Properties

Label 416.4.z
Level $416$
Weight $4$
Character orbit 416.z
Rep. character $\chi_{416}(81,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $1$
Sturm bound $224$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 416.z (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(224\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(416, [\chi])\).

Total New Old
Modular forms 352 88 264
Cusp forms 320 80 240
Eisenstein series 32 8 24

Trace form

\( 80 q + 2 q^{7} + 322 q^{9} - 52 q^{15} - 28 q^{17} - 274 q^{23} - 1564 q^{25} + 8 q^{31} - 110 q^{33} + 658 q^{39} - 120 q^{41} + 8 q^{47} - 1734 q^{49} - 1272 q^{55} + 556 q^{57} - 1424 q^{63} + 410 q^{65}+ \cdots - 118 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(416, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
416.4.z.a 416.z 104.r $80$ $24.545$ None 104.4.r.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{4}^{\mathrm{old}}(416, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(416, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)