Properties

Label 416.4.i.c
Level $416$
Weight $4$
Character orbit 416.i
Analytic conductor $24.545$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,4,Mod(289,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.289"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 416.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.5447945624\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{47})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 47x^{2} + 2209 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + 12 q^{5} + ( - \beta_{3} - \beta_1) q^{7} + 20 \beta_{2} q^{9} + \beta_1 q^{11} + (52 \beta_{2} + 13) q^{13} + 12 \beta_1 q^{15} + 81 \beta_{2} q^{17} + ( - 13 \beta_{3} - 13 \beta_1) q^{19}+ \cdots + 20 \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 48 q^{5} - 40 q^{9} - 52 q^{13} - 162 q^{17} + 188 q^{21} + 76 q^{25} + 82 q^{29} - 94 q^{33} + 78 q^{37} - 18 q^{41} - 480 q^{45} + 592 q^{49} - 656 q^{53} + 2444 q^{57} - 1590 q^{61} - 624 q^{65}+ \cdots + 2290 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 47x^{2} + 2209 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 47 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 47 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 47\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 47\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−3.42783 5.93717i
3.42783 + 5.93717i
−3.42783 + 5.93717i
3.42783 5.93717i
0 −3.42783 5.93717i 0 12.0000 0 −3.42783 + 5.93717i 0 −10.0000 + 17.3205i 0
289.2 0 3.42783 + 5.93717i 0 12.0000 0 3.42783 5.93717i 0 −10.0000 + 17.3205i 0
321.1 0 −3.42783 + 5.93717i 0 12.0000 0 −3.42783 5.93717i 0 −10.0000 17.3205i 0
321.2 0 3.42783 5.93717i 0 12.0000 0 3.42783 + 5.93717i 0 −10.0000 17.3205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
13.c even 3 1 inner
52.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.4.i.c 4
4.b odd 2 1 inner 416.4.i.c 4
13.c even 3 1 inner 416.4.i.c 4
52.j odd 6 1 inner 416.4.i.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.4.i.c 4 1.a even 1 1 trivial
416.4.i.c 4 4.b odd 2 1 inner
416.4.i.c 4 13.c even 3 1 inner
416.4.i.c 4 52.j odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 47T_{3}^{2} + 2209 \) acting on \(S_{4}^{\mathrm{new}}(416, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 47T^{2} + 2209 \) Copy content Toggle raw display
$5$ \( (T - 12)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 47T^{2} + 2209 \) Copy content Toggle raw display
$11$ \( T^{4} + 47T^{2} + 2209 \) Copy content Toggle raw display
$13$ \( (T^{2} + 26 T + 2197)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 81 T + 6561)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 7943 T^{2} + 63091249 \) Copy content Toggle raw display
$23$ \( T^{4} + 24863 T^{2} + 618168769 \) Copy content Toggle raw display
$29$ \( (T^{2} - 41 T + 1681)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 27072)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 39 T + 1521)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 9 T + 81)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 1173953169 \) Copy content Toggle raw display
$47$ \( (T^{2} - 54332)^{2} \) Copy content Toggle raw display
$53$ \( (T + 164)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 4140021649 \) Copy content Toggle raw display
$61$ \( (T^{2} + 795 T + 632025)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 95090206689 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 5110391169 \) Copy content Toggle raw display
$73$ \( (T - 512)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 1173308)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 18800)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 1103 T + 1216609)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 1145 T + 1311025)^{2} \) Copy content Toggle raw display
show more
show less