Properties

Label 416.2.z
Level $416$
Weight $2$
Character orbit 416.z
Rep. character $\chi_{416}(81,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $24$
Newform subspaces $1$
Sturm bound $112$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.z (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(416, [\chi])\).

Total New Old
Modular forms 128 32 96
Cusp forms 96 24 72
Eisenstein series 32 8 24

Trace form

\( 24 q + 2 q^{7} + 6 q^{9} - 4 q^{15} + 14 q^{23} - 12 q^{25} + 8 q^{31} - 14 q^{33} + 34 q^{39} - 4 q^{41} + 8 q^{47} + 6 q^{49} - 8 q^{55} - 52 q^{57} - 32 q^{63} + 30 q^{65} - 30 q^{71} - 12 q^{73} + 48 q^{79}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(416, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
416.2.z.a 416.z 104.r $24$ $3.322$ None 104.2.r.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(416, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(416, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)