Defining parameters
Level: | \( N \) | \(=\) | \( 416 = 2^{5} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 416.z (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(416, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 352 | 88 | 264 |
Cusp forms | 320 | 80 | 240 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(416, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
416.4.z.a | $80$ | $24.545$ | None | \(0\) | \(0\) | \(0\) | \(2\) |
Decomposition of \(S_{4}^{\mathrm{old}}(416, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(416, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)