Defining parameters
| Level: | \( N \) | \(=\) | \( 4176 = 2^{4} \cdot 3^{2} \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4176.cg (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 261 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Sturm bound: | \(1440\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4176, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 2928 | 728 | 2200 |
| Cusp forms | 2832 | 712 | 2120 |
| Eisenstein series | 96 | 16 | 80 |
Decomposition of \(S_{2}^{\mathrm{new}}(4176, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4176, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4176, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(522, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1044, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2088, [\chi])\)\(^{\oplus 2}\)