Properties

Label 416.2.w.d
Level $416$
Weight $2$
Character orbit 416.w
Analytic conductor $3.322$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(225,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.w (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.18092737797525504.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 12x^{10} + 108x^{8} - 430x^{6} + 1284x^{4} - 36x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{9} q^{3} + (\beta_{6} - \beta_{5} - 2 \beta_{4}) q^{5} - \beta_{3} q^{7} + ( - \beta_{7} + 2 \beta_{4}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{9} q^{3} + (\beta_{6} - \beta_{5} - 2 \beta_{4}) q^{5} - \beta_{3} q^{7} + ( - \beta_{7} + 2 \beta_{4}) q^{9} + ( - \beta_{10} + \beta_{8}) q^{11} + (\beta_{6} + \beta_{4} + \beta_{2} + 2) q^{13} + ( - \beta_{11} - \beta_{10} + \cdots - \beta_{8}) q^{15}+ \cdots + (2 \beta_{11} + 2 \beta_{10} + \cdots - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{9} + 12 q^{13} - 6 q^{17} - 12 q^{25} - 6 q^{29} - 30 q^{33} - 6 q^{37} + 30 q^{41} + 24 q^{49} - 48 q^{53} + 18 q^{61} - 12 q^{65} + 6 q^{69} + 132 q^{77} + 6 q^{81} + 12 q^{85} + 30 q^{89} - 36 q^{93} - 90 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 12x^{10} + 108x^{8} - 430x^{6} + 1284x^{4} - 36x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{11} + 9\nu^{9} - 81\nu^{7} + 107\nu^{5} - 3\nu^{3} - 5733\nu ) / 240 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{10} - 9\nu^{8} + 61\nu^{6} - 107\nu^{4} + 3\nu^{2} + 913 ) / 240 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{11} + 9\nu^{9} - 71\nu^{7} + 107\nu^{5} - 3\nu^{3} - 3443\nu ) / 120 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 27\nu^{10} - 323\nu^{8} + 2907\nu^{6} - 11529\nu^{4} + 34561\nu^{2} - 969 ) / 960 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -17\nu^{10} + 203\nu^{8} - 1847\nu^{6} + 7339\nu^{4} - 22201\nu^{2} - 251 ) / 360 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 71\nu^{10} - 839\nu^{8} + 7511\nu^{6} - 29677\nu^{4} + 88813\nu^{2} - 4957 ) / 1440 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -101\nu^{10} + 1229\nu^{8} - 11061\nu^{6} + 44407\nu^{4} - 131503\nu^{2} + 3687 ) / 960 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -409\nu^{11} + 4921\nu^{9} - 44329\nu^{7} + 177203\nu^{5} - 530387\nu^{3} + 29603\nu ) / 1440 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 421\nu^{11} - 5029\nu^{9} + 45181\nu^{7} - 178487\nu^{5} + 530423\nu^{3} + 14593\nu ) / 1440 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 749\nu^{11} - 8981\nu^{9} + 80789\nu^{7} - 321103\nu^{5} + 957127\nu^{3} - 12103\nu ) / 1440 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 161\nu^{11} - 1929\nu^{9} + 17361\nu^{7} - 69067\nu^{5} + 206403\nu^{3} - 5787\nu ) / 240 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{9} + \beta_{8} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} - \beta_{6} + 2\beta_{5} + 9\beta_{4} - \beta_{2} + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{11} - 12\beta_{10} + 24\beta_{9} + 12\beta_{3} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 5\beta_{7} - 14\beta_{6} + 7\beta_{5} + 55\beta_{4} - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -11\beta_{11} - 70\beta_{10} + 74\beta_{9} - 78\beta_{8} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -24\beta_{6} - 24\beta_{5} + 12\beta_{2} - 145 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -229\beta_{9} - 229\beta_{8} - 205\beta_{3} - 48\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -109\beta_{7} + 325\beta_{6} - 650\beta_{5} - 2085\beta_{4} + 109\beta_{2} - 1435 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 757\beta_{11} + 2412\beta_{10} - 5688\beta_{9} + 432\beta_{8} - 2412\beta_{3} - 757\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( -449\beta_{7} + 4358\beta_{6} - 2179\beta_{5} - 12907\beta_{4} + 2179 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 5639\beta_{11} + 14254\beta_{10} - 17714\beta_{9} + 21174\beta_{8} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
225.1
0.145015 0.0837246i
2.19011 1.26446i
2.04509 1.18073i
−2.04509 + 1.18073i
−2.19011 + 1.26446i
−0.145015 + 0.0837246i
0.145015 + 0.0837246i
2.19011 + 1.26446i
2.04509 + 1.18073i
−2.04509 1.18073i
−2.19011 1.26446i
−0.145015 0.0837246i
0 −1.48362 + 2.56970i 0 1.23519i 0 4.16083 2.40226i 0 −2.90226 5.02685i 0
225.2 0 −1.13286 + 1.96217i 0 3.99777i 0 −0.981633 + 0.566746i 0 −1.06675 1.84766i 0
225.3 0 −0.515266 + 0.892467i 0 0.701519i 0 −2.54439 + 1.46900i 0 0.969002 + 1.67836i 0
225.4 0 0.515266 0.892467i 0 0.701519i 0 2.54439 1.46900i 0 0.969002 + 1.67836i 0
225.5 0 1.13286 1.96217i 0 3.99777i 0 0.981633 0.566746i 0 −1.06675 1.84766i 0
225.6 0 1.48362 2.56970i 0 1.23519i 0 −4.16083 + 2.40226i 0 −2.90226 5.02685i 0
257.1 0 −1.48362 2.56970i 0 1.23519i 0 4.16083 + 2.40226i 0 −2.90226 + 5.02685i 0
257.2 0 −1.13286 1.96217i 0 3.99777i 0 −0.981633 0.566746i 0 −1.06675 + 1.84766i 0
257.3 0 −0.515266 0.892467i 0 0.701519i 0 −2.54439 1.46900i 0 0.969002 1.67836i 0
257.4 0 0.515266 + 0.892467i 0 0.701519i 0 2.54439 + 1.46900i 0 0.969002 1.67836i 0
257.5 0 1.13286 + 1.96217i 0 3.99777i 0 0.981633 + 0.566746i 0 −1.06675 + 1.84766i 0
257.6 0 1.48362 + 2.56970i 0 1.23519i 0 −4.16083 2.40226i 0 −2.90226 + 5.02685i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 225.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
13.e even 6 1 inner
52.i odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.2.w.d 12
4.b odd 2 1 inner 416.2.w.d 12
8.b even 2 1 832.2.w.j 12
8.d odd 2 1 832.2.w.j 12
13.e even 6 1 inner 416.2.w.d 12
13.f odd 12 1 5408.2.a.bm 6
13.f odd 12 1 5408.2.a.bn 6
52.i odd 6 1 inner 416.2.w.d 12
52.l even 12 1 5408.2.a.bm 6
52.l even 12 1 5408.2.a.bn 6
104.p odd 6 1 832.2.w.j 12
104.s even 6 1 832.2.w.j 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.w.d 12 1.a even 1 1 trivial
416.2.w.d 12 4.b odd 2 1 inner
416.2.w.d 12 13.e even 6 1 inner
416.2.w.d 12 52.i odd 6 1 inner
832.2.w.j 12 8.b even 2 1
832.2.w.j 12 8.d odd 2 1
832.2.w.j 12 104.p odd 6 1
832.2.w.j 12 104.s even 6 1
5408.2.a.bm 6 13.f odd 12 1
5408.2.a.bm 6 52.l even 12 1
5408.2.a.bn 6 13.f odd 12 1
5408.2.a.bn 6 52.l even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} + 15T_{3}^{10} + 165T_{3}^{8} + 804T_{3}^{6} + 2880T_{3}^{4} + 2880T_{3}^{2} + 2304 \) acting on \(S_{2}^{\mathrm{new}}(416, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} + 15 T^{10} + \cdots + 2304 \) Copy content Toggle raw display
$5$ \( (T^{6} + 18 T^{4} + \cdots + 12)^{2} \) Copy content Toggle raw display
$7$ \( T^{12} - 33 T^{10} + \cdots + 65536 \) Copy content Toggle raw display
$11$ \( T^{12} - 33 T^{10} + \cdots + 65536 \) Copy content Toggle raw display
$13$ \( (T^{6} - 6 T^{5} + \cdots + 2197)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + T + 1)^{6} \) Copy content Toggle raw display
$19$ \( T^{12} - 45 T^{10} + \cdots + 1679616 \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots + 2127792384 \) Copy content Toggle raw display
$29$ \( (T^{6} + 3 T^{5} + \cdots + 961)^{2} \) Copy content Toggle raw display
$31$ \( (T^{6} + 96 T^{4} + \cdots + 576)^{2} \) Copy content Toggle raw display
$37$ \( (T^{6} + 3 T^{5} + \cdots + 5043)^{2} \) Copy content Toggle raw display
$41$ \( (T^{6} - 15 T^{5} + \cdots + 6627)^{2} \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 150994944 \) Copy content Toggle raw display
$47$ \( (T^{6} + 108 T^{4} + \cdots + 43264)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + 12 T^{2} + 27 T - 4)^{4} \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 10485760000 \) Copy content Toggle raw display
$61$ \( (T^{6} - 9 T^{5} + \cdots + 56169)^{2} \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 385571451136 \) Copy content Toggle raw display
$71$ \( T^{12} - 69 T^{10} + \cdots + 160000 \) Copy content Toggle raw display
$73$ \( (T^{6} + 234 T^{4} + \cdots + 288300)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} - 396 T^{4} + \cdots - 786432)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} + 228 T^{4} + \cdots + 16384)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} - 15 T^{5} + \cdots + 2157312)^{2} \) Copy content Toggle raw display
$97$ \( (T^{6} + 45 T^{5} + \cdots + 62208)^{2} \) Copy content Toggle raw display
show more
show less