Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [416,2,Mod(81,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.81");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 416 = 2^{5} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 416.z (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.32177672409\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 104) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
81.1 | 0 | −2.64382 | + | 1.52641i | 0 | − | 0.497079i | 0 | 0.845740 | − | 1.46486i | 0 | 3.15986 | − | 5.47304i | 0 | |||||||||||
81.2 | 0 | −2.00439 | + | 1.15724i | 0 | 4.18204i | 0 | −0.818571 | + | 1.41781i | 0 | 1.17840 | − | 2.04104i | 0 | ||||||||||||
81.3 | 0 | −1.47584 | + | 0.852079i | 0 | − | 2.59989i | 0 | 0.300588 | − | 0.520633i | 0 | −0.0479214 | + | 0.0830022i | 0 | |||||||||||
81.4 | 0 | −1.39066 | + | 0.802895i | 0 | 0.556100i | 0 | 2.30251 | − | 3.98807i | 0 | −0.210719 | + | 0.364976i | 0 | ||||||||||||
81.5 | 0 | −0.609172 | + | 0.351705i | 0 | − | 2.24007i | 0 | −0.471952 | + | 0.817445i | 0 | −1.25261 | + | 2.16958i | 0 | |||||||||||
81.6 | 0 | −0.509400 | + | 0.294102i | 0 | − | 1.78237i | 0 | −1.65832 | + | 2.87229i | 0 | −1.32701 | + | 2.29844i | 0 | |||||||||||
81.7 | 0 | 0.509400 | − | 0.294102i | 0 | 1.78237i | 0 | −1.65832 | + | 2.87229i | 0 | −1.32701 | + | 2.29844i | 0 | ||||||||||||
81.8 | 0 | 0.609172 | − | 0.351705i | 0 | 2.24007i | 0 | −0.471952 | + | 0.817445i | 0 | −1.25261 | + | 2.16958i | 0 | ||||||||||||
81.9 | 0 | 1.39066 | − | 0.802895i | 0 | − | 0.556100i | 0 | 2.30251 | − | 3.98807i | 0 | −0.210719 | + | 0.364976i | 0 | |||||||||||
81.10 | 0 | 1.47584 | − | 0.852079i | 0 | 2.59989i | 0 | 0.300588 | − | 0.520633i | 0 | −0.0479214 | + | 0.0830022i | 0 | ||||||||||||
81.11 | 0 | 2.00439 | − | 1.15724i | 0 | − | 4.18204i | 0 | −0.818571 | + | 1.41781i | 0 | 1.17840 | − | 2.04104i | 0 | |||||||||||
81.12 | 0 | 2.64382 | − | 1.52641i | 0 | 0.497079i | 0 | 0.845740 | − | 1.46486i | 0 | 3.15986 | − | 5.47304i | 0 | ||||||||||||
113.1 | 0 | −2.64382 | − | 1.52641i | 0 | 0.497079i | 0 | 0.845740 | + | 1.46486i | 0 | 3.15986 | + | 5.47304i | 0 | ||||||||||||
113.2 | 0 | −2.00439 | − | 1.15724i | 0 | − | 4.18204i | 0 | −0.818571 | − | 1.41781i | 0 | 1.17840 | + | 2.04104i | 0 | |||||||||||
113.3 | 0 | −1.47584 | − | 0.852079i | 0 | 2.59989i | 0 | 0.300588 | + | 0.520633i | 0 | −0.0479214 | − | 0.0830022i | 0 | ||||||||||||
113.4 | 0 | −1.39066 | − | 0.802895i | 0 | − | 0.556100i | 0 | 2.30251 | + | 3.98807i | 0 | −0.210719 | − | 0.364976i | 0 | |||||||||||
113.5 | 0 | −0.609172 | − | 0.351705i | 0 | 2.24007i | 0 | −0.471952 | − | 0.817445i | 0 | −1.25261 | − | 2.16958i | 0 | ||||||||||||
113.6 | 0 | −0.509400 | − | 0.294102i | 0 | 1.78237i | 0 | −1.65832 | − | 2.87229i | 0 | −1.32701 | − | 2.29844i | 0 | ||||||||||||
113.7 | 0 | 0.509400 | + | 0.294102i | 0 | − | 1.78237i | 0 | −1.65832 | − | 2.87229i | 0 | −1.32701 | − | 2.29844i | 0 | |||||||||||
113.8 | 0 | 0.609172 | + | 0.351705i | 0 | − | 2.24007i | 0 | −0.471952 | − | 0.817445i | 0 | −1.25261 | − | 2.16958i | 0 | |||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
104.r | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 416.2.z.a | 24 | |
4.b | odd | 2 | 1 | 104.2.r.a | ✓ | 24 | |
8.b | even | 2 | 1 | inner | 416.2.z.a | 24 | |
8.d | odd | 2 | 1 | 104.2.r.a | ✓ | 24 | |
12.b | even | 2 | 1 | 936.2.be.a | 24 | ||
13.c | even | 3 | 1 | inner | 416.2.z.a | 24 | |
24.f | even | 2 | 1 | 936.2.be.a | 24 | ||
52.j | odd | 6 | 1 | 104.2.r.a | ✓ | 24 | |
104.n | odd | 6 | 1 | 104.2.r.a | ✓ | 24 | |
104.r | even | 6 | 1 | inner | 416.2.z.a | 24 | |
156.p | even | 6 | 1 | 936.2.be.a | 24 | ||
312.bn | even | 6 | 1 | 936.2.be.a | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
104.2.r.a | ✓ | 24 | 4.b | odd | 2 | 1 | |
104.2.r.a | ✓ | 24 | 8.d | odd | 2 | 1 | |
104.2.r.a | ✓ | 24 | 52.j | odd | 6 | 1 | |
104.2.r.a | ✓ | 24 | 104.n | odd | 6 | 1 | |
416.2.z.a | 24 | 1.a | even | 1 | 1 | trivial | |
416.2.z.a | 24 | 8.b | even | 2 | 1 | inner | |
416.2.z.a | 24 | 13.c | even | 3 | 1 | inner | |
416.2.z.a | 24 | 104.r | even | 6 | 1 | inner | |
936.2.be.a | 24 | 12.b | even | 2 | 1 | ||
936.2.be.a | 24 | 24.f | even | 2 | 1 | ||
936.2.be.a | 24 | 156.p | even | 6 | 1 | ||
936.2.be.a | 24 | 312.bn | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(416, [\chi])\).