i \(0.157783\pi\)
\(54\) −1.43845 −0.195748
\(55\) 2.00000 0.269680
\(56\) 0.561553 0.0750407
\(57\) −2.56155 −0.339286
\(58\) 5.68466 0.746432
\(59\) −7.68466 −1.00046 −0.500229 0.865893i \(-0.666751\pi\)
−0.500229 + 0.865893i \(0.666751\pi\)
\(60\) 5.12311 0.661390
\(61\) 6.24621 0.799745 0.399873 0.916571i \(-0.369054\pi\)
0.399873 + 0.916571i \(0.369054\pi\)
\(62\) −2.00000 −0.254000
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 1.12311 0.139304
\(66\) −2.56155 −0.315305
\(67\) −7.68466 −0.938830 −0.469415 0.882978i \(-0.655535\pi\)
−0.469415 + 0.882978i \(0.655535\pi\)
\(68\) −0.561553 −0.0680983
\(69\) 3.68466 0.443581
\(70\) 1.12311 0.134237
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) −3.56155 −0.419733
\(73\) −9.68466 −1.13350 −0.566752 0.823889i \(-0.691800\pi\)
−0.566752 + 0.823889i \(0.691800\pi\)
\(74\) 5.12311 0.595549
\(75\) −2.56155 −0.295783
\(76\) −1.00000 −0.114708
\(77\) −0.561553 −0.0639949
\(78\) −1.43845 −0.162872
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 2.00000 0.223607
\(81\) −7.00000 −0.777778
\(82\) −2.00000 −0.220863
\(83\) 14.2462 1.56372 0.781862 0.623451i \(-0.214270\pi\)
0.781862 + 0.623451i \(0.214270\pi\)
\(84\) −1.43845 −0.156947
\(85\) −1.12311 −0.121818
\(86\) 0 0
\(87\) −14.5616 −1.56116
\(88\) −1.00000 −0.106600
\(89\) −0.876894 −0.0929506 −0.0464753 0.998919i \(-0.514799\pi\)
−0.0464753 + 0.998919i \(0.514799\pi\)
\(90\) −7.12311 −0.750841
\(91\) −0.315342 −0.0330568
\(92\) 1.43845 0.149968
\(93\) 5.12311 0.531241
\(94\) −8.00000 −0.825137
\(95\) −2.00000 −0.205196
\(96\) −2.56155 −0.261437
\(97\) −7.12311 −0.723242 −0.361621 0.932325i \(-0.617777\pi\)
−0.361621 + 0.932325i \(0.617777\pi\)
\(98\) 6.68466 0.675252
\(99\) 3.56155 0.357950
\(100\) −1.00000 −0.100000
\(101\) −6.87689 −0.684277 −0.342138 0.939650i \(-0.611151\pi\)
−0.342138 + 0.939650i \(0.611151\pi\)
\(102\) 1.43845 0.142427
\(103\) −13.3693 −1.31732 −0.658659 0.752442i \(-0.728876\pi\)
−0.658659 + 0.752442i \(0.728876\pi\)
\(104\) −0.561553 −0.0550648
\(105\) −2.87689 −0.280756
\(106\) −12.8078 −1.24400
\(107\) −9.93087 −0.960053 −0.480027 0.877254i \(-0.659373\pi\)
−0.480027 + 0.877254i \(0.659373\pi\)
\(108\) 1.43845 0.138415
\(109\) −6.31534 −0.604900 −0.302450 0.953165i \(-0.597805\pi\)
−0.302450 + 0.953165i \(0.597805\pi\)
\(110\) −2.00000 −0.190693
\(111\) −13.1231 −1.24559
\(112\) −0.561553 −0.0530618
\(113\) −3.12311 −0.293797 −0.146899 0.989152i \(-0.546929\pi\)
−0.146899 + 0.989152i \(0.546929\pi\)
\(114\) 2.56155 0.239911
\(115\) 2.87689 0.268272
\(116\) −5.68466 −0.527807
\(117\) 2.00000 0.184900
\(118\) 7.68466 0.707430
\(119\) 0.315342 0.0289073
\(120\) −5.12311 −0.467673
\(121\) 1.00000 0.0909091
\(122\) −6.24621 −0.565505
\(123\) 5.12311 0.461935
\(124\) 2.00000 0.179605
\(125\) −12.0000 −1.07331
\(126\) 2.00000 0.178174
\(127\) 2.24621 0.199319 0.0996595 0.995022i \(-0.468225\pi\)
0.0996595 + 0.995022i \(0.468225\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −1.12311 −0.0985029
\(131\) 1.12311 0.0981262 0.0490631 0.998796i \(-0.484376\pi\)
0.0490631 + 0.998796i \(0.484376\pi\)
\(132\) 2.56155 0.222955
\(133\) 0.561553 0.0486928
\(134\) 7.68466 0.663853
\(135\) 2.87689 0.247604
\(136\) 0.561553 0.0481528
\(137\) 12.5616 1.07321 0.536603 0.843835i \(-0.319707\pi\)
0.536603 + 0.843835i \(0.319707\pi\)
\(138\) −3.68466 −0.313659
\(139\) 7.36932 0.625057 0.312529 0.949908i \(-0.398824\pi\)
0.312529 + 0.949908i \(0.398824\pi\)
\(140\) −1.12311 −0.0949197
\(141\) 20.4924 1.72577
\(142\) −6.00000 −0.503509
\(143\) 0.561553 0.0469594
\(144\) 3.56155 0.296796
\(145\) −11.3693 −0.944170
\(146\) 9.68466 0.801508
\(147\) −17.1231 −1.41229
\(148\) −5.12311 −0.421117
\(149\) −6.87689 −0.563377 −0.281689 0.959506i \(-0.590894\pi\)
−0.281689 + 0.959506i \(0.590894\pi\)
\(150\) 2.56155 0.209150
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 1.00000 0.0811107
\(153\) −2.00000 −0.161690
\(154\) 0.561553 0.0452512
\(155\) 4.00000 0.321288
\(156\) 1.43845 0.115168
\(157\) −14.4924 −1.15662 −0.578311 0.815817i \(-0.696288\pi\)
−0.578311 + 0.815817i \(0.696288\pi\)
\(158\) 4.00000 0.318223
\(159\) 32.8078 2.60182
\(160\) −2.00000 −0.158114
\(161\) −0.807764 −0.0636607
\(162\) 7.00000 0.549972
\(163\) 11.3693 0.890514 0.445257 0.895403i \(-0.353112\pi\)
0.445257 + 0.895403i \(0.353112\pi\)
\(164\) 2.00000 0.156174
\(165\) 5.12311 0.398833
\(166\) −14.2462 −1.10572
\(167\) −0.630683 −0.0488037 −0.0244019 0.999702i \(-0.507768\pi\)
−0.0244019 + 0.999702i \(0.507768\pi\)
\(168\) 1.43845 0.110979
\(169\) −12.6847 −0.975743
\(170\) 1.12311 0.0861383
\(171\) −3.56155 −0.272359
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 14.5616 1.10391
\(175\) 0.561553 0.0424494
\(176\) 1.00000 0.0753778
\(177\) −19.6847 −1.47959
\(178\) 0.876894 0.0657260
\(179\) 5.75379 0.430058 0.215029 0.976608i \(-0.431015\pi\)
0.215029 + 0.976608i \(0.431015\pi\)
\(180\) 7.12311 0.530925
\(181\) −10.8769 −0.808473 −0.404237 0.914654i \(-0.632463\pi\)
−0.404237 + 0.914654i \(0.632463\pi\)
\(182\) 0.315342 0.0233747
\(183\) 16.0000 1.18275
\(184\) −1.43845 −0.106044
\(185\) −10.2462 −0.753316
\(186\) −5.12311 −0.375644
\(187\) −0.561553 −0.0410648
\(188\) 8.00000 0.583460
\(189\) −0.807764 −0.0587562
\(190\) 2.00000 0.145095
\(191\) −8.31534 −0.601677 −0.300838 0.953675i \(-0.597267\pi\)
−0.300838 + 0.953675i \(0.597267\pi\)
\(192\) 2.56155 0.184864
\(193\) 7.12311 0.512732 0.256366 0.966580i \(-0.417475\pi\)
0.256366 + 0.966580i \(0.417475\pi\)
\(194\) 7.12311 0.511409
\(195\) 2.87689 0.206019
\(196\) −6.68466 −0.477476
\(197\) 18.2462 1.29999 0.649994 0.759939i \(-0.274771\pi\)
0.649994 + 0.759939i \(0.274771\pi\)
\(198\) −3.56155 −0.253109
\(199\) 11.6847 0.828303 0.414152 0.910208i \(-0.364078\pi\)
0.414152 + 0.910208i \(0.364078\pi\)
\(200\) 1.00000 0.0707107
\(201\) −19.6847 −1.38845
\(202\) 6.87689 0.483857
\(203\) 3.19224 0.224051
\(204\) −1.43845 −0.100711
\(205\) 4.00000 0.279372
\(206\) 13.3693 0.931484
\(207\) 5.12311 0.356080
\(208\) 0.561553 0.0389367
\(209\) −1.00000 −0.0691714
\(210\) 2.87689 0.198525
\(211\) −0.315342 −0.0217090 −0.0108545 0.999941i \(-0.503455\pi\)
−0.0108545 + 0.999941i \(0.503455\pi\)
\(212\) 12.8078 0.879641
\(213\) 15.3693 1.05309
\(214\) 9.93087 0.678860
\(215\) 0 0
\(216\) −1.43845 −0.0978739
\(217\) −1.12311 −0.0762414
\(218\) 6.31534 0.427729
\(219\) −24.8078 −1.67635
\(220\) 2.00000 0.134840
\(221\) −0.315342 −0.0212122
\(222\) 13.1231 0.880765
\(223\) 24.7386 1.65662 0.828311 0.560269i \(-0.189302\pi\)
0.828311 + 0.560269i \(0.189302\pi\)
\(224\) 0.561553 0.0375203
\(225\) −3.56155 −0.237437
\(226\) 3.12311 0.207746
\(227\) 28.1771 1.87018 0.935089 0.354412i \(-0.115319\pi\)
0.935089 + 0.354412i \(0.115319\pi\)
\(228\) −2.56155 −0.169643
\(229\) 12.8769 0.850929 0.425465 0.904975i \(-0.360111\pi\)
0.425465 + 0.904975i \(0.360111\pi\)
\(230\) −2.87689 −0.189697
\(231\) −1.43845 −0.0946429
\(232\) 5.68466 0.373216
\(233\) −28.7386 −1.88273 −0.941365 0.337389i \(-0.890456\pi\)
−0.941365 + 0.337389i \(0.890456\pi\)
\(234\) −2.00000 −0.130744
\(235\) 16.0000 1.04372
\(236\) −7.68466 −0.500229
\(237\) −10.2462 −0.665563
\(238\) −0.315342 −0.0204406
\(239\) 23.9309 1.54796 0.773980 0.633210i \(-0.218263\pi\)
0.773980 + 0.633210i \(0.218263\pi\)
\(240\) 5.12311 0.330695
\(241\) −19.6155 −1.26355 −0.631774 0.775153i \(-0.717673\pi\)
−0.631774 + 0.775153i \(0.717673\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −22.2462 −1.42710
\(244\) 6.24621 0.399873
\(245\) −13.3693 −0.854134
\(246\) −5.12311 −0.326637
\(247\) −0.561553 −0.0357307
\(248\) −2.00000 −0.127000
\(249\) 36.4924 2.31261
\(250\) 12.0000 0.758947
\(251\) 17.1231 1.08080 0.540400 0.841408i \(-0.318273\pi\)
0.540400 + 0.841408i \(0.318273\pi\)
\(252\) −2.00000 −0.125988
\(253\) 1.43845 0.0904344
\(254\) −2.24621 −0.140940
\(255\) −2.87689 −0.180158
\(256\) 1.00000 0.0625000
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) 0 0
\(259\) 2.87689 0.178762
\(260\) 1.12311 0.0696521
\(261\) −20.2462 −1.25321
\(262\) −1.12311 −0.0693857
\(263\) 8.87689 0.547373 0.273686 0.961819i \(-0.411757\pi\)
0.273686 + 0.961819i \(0.411757\pi\)
\(264\) −2.56155 −0.157653
\(265\) 25.6155 1.57355
\(266\) −0.561553 −0.0344310
\(267\) −2.24621 −0.137466
\(268\) −7.68466 −0.469415
\(269\) 2.87689 0.175407 0.0877037 0.996147i \(-0.472047\pi\)
0.0877037 + 0.996147i \(0.472047\pi\)
\(270\) −2.87689 −0.175082
\(271\) 25.6847 1.56023 0.780116 0.625635i \(-0.215160\pi\)
0.780116 + 0.625635i \(0.215160\pi\)
\(272\) −0.561553 −0.0340491
\(273\) −0.807764 −0.0488881
\(274\) −12.5616 −0.758871
\(275\) −1.00000 −0.0603023
\(276\) 3.68466 0.221790
\(277\) 8.49242 0.510260 0.255130 0.966907i \(-0.417882\pi\)
0.255130 + 0.966907i \(0.417882\pi\)
\(278\) −7.36932 −0.441982
\(279\) 7.12311 0.426449
\(280\) 1.12311 0.0671184
\(281\) −25.3693 −1.51341 −0.756703 0.653758i \(-0.773191\pi\)
−0.756703 + 0.653758i \(0.773191\pi\)
\(282\) −20.4924 −1.22031
\(283\) 11.3693 0.675836 0.337918 0.941176i \(-0.390277\pi\)
0.337918 + 0.941176i \(0.390277\pi\)
\(284\) 6.00000 0.356034
\(285\) −5.12311 −0.303467
\(286\) −0.561553 −0.0332053
\(287\) −1.12311 −0.0662948
\(288\) −3.56155 −0.209867
\(289\) −16.6847 −0.981450
\(290\) 11.3693 0.667629
\(291\) −18.2462 −1.06961
\(292\) −9.68466 −0.566752
\(293\) 3.93087 0.229644 0.114822 0.993386i \(-0.463370\pi\)
0.114822 + 0.993386i \(0.463370\pi\)
\(294\) 17.1231 0.998640
\(295\) −15.3693 −0.894836
\(296\) 5.12311 0.297774
\(297\) 1.43845 0.0834672
\(298\) 6.87689 0.398368
\(299\) 0.807764 0.0467142
\(300\) −2.56155 −0.147891
\(301\) 0 0
\(302\) −4.00000 −0.230174
\(303\) −17.6155 −1.01199
\(304\) −1.00000 −0.0573539
\(305\) 12.4924 0.715314
\(306\) 2.00000 0.114332
\(307\) −22.2462 −1.26966 −0.634829 0.772653i \(-0.718930\pi\)
−0.634829 + 0.772653i \(0.718930\pi\)
\(308\) −0.561553 −0.0319974
\(309\) −34.2462 −1.94820
\(310\) −4.00000 −0.227185
\(311\) −4.80776 −0.272623 −0.136312 0.990666i \(-0.543525\pi\)
−0.136312 + 0.990666i \(0.543525\pi\)
\(312\) −1.43845 −0.0814360
\(313\) −0.561553 −0.0317408 −0.0158704 0.999874i \(-0.505052\pi\)
−0.0158704 + 0.999874i \(0.505052\pi\)
\(314\) 14.4924 0.817855
\(315\) −4.00000 −0.225374
\(316\) −4.00000 −0.225018
\(317\) −7.05398 −0.396191 −0.198095 0.980183i \(-0.563476\pi\)
−0.198095 + 0.980183i \(0.563476\pi\)
\(318\) −32.8078 −1.83977
\(319\) −5.68466 −0.318280
\(320\) 2.00000 0.111803
\(321\) −25.4384 −1.41984
\(322\) 0.807764 0.0450149
\(323\) 0.561553 0.0312456
\(324\) −7.00000 −0.388889
\(325\) −0.561553 −0.0311493
\(326\) −11.3693 −0.629688
\(327\) −16.1771 −0.894595
\(328\) −2.00000 −0.110432
\(329\) −4.49242 −0.247675
\(330\) −5.12311 −0.282018
\(331\) −14.5616 −0.800375 −0.400188 0.916433i \(-0.631055\pi\)
−0.400188 + 0.916433i \(0.631055\pi\)
\(332\) 14.2462 0.781862
\(333\) −18.2462 −0.999886
\(334\) 0.630683 0.0345094
\(335\) −15.3693 −0.839715
\(336\) −1.43845 −0.0784737
\(337\) 11.1231 0.605914 0.302957 0.953004i \(-0.402026\pi\)
0.302957 + 0.953004i \(0.402026\pi\)
\(338\) 12.6847 0.689954
\(339\) −8.00000 −0.434500
\(340\) −1.12311 −0.0609090
\(341\) 2.00000 0.108306
\(342\) 3.56155 0.192587
\(343\) 7.68466 0.414933
\(344\) 0 0
\(345\) 7.36932 0.396751
\(346\) −18.0000 −0.967686
\(347\) 9.61553 0.516189 0.258094 0.966120i \(-0.416905\pi\)
0.258094 + 0.966120i \(0.416905\pi\)
\(348\) −14.5616 −0.780581
\(349\) 21.6155 1.15705 0.578526 0.815664i \(-0.303628\pi\)
0.578526 + 0.815664i \(0.303628\pi\)
\(350\) −0.561553 −0.0300163
\(351\) 0.807764 0.0431153
\(352\) −1.00000 −0.0533002
\(353\) 22.1771 1.18037 0.590183 0.807269i \(-0.299055\pi\)
0.590183 + 0.807269i \(0.299055\pi\)
\(354\) 19.6847 1.04623
\(355\) 12.0000 0.636894
\(356\) −0.876894 −0.0464753
\(357\) 0.807764 0.0427514
\(358\) −5.75379 −0.304097
\(359\) −15.9309 −0.840799 −0.420400 0.907339i \(-0.638110\pi\)
−0.420400 + 0.907339i \(0.638110\pi\)
\(360\) −7.12311 −0.375421
\(361\) 1.00000 0.0526316
\(362\) 10.8769 0.571677
\(363\) 2.56155 0.134447
\(364\) −0.315342 −0.0165284
\(365\) −19.3693 −1.01384
\(366\) −16.0000 −0.836333
\(367\) 30.2462 1.57884 0.789420 0.613854i \(-0.210382\pi\)
0.789420 + 0.613854i \(0.210382\pi\)
\(368\) 1.43845 0.0749842
\(369\) 7.12311 0.370814
\(370\) 10.2462 0.532675
\(371\) −7.19224 −0.373402
\(372\) 5.12311 0.265621
\(373\) 3.43845 0.178036 0.0890180 0.996030i \(-0.471627\pi\)
0.0890180 + 0.996030i \(0.471627\pi\)
\(374\) 0.561553 0.0290372
\(375\) −30.7386 −1.58734
\(376\) −8.00000 −0.412568
\(377\) −3.19224 −0.164409
\(378\) 0.807764 0.0415469
\(379\) 6.56155 0.337044 0.168522 0.985698i \(-0.446101\pi\)
0.168522 + 0.985698i \(0.446101\pi\)
\(380\) −2.00000 −0.102598
\(381\) 5.75379 0.294776
\(382\) 8.31534 0.425450
\(383\) −2.00000 −0.102195 −0.0510976 0.998694i \(-0.516272\pi\)
−0.0510976 + 0.998694i \(0.516272\pi\)
\(384\) −2.56155 −0.130719
\(385\) −1.12311 −0.0572388
\(386\) −7.12311 −0.362557
\(387\) 0 0
\(388\) −7.12311 −0.361621
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) −2.87689 −0.145677
\(391\) −0.807764 −0.0408504
\(392\) 6.68466 0.337626
\(393\) 2.87689 0.145120
\(394\) −18.2462 −0.919231
\(395\) −8.00000 −0.402524
\(396\) 3.56155 0.178975
\(397\) 38.9848 1.95659 0.978297 0.207209i \(-0.0664381\pi\)
0.978297 + 0.207209i \(0.0664381\pi\)
\(398\) −11.6847 −0.585699
\(399\) 1.43845 0.0720124
\(400\) −1.00000 −0.0500000
\(401\) −7.75379 −0.387206 −0.193603 0.981080i \(-0.562017\pi\)
−0.193603 + 0.981080i \(0.562017\pi\)
\(402\) 19.6847 0.981782
\(403\) 1.12311 0.0559459
\(404\) −6.87689 −0.342138
\(405\) −14.0000 −0.695666
\(406\) −3.19224 −0.158428
\(407\) −5.12311 −0.253943
\(408\) 1.43845 0.0712137
\(409\) 16.2462 0.803323 0.401662 0.915788i \(-0.368433\pi\)
0.401662 + 0.915788i \(0.368433\pi\)
\(410\) −4.00000 −0.197546
\(411\) 32.1771 1.58718
\(412\) −13.3693 −0.658659
\(413\) 4.31534 0.212344
\(414\) −5.12311 −0.251787
\(415\) 28.4924 1.39864
\(416\) −0.561553 −0.0275324
\(417\) 18.8769 0.924405
\(418\) 1.00000 0.0489116
\(419\) −14.8769 −0.726784 −0.363392 0.931636i \(-0.618381\pi\)
−0.363392 + 0.931636i \(0.618381\pi\)
\(420\) −2.87689 −0.140378
\(421\) −29.9309 −1.45874 −0.729371 0.684119i \(-0.760187\pi\)
−0.729371 + 0.684119i \(0.760187\pi\)
\(422\) 0.315342 0.0153506
\(423\) 28.4924 1.38535
\(424\) −12.8078 −0.622000
\(425\) 0.561553 0.0272393
\(426\) −15.3693 −0.744646
\(427\) −3.50758 −0.169744
\(428\) −9.93087 −0.480027
\(429\) 1.43845 0.0694489
\(430\) 0 0
\(431\) 31.8617 1.53473 0.767363 0.641213i \(-0.221568\pi\)
0.767363 + 0.641213i \(0.221568\pi\)
\(432\) 1.43845 0.0692073
\(433\) 6.63068 0.318650 0.159325 0.987226i \(-0.449068\pi\)
0.159325 + 0.987226i \(0.449068\pi\)
\(434\) 1.12311 0.0539108
\(435\) −29.1231 −1.39635
\(436\) −6.31534 −0.302450
\(437\) −1.43845 −0.0688103
\(438\) 24.8078 1.18536
\(439\) −9.61553 −0.458924 −0.229462 0.973318i \(-0.573697\pi\)
−0.229462 + 0.973318i \(0.573697\pi\)
\(440\) −2.00000 −0.0953463
\(441\) −23.8078 −1.13370
\(442\) 0.315342 0.0149993
\(443\) 39.8617 1.89389 0.946944 0.321398i \(-0.104153\pi\)
0.946944 + 0.321398i \(0.104153\pi\)
\(444\) −13.1231 −0.622795
\(445\) −1.75379 −0.0831376
\(446\) −24.7386 −1.17141
\(447\) −17.6155 −0.833186
\(448\) −0.561553 −0.0265309
\(449\) 23.6155 1.11449 0.557243 0.830350i \(-0.311859\pi\)
0.557243 + 0.830350i \(0.311859\pi\)
\(450\) 3.56155 0.167893
\(451\) 2.00000 0.0941763
\(452\) −3.12311 −0.146899
\(453\) 10.2462 0.481409
\(454\) −28.1771 −1.32242
\(455\) −0.630683 −0.0295669
\(456\) 2.56155 0.119956
\(457\) 36.5616 1.71028 0.855139 0.518399i \(-0.173472\pi\)
0.855139 + 0.518399i \(0.173472\pi\)
\(458\) −12.8769 −0.601698
\(459\) −0.807764 −0.0377032
\(460\) 2.87689 0.134136
\(461\) 26.7386 1.24534 0.622671 0.782484i \(-0.286047\pi\)
0.622671 + 0.782484i \(0.286047\pi\)
\(462\) 1.43845 0.0669226
\(463\) 3.50758 0.163011 0.0815055 0.996673i \(-0.474027\pi\)
0.0815055 + 0.996673i \(0.474027\pi\)
\(464\) −5.68466 −0.263904
\(465\) 10.2462 0.475157
\(466\) 28.7386 1.33129
\(467\) 9.75379 0.451352 0.225676 0.974202i \(-0.427541\pi\)
0.225676 + 0.974202i \(0.427541\pi\)
\(468\) 2.00000 0.0924500
\(469\) 4.31534 0.199264
\(470\) −16.0000 −0.738025
\(471\) −37.1231 −1.71054
\(472\) 7.68466 0.353715
\(473\) 0 0
\(474\) 10.2462 0.470624
\(475\) 1.00000 0.0458831
\(476\) 0.315342 0.0144537
\(477\) 45.6155 2.08859
\(478\) −23.9309 −1.09457
\(479\) −13.3693 −0.610860 −0.305430 0.952215i \(-0.598800\pi\)
−0.305430 + 0.952215i \(0.598800\pi\)
\(480\) −5.12311 −0.233837
\(481\) −2.87689 −0.131175
\(482\) 19.6155 0.893463
\(483\) −2.06913 −0.0941487
\(484\) 1.00000 0.0454545
\(485\) −14.2462 −0.646887
\(486\) 22.2462 1.00911
\(487\) 31.1231 1.41032 0.705161 0.709047i \(-0.250875\pi\)
0.705161 + 0.709047i \(0.250875\pi\)
\(488\) −6.24621 −0.282753
\(489\) 29.1231 1.31699
\(490\) 13.3693 0.603964
\(491\) −39.3693 −1.77671 −0.888356 0.459155i \(-0.848152\pi\)
−0.888356 + 0.459155i \(0.848152\pi\)
\(492\) 5.12311 0.230967
\(493\) 3.19224 0.143771
\(494\) 0.561553 0.0252655
\(495\) 7.12311 0.320160
\(496\) 2.00000 0.0898027
\(497\) −3.36932 −0.151135
\(498\) −36.4924 −1.63526
\(499\) 9.75379 0.436640 0.218320 0.975877i \(-0.429942\pi\)
0.218320 + 0.975877i \(0.429942\pi\)
\(500\) −12.0000 −0.536656
\(501\) −1.61553 −0.0721765
\(502\) −17.1231 −0.764242
\(503\) 21.6847 0.966871 0.483436 0.875380i \(-0.339389\pi\)
0.483436 + 0.875380i \(0.339389\pi\)
\(504\) 2.00000 0.0890871
\(505\) −13.7538 −0.612036
\(506\) −1.43845 −0.0639468
\(507\) −32.4924 −1.44304
\(508\) 2.24621 0.0996595
\(509\) −31.3693 −1.39042 −0.695210 0.718806i \(-0.744689\pi\)
−0.695210 + 0.718806i \(0.744689\pi\)
\(510\) 2.87689 0.127391
\(511\) 5.43845 0.240583
\(512\) −1.00000 −0.0441942
\(513\) −1.43845 −0.0635090
\(514\) 22.0000 0.970378
\(515\) −26.7386 −1.17824
\(516\) 0 0
\(517\) 8.00000 0.351840
\(518\) −2.87689 −0.126403
\(519\) 46.1080 2.02391
\(520\) −1.12311 −0.0492514
\(521\) −7.12311 −0.312069 −0.156034 0.987752i \(-0.549871\pi\)
−0.156034 + 0.987752i \(0.549871\pi\)
\(522\) 20.2462 0.886153
\(523\) 31.0540 1.35790 0.678948 0.734187i \(-0.262436\pi\)
0.678948 + 0.734187i \(0.262436\pi\)
\(524\) 1.12311 0.0490631
\(525\) 1.43845 0.0627790
\(526\) −8.87689 −0.387051
\(527\) −1.12311 −0.0489232
\(528\) 2.56155 0.111477
\(529\) −20.9309 −0.910038
\(530\) −25.6155 −1.11267
\(531\) −27.3693 −1.18773
\(532\) 0.561553 0.0243464
\(533\) 1.12311 0.0486471
\(534\) 2.24621 0.0972031
\(535\) −19.8617 −0.858698
\(536\) 7.68466 0.331927
\(537\) 14.7386 0.636019
\(538\) −2.87689 −0.124032
\(539\) −6.68466 −0.287929
\(540\) 2.87689 0.123802
\(541\) −39.2311 −1.68667 −0.843337 0.537384i \(-0.819412\pi\)
−0.843337 + 0.537384i \(0.819412\pi\)
\(542\) −25.6847 −1.10325
\(543\) −27.8617 −1.19566
\(544\) 0.561553 0.0240764
\(545\) −12.6307 −0.541039
\(546\) 0.807764 0.0345691
\(547\) −42.7386 −1.82737 −0.913686 0.406421i \(-0.866777\pi\)
−0.913686 + 0.406421i \(0.866777\pi\)
\(548\) 12.5616 0.536603
\(549\) 22.2462 0.949445
\(550\) 1.00000 0.0426401
\(551\) 5.68466 0.242175
\(552\) −3.68466 −0.156829
\(553\) 2.24621 0.0955186
\(554\) −8.49242 −0.360808
\(555\) −26.2462 −1.11409
\(556\) 7.36932 0.312529
\(557\) 17.1231 0.725529 0.362765 0.931881i \(-0.381833\pi\)
0.362765 + 0.931881i \(0.381833\pi\)
\(558\) −7.12311 −0.301545
\(559\) 0 0
\(560\) −1.12311 −0.0474599
\(561\) −1.43845 −0.0607313
\(562\) 25.3693 1.07014
\(563\) −42.7386 −1.80122 −0.900609 0.434630i \(-0.856879\pi\)
−0.900609 + 0.434630i \(0.856879\pi\)
\(564\) 20.4924 0.862887
\(565\) −6.24621 −0.262780
\(566\) −11.3693 −0.477888
\(567\) 3.93087 0.165081
\(568\) −6.00000 −0.251754
\(569\) −21.3693 −0.895848 −0.447924 0.894072i \(-0.647837\pi\)
−0.447924 + 0.894072i \(0.647837\pi\)
\(570\) 5.12311 0.214583
\(571\) −5.61553 −0.235003 −0.117501 0.993073i \(-0.537488\pi\)
−0.117501 + 0.993073i \(0.537488\pi\)
\(572\) 0.561553 0.0234797
\(573\) −21.3002 −0.889828
\(574\) 1.12311 0.0468775
\(575\) −1.43845 −0.0599874
\(576\) 3.56155 0.148398
\(577\) 41.0540 1.70910 0.854550 0.519370i \(-0.173833\pi\)
0.854550 + 0.519370i \(0.173833\pi\)
\(578\) 16.6847 0.693990
\(579\) 18.2462 0.758287
\(580\) −11.3693 −0.472085
\(581\) −8.00000 −0.331896
\(582\) 18.2462 0.756330
\(583\) 12.8078 0.530443
\(584\) 9.68466 0.400754
\(585\) 4.00000 0.165380
\(586\) −3.93087 −0.162383
\(587\) −40.4924 −1.67130 −0.835651 0.549261i \(-0.814909\pi\)
−0.835651 + 0.549261i \(0.814909\pi\)
\(588\) −17.1231 −0.706145
\(589\) −2.00000 −0.0824086
\(590\) 15.3693 0.632745
\(591\) 46.7386 1.92257
\(592\) −5.12311 −0.210558
\(593\) 34.0000 1.39621 0.698106 0.715994i \(-0.254026\pi\)
0.698106 + 0.715994i \(0.254026\pi\)
\(594\) −1.43845 −0.0590202
\(595\) 0.630683 0.0258555
\(596\) −6.87689 −0.281689
\(597\) 29.9309 1.22499
\(598\) −0.807764 −0.0330319
\(599\) −17.8617 −0.729811 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(600\) 2.56155 0.104575
\(601\) 21.3693 0.871673 0.435836 0.900026i \(-0.356453\pi\)
0.435836 + 0.900026i \(0.356453\pi\)
\(602\) 0 0
\(603\) −27.3693 −1.11456
\(604\) 4.00000 0.162758
\(605\) 2.00000 0.0813116
\(606\) 17.6155 0.715582
\(607\) −13.6155 −0.552637 −0.276319 0.961066i \(-0.589115\pi\)
−0.276319 + 0.961066i \(0.589115\pi\)
\(608\) 1.00000 0.0405554
\(609\) 8.17708 0.331352
\(610\) −12.4924 −0.505803
\(611\) 4.49242 0.181744
\(612\) −2.00000 −0.0808452
\(613\) 18.2462 0.736958 0.368479 0.929636i \(-0.379879\pi\)
0.368479 + 0.929636i \(0.379879\pi\)
\(614\) 22.2462 0.897784
\(615\) 10.2462 0.413167
\(616\) 0.561553 0.0226256
\(617\) 44.7386 1.80111 0.900555 0.434743i \(-0.143161\pi\)
0.900555 + 0.434743i \(0.143161\pi\)
\(618\) 34.2462 1.37758
\(619\) −9.75379 −0.392038 −0.196019 0.980600i \(-0.562801\pi\)
−0.196019 + 0.980600i \(0.562801\pi\)
\(620\) 4.00000 0.160644
\(621\) 2.06913 0.0830313
\(622\) 4.80776 0.192774
\(623\) 0.492423 0.0197285
\(624\) 1.43845 0.0575840
\(625\) −19.0000 −0.760000
\(626\) 0.561553 0.0224442
\(627\) −2.56155 −0.102299
\(628\) −14.4924 −0.578311
\(629\) 2.87689 0.114709
\(630\) 4.00000 0.159364
\(631\) 3.50758 0.139634 0.0698172 0.997560i \(-0.477758\pi\)
0.0698172 + 0.997560i \(0.477758\pi\)
\(632\) 4.00000 0.159111
\(633\) −0.807764 −0.0321057
\(634\) 7.05398 0.280149
\(635\) 4.49242 0.178276
\(636\) 32.8078 1.30091
\(637\) −3.75379 −0.148731
\(638\) 5.68466 0.225058
\(639\) 21.3693 0.845357
\(640\) −2.00000 −0.0790569
\(641\) 31.6155 1.24874 0.624369 0.781129i \(-0.285356\pi\)
0.624369 + 0.781129i \(0.285356\pi\)
\(642\) 25.4384 1.00398
\(643\) −12.6307 −0.498106 −0.249053 0.968490i \(-0.580119\pi\)
−0.249053 + 0.968490i \(0.580119\pi\)
\(644\) −0.807764 −0.0318304
\(645\) 0 0
\(646\) −0.561553 −0.0220940
\(647\) −47.5464 −1.86924 −0.934621 0.355646i \(-0.884261\pi\)
−0.934621 + 0.355646i \(0.884261\pi\)
\(648\) 7.00000 0.274986
\(649\) −7.68466 −0.301649
\(650\) 0.561553 0.0220259
\(651\) −2.87689 −0.112754
\(652\) 11.3693 0.445257
\(653\) −15.6155 −0.611083 −0.305541 0.952179i \(-0.598837\pi\)
−0.305541 + 0.952179i \(0.598837\pi\)
\(654\) 16.1771 0.632574
\(655\) 2.24621 0.0877667
\(656\) 2.00000 0.0780869
\(657\) −34.4924 −1.34568
\(658\) 4.49242 0.175133
\(659\) −14.4233 −0.561852 −0.280926 0.959729i \(-0.590641\pi\)
−0.280926 + 0.959729i \(0.590641\pi\)
\(660\) 5.12311 0.199417
\(661\) −26.5616 −1.03312 −0.516562 0.856250i \(-0.672789\pi\)
−0.516562 + 0.856250i \(0.672789\pi\)
\(662\) 14.5616 0.565951
\(663\) −0.807764 −0.0313710
\(664\) −14.2462 −0.552860
\(665\) 1.12311 0.0435522
\(666\) 18.2462 0.707026
\(667\) −8.17708 −0.316618
\(668\) −0.630683 −0.0244019
\(669\) 63.3693 2.45000
\(670\) 15.3693 0.593769
\(671\) 6.24621 0.241132
\(672\) 1.43845 0.0554893
\(673\) −27.1231 −1.04552 −0.522759 0.852480i \(-0.675097\pi\)
−0.522759 + 0.852480i \(0.675097\pi\)
\(674\) −11.1231 −0.428446
\(675\) −1.43845 −0.0553659
\(676\) −12.6847 −0.487871
\(677\) 6.17708 0.237405 0.118702 0.992930i \(-0.462127\pi\)
0.118702 + 0.992930i \(0.462127\pi\)
\(678\) 8.00000 0.307238
\(679\) 4.00000 0.153506
\(680\) 1.12311 0.0430691
\(681\) 72.1771 2.76583
\(682\) −2.00000 −0.0765840
\(683\) 28.4924 1.09023 0.545116 0.838361i \(-0.316486\pi\)
0.545116 + 0.838361i \(0.316486\pi\)
\(684\) −3.56155 −0.136179
\(685\) 25.1231 0.959905
\(686\) −7.68466 −0.293402
\(687\) 32.9848 1.25845
\(688\) 0 0
\(689\) 7.19224 0.274002
\(690\) −7.36932 −0.280545
\(691\) −2.38447 −0.0907096 −0.0453548 0.998971i \(-0.514442\pi\)
−0.0453548 + 0.998971i \(0.514442\pi\)
\(692\) 18.0000 0.684257
\(693\) −2.00000 −0.0759737
\(694\) −9.61553 −0.365000
\(695\) 14.7386 0.559068
\(696\) 14.5616 0.551954
\(697\) −1.12311 −0.0425407
\(698\) −21.6155 −0.818160
\(699\) −73.6155 −2.78439
\(700\) 0.561553 0.0212247
\(701\) −40.9848 −1.54798 −0.773988 0.633200i \(-0.781741\pi\)
−0.773988 + 0.633200i \(0.781741\pi\)
\(702\) −0.807764 −0.0304871
\(703\) 5.12311 0.193222
\(704\) 1.00000 0.0376889
\(705\) 40.9848 1.54358
\(706\) −22.1771 −0.834645
\(707\) 3.86174 0.145236
\(708\) −19.6847 −0.739795
\(709\) −42.4924 −1.59584 −0.797918 0.602766i \(-0.794065\pi\)
−0.797918 + 0.602766i \(0.794065\pi\)
\(710\) −12.0000 −0.450352
\(711\) −14.2462 −0.534275
\(712\) 0.876894 0.0328630
\(713\) 2.87689 0.107741
\(714\) −0.807764 −0.0302298
\(715\) 1.12311 0.0420018
\(716\) 5.75379 0.215029
\(717\) 61.3002 2.28930
\(718\) 15.9309 0.594535
\(719\) −10.5616 −0.393879 −0.196940 0.980416i \(-0.563100\pi\)
−0.196940 + 0.980416i \(0.563100\pi\)
\(720\) 7.12311 0.265462
\(721\) 7.50758 0.279597
\(722\) −1.00000 −0.0372161
\(723\) −50.2462 −1.86868
\(724\) −10.8769 −0.404237
\(725\) 5.68466 0.211123
\(726\) −2.56155 −0.0950681
\(727\) 22.4233 0.831634 0.415817 0.909448i \(-0.363496\pi\)
0.415817 + 0.909448i \(0.363496\pi\)
\(728\) 0.315342 0.0116873
\(729\) −35.9848 −1.33277
\(730\) 19.3693 0.716891
\(731\) 0 0
\(732\) 16.0000 0.591377
\(733\) 26.1080 0.964319 0.482160 0.876083i \(-0.339853\pi\)
0.482160 + 0.876083i \(0.339853\pi\)
\(734\) −30.2462 −1.11641
\(735\) −34.2462 −1.26319
\(736\) −1.43845 −0.0530219
\(737\) −7.68466 −0.283068
\(738\) −7.12311 −0.262205
\(739\) −44.9848 −1.65479 −0.827397 0.561617i \(-0.810179\pi\)
−0.827397 + 0.561617i \(0.810179\pi\)
\(740\) −10.2462 −0.376658
\(741\) −1.43845 −0.0528427
\(742\) 7.19224 0.264035
\(743\) −42.2462 −1.54986 −0.774932 0.632045i \(-0.782216\pi\)
−0.774932 + 0.632045i \(0.782216\pi\)
\(744\) −5.12311 −0.187822
\(745\) −13.7538 −0.503900
\(746\) −3.43845 −0.125890
\(747\) 50.7386 1.85643
\(748\) −0.561553 −0.0205324
\(749\) 5.57671 0.203768
\(750\) 30.7386 1.12242
\(751\) 41.2311 1.50454 0.752271 0.658853i \(-0.228958\pi\)
0.752271 + 0.658853i \(0.228958\pi\)
\(752\) 8.00000 0.291730
\(753\) 43.8617 1.59841
\(754\) 3.19224 0.116254
\(755\) 8.00000 0.291150
\(756\) −0.807764 −0.0293781
\(757\) −42.4924 −1.54441 −0.772207 0.635371i \(-0.780847\pi\)
−0.772207 + 0.635371i \(0.780847\pi\)
\(758\) −6.56155 −0.238326
\(759\) 3.68466 0.133745
\(760\) 2.00000 0.0725476
\(761\) −42.8078 −1.55178 −0.775890 0.630868i \(-0.782699\pi\)
−0.775890 + 0.630868i \(0.782699\pi\)
\(762\) −5.75379 −0.208438
\(763\) 3.54640 0.128388
\(764\) −8.31534 −0.300838
\(765\) −4.00000 −0.144620
\(766\) 2.00000 0.0722629
\(767\) −4.31534 −0.155818
\(768\) 2.56155 0.0924321
\(769\) −13.6847 −0.493481 −0.246741 0.969082i \(-0.579360\pi\)
−0.246741 + 0.969082i \(0.579360\pi\)
\(770\) 1.12311 0.0404739
\(771\) −56.3542 −2.02955
\(772\) 7.12311 0.256366
\(773\) 37.9309 1.36428 0.682139 0.731222i \(-0.261050\pi\)
0.682139 + 0.731222i \(0.261050\pi\)
\(774\) 0 0
\(775\) −2.00000 −0.0718421
\(776\) 7.12311 0.255705
\(777\) 7.36932 0.264373
\(778\) −18.0000 −0.645331
\(779\) −2.00000 −0.0716574
\(780\) 2.87689 0.103009
\(781\) 6.00000 0.214697
\(782\) 0.807764 0.0288856
\(783\) −8.17708 −0.292225
\(784\) −6.68466 −0.238738
\(785\) −28.9848 −1.03451
\(786\) −2.87689 −0.102615
\(787\) 15.6847 0.559098 0.279549 0.960131i \(-0.409815\pi\)
0.279549 + 0.960131i \(0.409815\pi\)
\(788\) 18.2462 0.649994
\(789\) 22.7386 0.809517
\(790\) 8.00000 0.284627
\(791\) 1.75379 0.0623575
\(792\) −3.56155 −0.126554
\(793\) 3.50758 0.124558
\(794\) −38.9848 −1.38352
\(795\) 65.6155 2.32714
\(796\) 11.6847 0.414152
\(797\) −15.1922 −0.538137 −0.269068 0.963121i \(-0.586716\pi\)
−0.269068 + 0.963121i \(0.586716\pi\)
\(798\) −1.43845 −0.0509205
\(799\) −4.49242 −0.158930
\(800\) 1.00000 0.0353553
\(801\) −3.12311 −0.110350
\(802\) 7.75379 0.273796
\(803\) −9.68466 −0.341764
\(804\) −19.6847 −0.694224
\(805\) −1.61553 −0.0569399
\(806\) −1.12311 −0.0395597
\(807\) 7.36932 0.259412
\(808\) 6.87689 0.241928
\(809\) 8.06913 0.283696 0.141848 0.989888i \(-0.454696\pi\)
0.141848 + 0.989888i \(0.454696\pi\)
\(810\) 14.0000 0.491910
\(811\) 8.31534 0.291991 0.145996 0.989285i \(-0.453361\pi\)
0.145996 + 0.989285i \(0.453361\pi\)
\(812\) 3.19224 0.112026
\(813\) 65.7926 2.30745
\(814\) 5.12311 0.179565
\(815\) 22.7386 0.796500
\(816\) −1.43845 −0.0503557
\(817\) 0 0
\(818\) −16.2462 −0.568035
\(819\) −1.12311 −0.0392445
\(820\) 4.00000 0.139686
\(821\) −20.9848 −0.732376 −0.366188 0.930541i \(-0.619337\pi\)
−0.366188 + 0.930541i \(0.619337\pi\)
\(822\) −32.1771 −1.12230
\(823\) −13.9309 −0.485600 −0.242800 0.970076i \(-0.578066\pi\)
−0.242800 + 0.970076i \(0.578066\pi\)
\(824\) 13.3693 0.465742
\(825\) −2.56155 −0.0891818
\(826\) −4.31534 −0.150150
\(827\) 49.9309 1.73627 0.868133 0.496331i \(-0.165320\pi\)
0.868133 + 0.496331i \(0.165320\pi\)
\(828\) 5.12311 0.178040
\(829\) 12.1771 0.422928 0.211464 0.977386i \(-0.432177\pi\)
0.211464 + 0.977386i \(0.432177\pi\)
\(830\) −28.4924 −0.988986
\(831\) 21.7538 0.754631
\(832\) 0.561553 0.0194683
\(833\) 3.75379 0.130061
\(834\) −18.8769 −0.653653
\(835\) −1.26137 −0.0436514
\(836\) −1.00000 −0.0345857
\(837\) 2.87689 0.0994400
\(838\) 14.8769 0.513914
\(839\) −7.12311 −0.245917 −0.122958 0.992412i \(-0.539238\pi\)
−0.122958 + 0.992412i \(0.539238\pi\)
\(840\) 2.87689 0.0992623
\(841\) 3.31534 0.114322
\(842\) 29.9309 1.03149
\(843\) −64.9848 −2.23820
\(844\) −0.315342 −0.0108545
\(845\) −25.3693 −0.872731
\(846\) −28.4924 −0.979590
\(847\) −0.561553 −0.0192952
\(848\) 12.8078 0.439820
\(849\) 29.1231 0.999502
\(850\) −0.561553 −0.0192611
\(851\) −7.36932 −0.252617
\(852\) 15.3693 0.526544
\(853\) −52.3542 −1.79257 −0.896286 0.443476i \(-0.853745\pi\)
−0.896286 + 0.443476i \(0.853745\pi\)
\(854\) 3.50758 0.120027
\(855\) −7.12311 −0.243605
\(856\) 9.93087 0.339430
\(857\) −10.0000 −0.341593 −0.170797 0.985306i \(-0.554634\pi\)
−0.170797 + 0.985306i \(0.554634\pi\)
\(858\) −1.43845 −0.0491078
\(859\) 15.8617 0.541196 0.270598 0.962692i \(-0.412779\pi\)
0.270598 + 0.962692i \(0.412779\pi\)
\(860\) 0 0
\(861\) −2.87689 −0.0980443
\(862\) −31.8617 −1.08522
\(863\) 0.246211 0.00838113 0.00419056 0.999991i \(-0.498666\pi\)
0.00419056 + 0.999991i \(0.498666\pi\)
\(864\) −1.43845 −0.0489370
\(865\) 36.0000 1.22404
\(866\) −6.63068 −0.225320
\(867\) −42.7386 −1.45148
\(868\) −1.12311 −0.0381207
\(869\) −4.00000 −0.135691
\(870\) 29.1231 0.987366
\(871\) −4.31534 −0.146220
\(872\) 6.31534 0.213864
\(873\) −25.3693 −0.858621
\(874\) 1.43845 0.0486562
\(875\) 6.73863 0.227807
\(876\) −24.8078 −0.838177
\(877\) −44.5616 −1.50474 −0.752368 0.658743i \(-0.771089\pi\)
−0.752368 + 0.658743i \(0.771089\pi\)
\(878\) 9.61553 0.324508
\(879\) 10.0691 0.339623
\(880\) 2.00000 0.0674200
\(881\) 20.7386 0.698702 0.349351 0.936992i \(-0.386402\pi\)
0.349351 + 0.936992i \(0.386402\pi\)
\(882\) 23.8078 0.801649
\(883\) −5.26137 −0.177059 −0.0885295 0.996074i \(-0.528217\pi\)
−0.0885295 + 0.996074i \(0.528217\pi\)
\(884\) −0.315342 −0.0106061
\(885\) −39.3693 −1.32339
\(886\) −39.8617 −1.33918
\(887\) −32.0000 −1.07445 −0.537227 0.843437i \(-0.680528\pi\)
−0.537227 + 0.843437i \(0.680528\pi\)
\(888\) 13.1231 0.440383
\(889\) −1.26137 −0.0423049
\(890\) 1.75379 0.0587871
\(891\) −7.00000 −0.234509
\(892\) 24.7386 0.828311
\(893\) −8.00000 −0.267710
\(894\) 17.6155 0.589151
\(895\) 11.5076 0.384656
\(896\) 0.561553 0.0187602
\(897\) 2.06913 0.0690863
\(898\) −23.6155 −0.788060
\(899\) −11.3693 −0.379188
\(900\) −3.56155 −0.118718
\(901\) −7.19224 −0.239608
\(902\) −2.00000 −0.0665927
\(903\) 0 0
\(904\) 3.12311 0.103873
\(905\) −21.7538 −0.723120
\(906\) −10.2462 −0.340408
\(907\) −29.7926 −0.989247 −0.494624 0.869107i \(-0.664694\pi\)
−0.494624 + 0.869107i \(0.664694\pi\)
\(908\) 28.1771 0.935089
\(909\) −24.4924 −0.812362
\(910\) 0.630683 0.0209069
\(911\) 18.9848 0.628996 0.314498 0.949258i \(-0.398164\pi\)
0.314498 + 0.949258i \(0.398164\pi\)
\(912\) −2.56155 −0.0848215
\(913\) 14.2462 0.471481
\(914\) −36.5616 −1.20935
\(915\) 32.0000 1.05789
\(916\) 12.8769 0.425465
\(917\) −0.630683 −0.0208270
\(918\) 0.807764 0.0266602
\(919\) 32.5616 1.07411 0.537053 0.843548i \(-0.319537\pi\)
0.537053 + 0.843548i \(0.319537\pi\)
\(920\) −2.87689 −0.0948484
\(921\) −56.9848 −1.87771
\(922\) −26.7386 −0.880590
\(923\) 3.36932 0.110902
\(924\) −1.43845 −0.0473214
\(925\) 5.12311 0.168447
\(926\) −3.50758 −0.115266
\(927\) −47.6155 −1.56390
\(928\) 5.68466 0.186608
\(929\) 11.9309 0.391439 0.195720 0.980660i \(-0.437296\pi\)
0.195720 + 0.980660i \(0.437296\pi\)
\(930\) −10.2462 −0.335987
\(931\) 6.68466 0.219081
\(932\) −28.7386 −0.941365
\(933\) −12.3153 −0.403186
\(934\) −9.75379 −0.319154
\(935\) −1.12311 −0.0367295
\(936\) −2.00000 −0.0653720
\(937\) −0.699813 −0.0228619 −0.0114310 0.999935i \(-0.503639\pi\)
−0.0114310 + 0.999935i \(0.503639\pi\)
\(938\) −4.31534 −0.140901
\(939\) −1.43845 −0.0469419
\(940\) 16.0000 0.521862
\(941\) 24.5616 0.800684 0.400342 0.916366i \(-0.368891\pi\)
0.400342 + 0.916366i \(0.368891\pi\)
\(942\) 37.1231 1.20954
\(943\) 2.87689 0.0936846
\(944\) −7.68466 −0.250114
\(945\) −1.61553 −0.0525531
\(946\) 0 0
\(947\) −36.9848 −1.20185 −0.600923 0.799307i \(-0.705200\pi\)
−0.600923 + 0.799307i \(0.705200\pi\)
\(948\) −10.2462 −0.332781
\(949\) −5.43845 −0.176539
\(950\) −1.00000 −0.0324443
\(951\) −18.0691 −0.585932
\(952\) −0.315342 −0.0102203
\(953\) −0.876894 −0.0284054 −0.0142027 0.999899i \(-0.504521\pi\)
−0.0142027 + 0.999899i \(0.504521\pi\)
\(954\) −45.6155 −1.47686
\(955\) −16.6307 −0.538156
\(956\) 23.9309 0.773980
\(957\) −14.5616 −0.470708
\(958\) 13.3693 0.431943
\(959\) −7.05398 −0.227785
\(960\) 5.12311 0.165348
\(961\) −27.0000 −0.870968
\(962\) 2.87689 0.0927548
\(963\) −35.3693 −1.13976
\(964\) −19.6155 −0.631774
\(965\) 14.2462 0.458602
\(966\) 2.06913 0.0665732
\(967\) 53.8617 1.73208 0.866038 0.499978i \(-0.166658\pi\)
0.866038 + 0.499978i \(0.166658\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 1.43845 0.0462096
\(970\) 14.2462 0.457418
\(971\) 2.24621 0.0720843 0.0360422 0.999350i \(-0.488525\pi\)
0.0360422 + 0.999350i \(0.488525\pi\)
\(972\) −22.2462 −0.713548
\(973\) −4.13826 −0.132667
\(974\) −31.1231 −0.997249
\(975\) −1.43845 −0.0460672
\(976\) 6.24621 0.199936
\(977\) 30.6307 0.979962 0.489981 0.871733i \(-0.337004\pi\)
0.489981 + 0.871733i \(0.337004\pi\)
\(978\) −29.1231 −0.931254
\(979\) −0.876894 −0.0280257
\(980\) −13.3693 −0.427067
\(981\) −22.4924 −0.718128
\(982\) 39.3693 1.25633
\(983\) −31.7538 −1.01279 −0.506394 0.862302i \(-0.669022\pi\)
−0.506394 + 0.862302i \(0.669022\pi\)
\(984\) −5.12311 −0.163319
\(985\) 36.4924 1.16275
\(986\) −3.19224 −0.101662
\(987\) −11.5076 −0.366290
\(988\) −0.561553 −0.0178654
\(989\) 0 0
\(990\) −7.12311 −0.226387
\(991\) 12.8769 0.409048 0.204524 0.978862i \(-0.434435\pi\)
0.204524 + 0.978862i \(0.434435\pi\)
\(992\) −2.00000 −0.0635001
\(993\) −37.3002 −1.18369
\(994\) 3.36932 0.106868
\(995\) 23.3693 0.740857
\(996\) 36.4924 1.15631
\(997\) −28.6307 −0.906743 −0.453371 0.891322i \(-0.649779\pi\)
−0.453371 + 0.891322i \(0.649779\pi\)
\(998\) −9.75379 −0.308751
\(999\) −7.36932 −0.233155
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 418.2.a.e.1.2 2
3.2 odd 2 3762.2.a.y.1.1 2
4.3 odd 2 3344.2.a.k.1.1 2
11.10 odd 2 4598.2.a.bj.1.2 2
19.18 odd 2 7942.2.a.x.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
418.2.a.e.1.2 2 1.1 even 1 trivial
3344.2.a.k.1.1 2 4.3 odd 2
3762.2.a.y.1.1 2 3.2 odd 2
4598.2.a.bj.1.2 2 11.10 odd 2
7942.2.a.x.1.1 2 19.18 odd 2