# Properties

 Label 4176.2.a.n.1.1 Level $4176$ Weight $2$ Character 4176.1 Self dual yes Analytic conductor $33.346$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4176 = 2^{4} \cdot 3^{2} \cdot 29$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4176.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$33.3455278841$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 58) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 4176.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000 q^{5} +2.00000 q^{7} +O(q^{10})$$ $$q-1.00000 q^{5} +2.00000 q^{7} -3.00000 q^{11} -1.00000 q^{13} -8.00000 q^{17} +4.00000 q^{23} -4.00000 q^{25} +1.00000 q^{29} +3.00000 q^{31} -2.00000 q^{35} +8.00000 q^{37} -2.00000 q^{41} +11.0000 q^{43} +13.0000 q^{47} -3.00000 q^{49} +11.0000 q^{53} +3.00000 q^{55} -8.00000 q^{61} +1.00000 q^{65} +12.0000 q^{67} +2.00000 q^{71} +4.00000 q^{73} -6.00000 q^{77} -15.0000 q^{79} +4.00000 q^{83} +8.00000 q^{85} +10.0000 q^{89} -2.00000 q^{91} -2.00000 q^{97} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −1.00000 −0.447214 −0.223607 0.974679i $$-0.571783\pi$$
−0.223607 + 0.974679i $$0.571783\pi$$
$$6$$ 0 0
$$7$$ 2.00000 0.755929 0.377964 0.925820i $$-0.376624\pi$$
0.377964 + 0.925820i $$0.376624\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −3.00000 −0.904534 −0.452267 0.891883i $$-0.649385\pi$$
−0.452267 + 0.891883i $$0.649385\pi$$
$$12$$ 0 0
$$13$$ −1.00000 −0.277350 −0.138675 0.990338i $$-0.544284\pi$$
−0.138675 + 0.990338i $$0.544284\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −8.00000 −1.94029 −0.970143 0.242536i $$-0.922021\pi$$
−0.970143 + 0.242536i $$0.922021\pi$$
$$18$$ 0 0
$$19$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 4.00000 0.834058 0.417029 0.908893i $$-0.363071\pi$$
0.417029 + 0.908893i $$0.363071\pi$$
$$24$$ 0 0
$$25$$ −4.00000 −0.800000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 1.00000 0.185695
$$30$$ 0 0
$$31$$ 3.00000 0.538816 0.269408 0.963026i $$-0.413172\pi$$
0.269408 + 0.963026i $$0.413172\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ −2.00000 −0.338062
$$36$$ 0 0
$$37$$ 8.00000 1.31519 0.657596 0.753371i $$-0.271573\pi$$
0.657596 + 0.753371i $$0.271573\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −2.00000 −0.312348 −0.156174 0.987730i $$-0.549916\pi$$
−0.156174 + 0.987730i $$0.549916\pi$$
$$42$$ 0 0
$$43$$ 11.0000 1.67748 0.838742 0.544529i $$-0.183292\pi$$
0.838742 + 0.544529i $$0.183292\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 13.0000 1.89624 0.948122 0.317905i $$-0.102979\pi$$
0.948122 + 0.317905i $$0.102979\pi$$
$$48$$ 0 0
$$49$$ −3.00000 −0.428571
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 11.0000 1.51097 0.755483 0.655168i $$-0.227402\pi$$
0.755483 + 0.655168i $$0.227402\pi$$
$$54$$ 0 0
$$55$$ 3.00000 0.404520
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$60$$ 0 0
$$61$$ −8.00000 −1.02430 −0.512148 0.858898i $$-0.671150\pi$$
−0.512148 + 0.858898i $$0.671150\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 1.00000 0.124035
$$66$$ 0 0
$$67$$ 12.0000 1.46603 0.733017 0.680211i $$-0.238112\pi$$
0.733017 + 0.680211i $$0.238112\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 2.00000 0.237356 0.118678 0.992933i $$-0.462134\pi$$
0.118678 + 0.992933i $$0.462134\pi$$
$$72$$ 0 0
$$73$$ 4.00000 0.468165 0.234082 0.972217i $$-0.424791\pi$$
0.234082 + 0.972217i $$0.424791\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −6.00000 −0.683763
$$78$$ 0 0
$$79$$ −15.0000 −1.68763 −0.843816 0.536633i $$-0.819696\pi$$
−0.843816 + 0.536633i $$0.819696\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 4.00000 0.439057 0.219529 0.975606i $$-0.429548\pi$$
0.219529 + 0.975606i $$0.429548\pi$$
$$84$$ 0 0
$$85$$ 8.00000 0.867722
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 10.0000 1.06000 0.529999 0.847998i $$-0.322192\pi$$
0.529999 + 0.847998i $$0.322192\pi$$
$$90$$ 0 0
$$91$$ −2.00000 −0.209657
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −2.00000 −0.203069 −0.101535 0.994832i $$-0.532375\pi$$
−0.101535 + 0.994832i $$0.532375\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 8.00000 0.796030 0.398015 0.917379i $$-0.369699\pi$$
0.398015 + 0.917379i $$0.369699\pi$$
$$102$$ 0 0
$$103$$ −14.0000 −1.37946 −0.689730 0.724066i $$-0.742271\pi$$
−0.689730 + 0.724066i $$0.742271\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −2.00000 −0.193347 −0.0966736 0.995316i $$-0.530820\pi$$
−0.0966736 + 0.995316i $$0.530820\pi$$
$$108$$ 0 0
$$109$$ 5.00000 0.478913 0.239457 0.970907i $$-0.423031\pi$$
0.239457 + 0.970907i $$0.423031\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 6.00000 0.564433 0.282216 0.959351i $$-0.408930\pi$$
0.282216 + 0.959351i $$0.408930\pi$$
$$114$$ 0 0
$$115$$ −4.00000 −0.373002
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ −16.0000 −1.46672
$$120$$ 0 0
$$121$$ −2.00000 −0.181818
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 9.00000 0.804984
$$126$$ 0 0
$$127$$ −8.00000 −0.709885 −0.354943 0.934888i $$-0.615500\pi$$
−0.354943 + 0.934888i $$0.615500\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 12.0000 1.04844 0.524222 0.851581i $$-0.324356\pi$$
0.524222 + 0.851581i $$0.324356\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 12.0000 1.02523 0.512615 0.858619i $$-0.328677\pi$$
0.512615 + 0.858619i $$0.328677\pi$$
$$138$$ 0 0
$$139$$ 20.0000 1.69638 0.848189 0.529694i $$-0.177693\pi$$
0.848189 + 0.529694i $$0.177693\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 3.00000 0.250873
$$144$$ 0 0
$$145$$ −1.00000 −0.0830455
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ −15.0000 −1.22885 −0.614424 0.788976i $$-0.710612\pi$$
−0.614424 + 0.788976i $$0.710612\pi$$
$$150$$ 0 0
$$151$$ −2.00000 −0.162758 −0.0813788 0.996683i $$-0.525932\pi$$
−0.0813788 + 0.996683i $$0.525932\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −3.00000 −0.240966
$$156$$ 0 0
$$157$$ 18.0000 1.43656 0.718278 0.695756i $$-0.244931\pi$$
0.718278 + 0.695756i $$0.244931\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 8.00000 0.630488
$$162$$ 0 0
$$163$$ −9.00000 −0.704934 −0.352467 0.935824i $$-0.614657\pi$$
−0.352467 + 0.935824i $$0.614657\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −2.00000 −0.154765 −0.0773823 0.997001i $$-0.524656\pi$$
−0.0773823 + 0.997001i $$0.524656\pi$$
$$168$$ 0 0
$$169$$ −12.0000 −0.923077
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 6.00000 0.456172 0.228086 0.973641i $$-0.426753\pi$$
0.228086 + 0.973641i $$0.426753\pi$$
$$174$$ 0 0
$$175$$ −8.00000 −0.604743
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −10.0000 −0.747435 −0.373718 0.927543i $$-0.621917\pi$$
−0.373718 + 0.927543i $$0.621917\pi$$
$$180$$ 0 0
$$181$$ 7.00000 0.520306 0.260153 0.965567i $$-0.416227\pi$$
0.260153 + 0.965567i $$0.416227\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −8.00000 −0.588172
$$186$$ 0 0
$$187$$ 24.0000 1.75505
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −8.00000 −0.578860 −0.289430 0.957199i $$-0.593466\pi$$
−0.289430 + 0.957199i $$0.593466\pi$$
$$192$$ 0 0
$$193$$ 14.0000 1.00774 0.503871 0.863779i $$-0.331909\pi$$
0.503871 + 0.863779i $$0.331909\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −18.0000 −1.28245 −0.641223 0.767354i $$-0.721573\pi$$
−0.641223 + 0.767354i $$0.721573\pi$$
$$198$$ 0 0
$$199$$ 10.0000 0.708881 0.354441 0.935079i $$-0.384671\pi$$
0.354441 + 0.935079i $$0.384671\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 2.00000 0.140372
$$204$$ 0 0
$$205$$ 2.00000 0.139686
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 3.00000 0.206529 0.103264 0.994654i $$-0.467071\pi$$
0.103264 + 0.994654i $$0.467071\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ −11.0000 −0.750194
$$216$$ 0 0
$$217$$ 6.00000 0.407307
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 8.00000 0.538138
$$222$$ 0 0
$$223$$ 26.0000 1.74109 0.870544 0.492090i $$-0.163767\pi$$
0.870544 + 0.492090i $$0.163767\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 18.0000 1.19470 0.597351 0.801980i $$-0.296220\pi$$
0.597351 + 0.801980i $$0.296220\pi$$
$$228$$ 0 0
$$229$$ 10.0000 0.660819 0.330409 0.943838i $$-0.392813\pi$$
0.330409 + 0.943838i $$0.392813\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 1.00000 0.0655122 0.0327561 0.999463i $$-0.489572\pi$$
0.0327561 + 0.999463i $$0.489572\pi$$
$$234$$ 0 0
$$235$$ −13.0000 −0.848026
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ 17.0000 1.09507 0.547533 0.836784i $$-0.315567\pi$$
0.547533 + 0.836784i $$0.315567\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 3.00000 0.191663
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 27.0000 1.70422 0.852112 0.523359i $$-0.175321\pi$$
0.852112 + 0.523359i $$0.175321\pi$$
$$252$$ 0 0
$$253$$ −12.0000 −0.754434
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −13.0000 −0.810918 −0.405459 0.914113i $$-0.632888\pi$$
−0.405459 + 0.914113i $$0.632888\pi$$
$$258$$ 0 0
$$259$$ 16.0000 0.994192
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 9.00000 0.554964 0.277482 0.960731i $$-0.410500\pi$$
0.277482 + 0.960731i $$0.410500\pi$$
$$264$$ 0 0
$$265$$ −11.0000 −0.675725
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$270$$ 0 0
$$271$$ 13.0000 0.789694 0.394847 0.918747i $$-0.370798\pi$$
0.394847 + 0.918747i $$0.370798\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 12.0000 0.723627
$$276$$ 0 0
$$277$$ −2.00000 −0.120168 −0.0600842 0.998193i $$-0.519137\pi$$
−0.0600842 + 0.998193i $$0.519137\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −27.0000 −1.61068 −0.805342 0.592810i $$-0.798019\pi$$
−0.805342 + 0.592810i $$0.798019\pi$$
$$282$$ 0 0
$$283$$ −4.00000 −0.237775 −0.118888 0.992908i $$-0.537933\pi$$
−0.118888 + 0.992908i $$0.537933\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −4.00000 −0.236113
$$288$$ 0 0
$$289$$ 47.0000 2.76471
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ −14.0000 −0.817889 −0.408944 0.912559i $$-0.634103\pi$$
−0.408944 + 0.912559i $$0.634103\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −4.00000 −0.231326
$$300$$ 0 0
$$301$$ 22.0000 1.26806
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 8.00000 0.458079
$$306$$ 0 0
$$307$$ 7.00000 0.399511 0.199756 0.979846i $$-0.435985\pi$$
0.199756 + 0.979846i $$0.435985\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −8.00000 −0.453638 −0.226819 0.973937i $$-0.572833\pi$$
−0.226819 + 0.973937i $$0.572833\pi$$
$$312$$ 0 0
$$313$$ 9.00000 0.508710 0.254355 0.967111i $$-0.418137\pi$$
0.254355 + 0.967111i $$0.418137\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 12.0000 0.673987 0.336994 0.941507i $$-0.390590\pi$$
0.336994 + 0.941507i $$0.390590\pi$$
$$318$$ 0 0
$$319$$ −3.00000 −0.167968
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 0 0
$$325$$ 4.00000 0.221880
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 26.0000 1.43343
$$330$$ 0 0
$$331$$ 23.0000 1.26419 0.632097 0.774889i $$-0.282194\pi$$
0.632097 + 0.774889i $$0.282194\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ −12.0000 −0.655630
$$336$$ 0 0
$$337$$ −32.0000 −1.74315 −0.871576 0.490261i $$-0.836901\pi$$
−0.871576 + 0.490261i $$0.836901\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ −9.00000 −0.487377
$$342$$ 0 0
$$343$$ −20.0000 −1.07990
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −2.00000 −0.107366 −0.0536828 0.998558i $$-0.517096\pi$$
−0.0536828 + 0.998558i $$0.517096\pi$$
$$348$$ 0 0
$$349$$ −15.0000 −0.802932 −0.401466 0.915874i $$-0.631499\pi$$
−0.401466 + 0.915874i $$0.631499\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 26.0000 1.38384 0.691920 0.721974i $$-0.256765\pi$$
0.691920 + 0.721974i $$0.256765\pi$$
$$354$$ 0 0
$$355$$ −2.00000 −0.106149
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −25.0000 −1.31945 −0.659725 0.751507i $$-0.729327\pi$$
−0.659725 + 0.751507i $$0.729327\pi$$
$$360$$ 0 0
$$361$$ −19.0000 −1.00000
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ −4.00000 −0.209370
$$366$$ 0 0
$$367$$ 32.0000 1.67039 0.835193 0.549957i $$-0.185356\pi$$
0.835193 + 0.549957i $$0.185356\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 22.0000 1.14218
$$372$$ 0 0
$$373$$ −21.0000 −1.08734 −0.543669 0.839299i $$-0.682965\pi$$
−0.543669 + 0.839299i $$0.682965\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −1.00000 −0.0515026
$$378$$ 0 0
$$379$$ −20.0000 −1.02733 −0.513665 0.857991i $$-0.671713\pi$$
−0.513665 + 0.857991i $$0.671713\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 14.0000 0.715367 0.357683 0.933843i $$-0.383567\pi$$
0.357683 + 0.933843i $$0.383567\pi$$
$$384$$ 0 0
$$385$$ 6.00000 0.305788
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$390$$ 0 0
$$391$$ −32.0000 −1.61831
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 15.0000 0.754732
$$396$$ 0 0
$$397$$ −17.0000 −0.853206 −0.426603 0.904439i $$-0.640290\pi$$
−0.426603 + 0.904439i $$0.640290\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −27.0000 −1.34832 −0.674158 0.738587i $$-0.735493\pi$$
−0.674158 + 0.738587i $$0.735493\pi$$
$$402$$ 0 0
$$403$$ −3.00000 −0.149441
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ −24.0000 −1.18964
$$408$$ 0 0
$$409$$ 30.0000 1.48340 0.741702 0.670729i $$-0.234019\pi$$
0.741702 + 0.670729i $$0.234019\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −4.00000 −0.196352
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −10.0000 −0.488532 −0.244266 0.969708i $$-0.578547\pi$$
−0.244266 + 0.969708i $$0.578547\pi$$
$$420$$ 0 0
$$421$$ 32.0000 1.55958 0.779792 0.626038i $$-0.215325\pi$$
0.779792 + 0.626038i $$0.215325\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 32.0000 1.55223
$$426$$ 0 0
$$427$$ −16.0000 −0.774294
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 32.0000 1.54139 0.770693 0.637207i $$-0.219910\pi$$
0.770693 + 0.637207i $$0.219910\pi$$
$$432$$ 0 0
$$433$$ −16.0000 −0.768911 −0.384455 0.923144i $$-0.625611\pi$$
−0.384455 + 0.923144i $$0.625611\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ −20.0000 −0.954548 −0.477274 0.878755i $$-0.658375\pi$$
−0.477274 + 0.878755i $$0.658375\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 4.00000 0.190046 0.0950229 0.995475i $$-0.469708\pi$$
0.0950229 + 0.995475i $$0.469708\pi$$
$$444$$ 0 0
$$445$$ −10.0000 −0.474045
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 10.0000 0.471929 0.235965 0.971762i $$-0.424175\pi$$
0.235965 + 0.971762i $$0.424175\pi$$
$$450$$ 0 0
$$451$$ 6.00000 0.282529
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 2.00000 0.0937614
$$456$$ 0 0
$$457$$ −2.00000 −0.0935561 −0.0467780 0.998905i $$-0.514895\pi$$
−0.0467780 + 0.998905i $$0.514895\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −2.00000 −0.0931493 −0.0465746 0.998915i $$-0.514831\pi$$
−0.0465746 + 0.998915i $$0.514831\pi$$
$$462$$ 0 0
$$463$$ −4.00000 −0.185896 −0.0929479 0.995671i $$-0.529629\pi$$
−0.0929479 + 0.995671i $$0.529629\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −27.0000 −1.24941 −0.624705 0.780860i $$-0.714781\pi$$
−0.624705 + 0.780860i $$0.714781\pi$$
$$468$$ 0 0
$$469$$ 24.0000 1.10822
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −33.0000 −1.51734
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −5.00000 −0.228456 −0.114228 0.993455i $$-0.536439\pi$$
−0.114228 + 0.993455i $$0.536439\pi$$
$$480$$ 0 0
$$481$$ −8.00000 −0.364769
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 2.00000 0.0908153
$$486$$ 0 0
$$487$$ 22.0000 0.996915 0.498458 0.866914i $$-0.333900\pi$$
0.498458 + 0.866914i $$0.333900\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −33.0000 −1.48927 −0.744635 0.667472i $$-0.767376\pi$$
−0.744635 + 0.667472i $$0.767376\pi$$
$$492$$ 0 0
$$493$$ −8.00000 −0.360302
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 4.00000 0.179425
$$498$$ 0 0
$$499$$ 20.0000 0.895323 0.447661 0.894203i $$-0.352257\pi$$
0.447661 + 0.894203i $$0.352257\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 19.0000 0.847168 0.423584 0.905857i $$-0.360772\pi$$
0.423584 + 0.905857i $$0.360772\pi$$
$$504$$ 0 0
$$505$$ −8.00000 −0.355995
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 15.0000 0.664863 0.332432 0.943127i $$-0.392131\pi$$
0.332432 + 0.943127i $$0.392131\pi$$
$$510$$ 0 0
$$511$$ 8.00000 0.353899
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 14.0000 0.616914
$$516$$ 0 0
$$517$$ −39.0000 −1.71522
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 13.0000 0.569540 0.284770 0.958596i $$-0.408083\pi$$
0.284770 + 0.958596i $$0.408083\pi$$
$$522$$ 0 0
$$523$$ −24.0000 −1.04945 −0.524723 0.851273i $$-0.675831\pi$$
−0.524723 + 0.851273i $$0.675831\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −24.0000 −1.04546
$$528$$ 0 0
$$529$$ −7.00000 −0.304348
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 2.00000 0.0866296
$$534$$ 0 0
$$535$$ 2.00000 0.0864675
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 9.00000 0.387657
$$540$$ 0 0
$$541$$ −8.00000 −0.343947 −0.171973 0.985102i $$-0.555014\pi$$
−0.171973 + 0.985102i $$0.555014\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ −5.00000 −0.214176
$$546$$ 0 0
$$547$$ −38.0000 −1.62476 −0.812381 0.583127i $$-0.801829\pi$$
−0.812381 + 0.583127i $$0.801829\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ −30.0000 −1.27573
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 2.00000 0.0847427 0.0423714 0.999102i $$-0.486509\pi$$
0.0423714 + 0.999102i $$0.486509\pi$$
$$558$$ 0 0
$$559$$ −11.0000 −0.465250
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −11.0000 −0.463595 −0.231797 0.972764i $$-0.574461\pi$$
−0.231797 + 0.972764i $$0.574461\pi$$
$$564$$ 0 0
$$565$$ −6.00000 −0.252422
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 30.0000 1.25767 0.628833 0.777541i $$-0.283533\pi$$
0.628833 + 0.777541i $$0.283533\pi$$
$$570$$ 0 0
$$571$$ 28.0000 1.17176 0.585882 0.810397i $$-0.300748\pi$$
0.585882 + 0.810397i $$0.300748\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ −16.0000 −0.667246
$$576$$ 0 0
$$577$$ 8.00000 0.333044 0.166522 0.986038i $$-0.446746\pi$$
0.166522 + 0.986038i $$0.446746\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 8.00000 0.331896
$$582$$ 0 0
$$583$$ −33.0000 −1.36672
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 28.0000 1.15568 0.577842 0.816149i $$-0.303895\pi$$
0.577842 + 0.816149i $$0.303895\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ −39.0000 −1.60154 −0.800769 0.598973i $$-0.795576\pi$$
−0.800769 + 0.598973i $$0.795576\pi$$
$$594$$ 0 0
$$595$$ 16.0000 0.655936
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −5.00000 −0.204294 −0.102147 0.994769i $$-0.532571\pi$$
−0.102147 + 0.994769i $$0.532571\pi$$
$$600$$ 0 0
$$601$$ 2.00000 0.0815817 0.0407909 0.999168i $$-0.487012\pi$$
0.0407909 + 0.999168i $$0.487012\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 2.00000 0.0813116
$$606$$ 0 0
$$607$$ −3.00000 −0.121766 −0.0608831 0.998145i $$-0.519392\pi$$
−0.0608831 + 0.998145i $$0.519392\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −13.0000 −0.525924
$$612$$ 0 0
$$613$$ −31.0000 −1.25208 −0.626039 0.779792i $$-0.715325\pi$$
−0.626039 + 0.779792i $$0.715325\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 12.0000 0.483102 0.241551 0.970388i $$-0.422344\pi$$
0.241551 + 0.970388i $$0.422344\pi$$
$$618$$ 0 0
$$619$$ 35.0000 1.40677 0.703384 0.710810i $$-0.251671\pi$$
0.703384 + 0.710810i $$0.251671\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 20.0000 0.801283
$$624$$ 0 0
$$625$$ 11.0000 0.440000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −64.0000 −2.55185
$$630$$ 0 0
$$631$$ 38.0000 1.51276 0.756378 0.654135i $$-0.226967\pi$$
0.756378 + 0.654135i $$0.226967\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 8.00000 0.317470
$$636$$ 0 0
$$637$$ 3.00000 0.118864
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 8.00000 0.315981 0.157991 0.987441i $$-0.449498\pi$$
0.157991 + 0.987441i $$0.449498\pi$$
$$642$$ 0 0
$$643$$ −34.0000 −1.34083 −0.670415 0.741987i $$-0.733884\pi$$
−0.670415 + 0.741987i $$0.733884\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −32.0000 −1.25805 −0.629025 0.777385i $$-0.716546\pi$$
−0.629025 + 0.777385i $$0.716546\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 26.0000 1.01746 0.508729 0.860927i $$-0.330115\pi$$
0.508729 + 0.860927i $$0.330115\pi$$
$$654$$ 0 0
$$655$$ −12.0000 −0.468879
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 15.0000 0.584317 0.292159 0.956370i $$-0.405627\pi$$
0.292159 + 0.956370i $$0.405627\pi$$
$$660$$ 0 0
$$661$$ −18.0000 −0.700119 −0.350059 0.936727i $$-0.613839\pi$$
−0.350059 + 0.936727i $$0.613839\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 4.00000 0.154881
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 24.0000 0.926510
$$672$$ 0 0
$$673$$ 9.00000 0.346925 0.173462 0.984841i $$-0.444505\pi$$
0.173462 + 0.984841i $$0.444505\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −38.0000 −1.46046 −0.730229 0.683202i $$-0.760587\pi$$
−0.730229 + 0.683202i $$0.760587\pi$$
$$678$$ 0 0
$$679$$ −4.00000 −0.153506
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 24.0000 0.918334 0.459167 0.888350i $$-0.348148\pi$$
0.459167 + 0.888350i $$0.348148\pi$$
$$684$$ 0 0
$$685$$ −12.0000 −0.458496
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ −11.0000 −0.419067
$$690$$ 0 0
$$691$$ 28.0000 1.06517 0.532585 0.846376i $$-0.321221\pi$$
0.532585 + 0.846376i $$0.321221\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −20.0000 −0.758643
$$696$$ 0 0
$$697$$ 16.0000 0.606043
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −27.0000 −1.01978 −0.509888 0.860241i $$-0.670313\pi$$
−0.509888 + 0.860241i $$0.670313\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 16.0000 0.601742
$$708$$ 0 0
$$709$$ 15.0000 0.563337 0.281668 0.959512i $$-0.409112\pi$$
0.281668 + 0.959512i $$0.409112\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 12.0000 0.449404
$$714$$ 0 0
$$715$$ −3.00000 −0.112194
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −50.0000 −1.86469 −0.932343 0.361576i $$-0.882239\pi$$
−0.932343 + 0.361576i $$0.882239\pi$$
$$720$$ 0 0
$$721$$ −28.0000 −1.04277
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ −4.00000 −0.148556
$$726$$ 0 0
$$727$$ −8.00000 −0.296704 −0.148352 0.988935i $$-0.547397\pi$$
−0.148352 + 0.988935i $$0.547397\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ −88.0000 −3.25480
$$732$$ 0 0
$$733$$ 24.0000 0.886460 0.443230 0.896408i $$-0.353832\pi$$
0.443230 + 0.896408i $$0.353832\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −36.0000 −1.32608
$$738$$ 0 0
$$739$$ 5.00000 0.183928 0.0919640 0.995762i $$-0.470686\pi$$
0.0919640 + 0.995762i $$0.470686\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 44.0000 1.61420 0.807102 0.590412i $$-0.201035\pi$$
0.807102 + 0.590412i $$0.201035\pi$$
$$744$$ 0 0
$$745$$ 15.0000 0.549557
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −4.00000 −0.146157
$$750$$ 0 0
$$751$$ −32.0000 −1.16770 −0.583848 0.811863i $$-0.698454\pi$$
−0.583848 + 0.811863i $$0.698454\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 2.00000 0.0727875
$$756$$ 0 0
$$757$$ 8.00000 0.290765 0.145382 0.989376i $$-0.453559\pi$$
0.145382 + 0.989376i $$0.453559\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −42.0000 −1.52250 −0.761249 0.648459i $$-0.775414\pi$$
−0.761249 + 0.648459i $$0.775414\pi$$
$$762$$ 0 0
$$763$$ 10.0000 0.362024
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ −20.0000 −0.721218 −0.360609 0.932717i $$-0.617431\pi$$
−0.360609 + 0.932717i $$0.617431\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −14.0000 −0.503545 −0.251773 0.967786i $$-0.581013\pi$$
−0.251773 + 0.967786i $$0.581013\pi$$
$$774$$ 0 0
$$775$$ −12.0000 −0.431053
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ −6.00000 −0.214697
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ −18.0000 −0.642448
$$786$$ 0 0
$$787$$ 22.0000 0.784215 0.392108 0.919919i $$-0.371746\pi$$
0.392108 + 0.919919i $$0.371746\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 12.0000 0.426671
$$792$$ 0 0
$$793$$ 8.00000 0.284088
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 32.0000 1.13350 0.566749 0.823890i $$-0.308201\pi$$
0.566749 + 0.823890i $$0.308201\pi$$
$$798$$ 0 0
$$799$$ −104.000 −3.67926
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −12.0000 −0.423471
$$804$$ 0 0
$$805$$ −8.00000 −0.281963
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$810$$ 0 0
$$811$$ 18.0000 0.632065 0.316033 0.948748i $$-0.397649\pi$$
0.316033 + 0.948748i $$0.397649\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 9.00000 0.315256
$$816$$ 0 0
$$817$$ 0 0
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 33.0000 1.15171 0.575854 0.817553i $$-0.304670\pi$$
0.575854 + 0.817553i $$0.304670\pi$$
$$822$$ 0 0
$$823$$ 16.0000 0.557725 0.278862 0.960331i $$-0.410043\pi$$
0.278862 + 0.960331i $$0.410043\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 13.0000 0.452054 0.226027 0.974121i $$-0.427426\pi$$
0.226027 + 0.974121i $$0.427426\pi$$
$$828$$ 0 0
$$829$$ 40.0000 1.38926 0.694629 0.719368i $$-0.255569\pi$$
0.694629 + 0.719368i $$0.255569\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 24.0000 0.831551
$$834$$ 0 0
$$835$$ 2.00000 0.0692129
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 45.0000 1.55357 0.776786 0.629764i $$-0.216849\pi$$
0.776786 + 0.629764i $$0.216849\pi$$
$$840$$ 0 0
$$841$$ 1.00000 0.0344828
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 12.0000 0.412813
$$846$$ 0 0
$$847$$ −4.00000 −0.137442
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 32.0000 1.09695
$$852$$ 0 0
$$853$$ 14.0000 0.479351 0.239675 0.970853i $$-0.422959\pi$$
0.239675 + 0.970853i $$0.422959\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 27.0000 0.922302 0.461151 0.887322i $$-0.347437\pi$$
0.461151 + 0.887322i $$0.347437\pi$$
$$858$$ 0 0
$$859$$ 25.0000 0.852989 0.426494 0.904490i $$-0.359748\pi$$
0.426494 + 0.904490i $$0.359748\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −46.0000 −1.56586 −0.782929 0.622111i $$-0.786275\pi$$
−0.782929 + 0.622111i $$0.786275\pi$$
$$864$$ 0 0
$$865$$ −6.00000 −0.204006
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 45.0000 1.52652
$$870$$ 0 0
$$871$$ −12.0000 −0.406604
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 18.0000 0.608511
$$876$$ 0 0
$$877$$ 13.0000 0.438979 0.219489 0.975615i $$-0.429561\pi$$
0.219489 + 0.975615i $$0.429561\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −42.0000 −1.41502 −0.707508 0.706705i $$-0.750181\pi$$
−0.707508 + 0.706705i $$0.750181\pi$$
$$882$$ 0 0
$$883$$ 26.0000 0.874970 0.437485 0.899226i $$-0.355869\pi$$
0.437485 + 0.899226i $$0.355869\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 33.0000 1.10803 0.554016 0.832506i $$-0.313095\pi$$
0.554016 + 0.832506i $$0.313095\pi$$
$$888$$ 0 0
$$889$$ −16.0000 −0.536623
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 10.0000 0.334263
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 3.00000 0.100056
$$900$$ 0 0
$$901$$ −88.0000 −2.93171
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ −7.00000 −0.232688
$$906$$ 0 0
$$907$$ −28.0000 −0.929725 −0.464862 0.885383i $$-0.653896\pi$$
−0.464862 + 0.885383i $$0.653896\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −13.0000 −0.430709 −0.215355 0.976536i $$-0.569091\pi$$
−0.215355 + 0.976536i $$0.569091\pi$$
$$912$$ 0 0
$$913$$ −12.0000 −0.397142
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 24.0000 0.792550
$$918$$ 0 0
$$919$$ −30.0000 −0.989609 −0.494804 0.869004i $$-0.664760\pi$$
−0.494804 + 0.869004i $$0.664760\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −2.00000 −0.0658308
$$924$$ 0 0
$$925$$ −32.0000 −1.05215
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 30.0000 0.984268 0.492134 0.870519i $$-0.336217\pi$$
0.492134 + 0.870519i $$0.336217\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ −24.0000 −0.784884
$$936$$ 0 0
$$937$$ −2.00000 −0.0653372 −0.0326686 0.999466i $$-0.510401\pi$$
−0.0326686 + 0.999466i $$0.510401\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ −37.0000 −1.20617 −0.603083 0.797679i $$-0.706061\pi$$
−0.603083 + 0.797679i $$0.706061\pi$$
$$942$$ 0 0
$$943$$ −8.00000 −0.260516
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 33.0000 1.07236 0.536178 0.844105i $$-0.319868\pi$$
0.536178 + 0.844105i $$0.319868\pi$$
$$948$$ 0 0
$$949$$ −4.00000 −0.129845
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 1.00000 0.0323932 0.0161966 0.999869i $$-0.494844\pi$$
0.0161966 + 0.999869i $$0.494844\pi$$
$$954$$ 0 0
$$955$$ 8.00000 0.258874
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 24.0000 0.775000
$$960$$ 0 0
$$961$$ −22.0000 −0.709677
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ −14.0000 −0.450676
$$966$$ 0 0
$$967$$ −13.0000 −0.418052 −0.209026 0.977910i $$-0.567029\pi$$
−0.209026 + 0.977910i $$0.567029\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ −28.0000 −0.898563 −0.449281 0.893390i $$-0.648320\pi$$
−0.449281 + 0.893390i $$0.648320\pi$$
$$972$$ 0 0
$$973$$ 40.0000 1.28234
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −13.0000 −0.415907 −0.207953 0.978139i $$-0.566680\pi$$
−0.207953 + 0.978139i $$0.566680\pi$$
$$978$$ 0 0
$$979$$ −30.0000 −0.958804
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 49.0000 1.56286 0.781429 0.623995i $$-0.214491\pi$$
0.781429 + 0.623995i $$0.214491\pi$$
$$984$$ 0 0
$$985$$ 18.0000 0.573528
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 44.0000 1.39912
$$990$$ 0 0
$$991$$ −22.0000 −0.698853 −0.349427 0.936964i $$-0.613624\pi$$
−0.349427 + 0.936964i $$0.613624\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ −10.0000 −0.317021
$$996$$ 0 0
$$997$$ 8.00000 0.253363 0.126681 0.991943i $$-0.459567\pi$$
0.126681 + 0.991943i $$0.459567\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4176.2.a.n.1.1 1
3.2 odd 2 464.2.a.e.1.1 1
4.3 odd 2 522.2.a.b.1.1 1
12.11 even 2 58.2.a.b.1.1 1
24.5 odd 2 1856.2.a.f.1.1 1
24.11 even 2 1856.2.a.k.1.1 1
60.23 odd 4 1450.2.b.b.349.1 2
60.47 odd 4 1450.2.b.b.349.2 2
60.59 even 2 1450.2.a.c.1.1 1
84.83 odd 2 2842.2.a.e.1.1 1
132.131 odd 2 7018.2.a.a.1.1 1
156.155 even 2 9802.2.a.a.1.1 1
348.191 odd 4 1682.2.b.a.1681.1 2
348.215 odd 4 1682.2.b.a.1681.2 2
348.347 even 2 1682.2.a.d.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.a.b.1.1 1 12.11 even 2
464.2.a.e.1.1 1 3.2 odd 2
522.2.a.b.1.1 1 4.3 odd 2
1450.2.a.c.1.1 1 60.59 even 2
1450.2.b.b.349.1 2 60.23 odd 4
1450.2.b.b.349.2 2 60.47 odd 4
1682.2.a.d.1.1 1 348.347 even 2
1682.2.b.a.1681.1 2 348.191 odd 4
1682.2.b.a.1681.2 2 348.215 odd 4
1856.2.a.f.1.1 1 24.5 odd 2
1856.2.a.k.1.1 1 24.11 even 2
2842.2.a.e.1.1 1 84.83 odd 2
4176.2.a.n.1.1 1 1.1 even 1 trivial
7018.2.a.a.1.1 1 132.131 odd 2
9802.2.a.a.1.1 1 156.155 even 2