Properties

Label 416.2.w.c.225.3
Level $416$
Weight $2$
Character 416.225
Analytic conductor $3.322$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(225,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.w (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.56070144.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 225.3
Root \(0.500000 + 2.19293i\) of defining polynomial
Character \(\chi\) \(=\) 416.225
Dual form 416.2.w.c.257.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.619657 - 1.07328i) q^{3} +2.00000i q^{5} +(-4.00552 + 2.31259i) q^{7} +(0.732051 + 1.26795i) q^{9} +O(q^{10})\) \(q+(0.619657 - 1.07328i) q^{3} +2.00000i q^{5} +(-4.00552 + 2.31259i) q^{7} +(0.732051 + 1.26795i) q^{9} +(1.85897 + 1.07328i) q^{11} +(-1.00000 + 3.46410i) q^{13} +(2.14655 + 1.23931i) q^{15} +(0.232051 + 0.401924i) q^{17} +(-4.00552 + 2.31259i) q^{19} +5.73205i q^{21} +(2.76621 - 4.79122i) q^{23} +1.00000 q^{25} +5.53242 q^{27} +(-1.50000 + 2.59808i) q^{29} -9.25036i q^{31} +(2.30385 - 1.33013i) q^{33} +(-4.62518 - 8.01105i) q^{35} +(6.69615 + 3.86603i) q^{37} +(3.09828 + 3.21983i) q^{39} +(-6.23205 - 3.59808i) q^{41} +(1.85897 + 3.21983i) q^{43} +(-2.53590 + 1.46410i) q^{45} +11.7290i q^{47} +(7.19615 - 12.4641i) q^{49} +0.575167 q^{51} +2.53590 q^{53} +(-2.14655 + 3.71794i) q^{55} +5.73205i q^{57} +(-8.29863 + 4.79122i) q^{59} +(-1.50000 - 2.59808i) q^{61} +(-5.86450 - 3.38587i) q^{63} +(-6.92820 - 2.00000i) q^{65} +(4.00552 + 2.31259i) q^{67} +(-3.42820 - 5.93782i) q^{69} +(5.57691 - 3.21983i) q^{71} -6.00000i q^{73} +(0.619657 - 1.07328i) q^{75} -9.92820 q^{77} -4.29311 q^{79} +(1.23205 - 2.13397i) q^{81} +4.29311i q^{83} +(-0.803848 + 0.464102i) q^{85} +(1.85897 + 3.21983i) q^{87} +(-1.03590 - 0.598076i) q^{89} +(-4.00552 - 16.1881i) q^{91} +(-9.92820 - 5.73205i) q^{93} +(-4.62518 - 8.01105i) q^{95} +(11.8923 - 6.86603i) q^{97} +3.14277i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{9} - 8 q^{13} - 12 q^{17} + 8 q^{25} - 12 q^{29} + 60 q^{33} + 12 q^{37} - 36 q^{41} - 48 q^{45} + 16 q^{49} + 48 q^{53} - 12 q^{61} + 28 q^{69} - 24 q^{77} - 4 q^{81} - 48 q^{85} - 36 q^{89} - 24 q^{93} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.619657 1.07328i 0.357759 0.619657i −0.629827 0.776735i \(-0.716874\pi\)
0.987586 + 0.157079i \(0.0502076\pi\)
\(4\) 0 0
\(5\) 2.00000i 0.894427i 0.894427 + 0.447214i \(0.147584\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) −4.00552 + 2.31259i −1.51395 + 0.874077i −0.514079 + 0.857743i \(0.671866\pi\)
−0.999867 + 0.0163346i \(0.994800\pi\)
\(8\) 0 0
\(9\) 0.732051 + 1.26795i 0.244017 + 0.422650i
\(10\) 0 0
\(11\) 1.85897 + 1.07328i 0.560501 + 0.323605i 0.753346 0.657624i \(-0.228438\pi\)
−0.192846 + 0.981229i \(0.561772\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) 2.14655 + 1.23931i 0.554238 + 0.319989i
\(16\) 0 0
\(17\) 0.232051 + 0.401924i 0.0562806 + 0.0974808i 0.892793 0.450467i \(-0.148743\pi\)
−0.836512 + 0.547948i \(0.815409\pi\)
\(18\) 0 0
\(19\) −4.00552 + 2.31259i −0.918930 + 0.530545i −0.883294 0.468820i \(-0.844679\pi\)
−0.0356367 + 0.999365i \(0.511346\pi\)
\(20\) 0 0
\(21\) 5.73205i 1.25084i
\(22\) 0 0
\(23\) 2.76621 4.79122i 0.576795 0.999038i −0.419049 0.907964i \(-0.637637\pi\)
0.995844 0.0910745i \(-0.0290301\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.53242 1.06472
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) 9.25036i 1.66141i −0.556710 0.830707i \(-0.687936\pi\)
0.556710 0.830707i \(-0.312064\pi\)
\(32\) 0 0
\(33\) 2.30385 1.33013i 0.401048 0.231545i
\(34\) 0 0
\(35\) −4.62518 8.01105i −0.781798 1.35411i
\(36\) 0 0
\(37\) 6.69615 + 3.86603i 1.10084 + 0.635571i 0.936442 0.350823i \(-0.114098\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 3.09828 + 3.21983i 0.496123 + 0.515586i
\(40\) 0 0
\(41\) −6.23205 3.59808i −0.973283 0.561925i −0.0730473 0.997328i \(-0.523272\pi\)
−0.900235 + 0.435403i \(0.856606\pi\)
\(42\) 0 0
\(43\) 1.85897 + 3.21983i 0.283490 + 0.491020i 0.972242 0.233978i \(-0.0751743\pi\)
−0.688752 + 0.724997i \(0.741841\pi\)
\(44\) 0 0
\(45\) −2.53590 + 1.46410i −0.378029 + 0.218255i
\(46\) 0 0
\(47\) 11.7290i 1.71085i 0.517927 + 0.855425i \(0.326704\pi\)
−0.517927 + 0.855425i \(0.673296\pi\)
\(48\) 0 0
\(49\) 7.19615 12.4641i 1.02802 1.78059i
\(50\) 0 0
\(51\) 0.575167 0.0805396
\(52\) 0 0
\(53\) 2.53590 0.348332 0.174166 0.984716i \(-0.444277\pi\)
0.174166 + 0.984716i \(0.444277\pi\)
\(54\) 0 0
\(55\) −2.14655 + 3.71794i −0.289441 + 0.501327i
\(56\) 0 0
\(57\) 5.73205i 0.759229i
\(58\) 0 0
\(59\) −8.29863 + 4.79122i −1.08039 + 0.623763i −0.931002 0.365015i \(-0.881064\pi\)
−0.149388 + 0.988779i \(0.547730\pi\)
\(60\) 0 0
\(61\) −1.50000 2.59808i −0.192055 0.332650i 0.753876 0.657017i \(-0.228182\pi\)
−0.945931 + 0.324367i \(0.894849\pi\)
\(62\) 0 0
\(63\) −5.86450 3.38587i −0.738857 0.426579i
\(64\) 0 0
\(65\) −6.92820 2.00000i −0.859338 0.248069i
\(66\) 0 0
\(67\) 4.00552 + 2.31259i 0.489353 + 0.282528i 0.724306 0.689479i \(-0.242160\pi\)
−0.234953 + 0.972007i \(0.575494\pi\)
\(68\) 0 0
\(69\) −3.42820 5.93782i −0.412707 0.714830i
\(70\) 0 0
\(71\) 5.57691 3.21983i 0.661858 0.382124i −0.131127 0.991366i \(-0.541859\pi\)
0.792984 + 0.609242i \(0.208526\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0 0
\(75\) 0.619657 1.07328i 0.0715518 0.123931i
\(76\) 0 0
\(77\) −9.92820 −1.13142
\(78\) 0 0
\(79\) −4.29311 −0.483012 −0.241506 0.970399i \(-0.577641\pi\)
−0.241506 + 0.970399i \(0.577641\pi\)
\(80\) 0 0
\(81\) 1.23205 2.13397i 0.136895 0.237108i
\(82\) 0 0
\(83\) 4.29311i 0.471230i 0.971846 + 0.235615i \(0.0757104\pi\)
−0.971846 + 0.235615i \(0.924290\pi\)
\(84\) 0 0
\(85\) −0.803848 + 0.464102i −0.0871895 + 0.0503389i
\(86\) 0 0
\(87\) 1.85897 + 3.21983i 0.199303 + 0.345202i
\(88\) 0 0
\(89\) −1.03590 0.598076i −0.109805 0.0633960i 0.444092 0.895981i \(-0.353526\pi\)
−0.553897 + 0.832585i \(0.686860\pi\)
\(90\) 0 0
\(91\) −4.00552 16.1881i −0.419893 1.69698i
\(92\) 0 0
\(93\) −9.92820 5.73205i −1.02951 0.594386i
\(94\) 0 0
\(95\) −4.62518 8.01105i −0.474534 0.821916i
\(96\) 0 0
\(97\) 11.8923 6.86603i 1.20748 0.697139i 0.245272 0.969454i \(-0.421123\pi\)
0.962208 + 0.272315i \(0.0877893\pi\)
\(98\) 0 0
\(99\) 3.14277i 0.315861i
\(100\) 0 0
\(101\) 9.69615 16.7942i 0.964803 1.67109i 0.254660 0.967031i \(-0.418036\pi\)
0.710143 0.704058i \(-0.248630\pi\)
\(102\) 0 0
\(103\) 8.58622 0.846025 0.423013 0.906124i \(-0.360973\pi\)
0.423013 + 0.906124i \(0.360973\pi\)
\(104\) 0 0
\(105\) −11.4641 −1.11878
\(106\) 0 0
\(107\) −1.85897 + 3.21983i −0.179713 + 0.311273i −0.941782 0.336223i \(-0.890850\pi\)
0.762069 + 0.647496i \(0.224184\pi\)
\(108\) 0 0
\(109\) 6.00000i 0.574696i −0.957826 0.287348i \(-0.907226\pi\)
0.957826 0.287348i \(-0.0927736\pi\)
\(110\) 0 0
\(111\) 8.29863 4.79122i 0.787671 0.454762i
\(112\) 0 0
\(113\) 6.23205 + 10.7942i 0.586262 + 1.01544i 0.994717 + 0.102657i \(0.0327344\pi\)
−0.408455 + 0.912779i \(0.633932\pi\)
\(114\) 0 0
\(115\) 9.58244 + 5.53242i 0.893567 + 0.515901i
\(116\) 0 0
\(117\) −5.12436 + 1.26795i −0.473747 + 0.117222i
\(118\) 0 0
\(119\) −1.85897 1.07328i −0.170412 0.0983872i
\(120\) 0 0
\(121\) −3.19615 5.53590i −0.290559 0.503263i
\(122\) 0 0
\(123\) −7.72347 + 4.45915i −0.696401 + 0.402068i
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) −1.85897 + 3.21983i −0.164957 + 0.285714i −0.936640 0.350293i \(-0.886082\pi\)
0.771683 + 0.636007i \(0.219415\pi\)
\(128\) 0 0
\(129\) 4.60770 0.405685
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 10.6962 18.5263i 0.927474 1.60643i
\(134\) 0 0
\(135\) 11.0648i 0.952310i
\(136\) 0 0
\(137\) −11.4282 + 6.59808i −0.976377 + 0.563712i −0.901174 0.433457i \(-0.857294\pi\)
−0.0752028 + 0.997168i \(0.523960\pi\)
\(138\) 0 0
\(139\) 4.00552 + 6.93777i 0.339744 + 0.588454i 0.984384 0.176032i \(-0.0563262\pi\)
−0.644640 + 0.764486i \(0.722993\pi\)
\(140\) 0 0
\(141\) 12.5885 + 7.26795i 1.06014 + 0.612072i
\(142\) 0 0
\(143\) −5.57691 + 5.36639i −0.466365 + 0.448760i
\(144\) 0 0
\(145\) −5.19615 3.00000i −0.431517 0.249136i
\(146\) 0 0
\(147\) −8.91829 15.4469i −0.735568 1.27404i
\(148\) 0 0
\(149\) 10.0359 5.79423i 0.822173 0.474682i −0.0289923 0.999580i \(-0.509230\pi\)
0.851165 + 0.524898i \(0.175897\pi\)
\(150\) 0 0
\(151\) 9.25036i 0.752784i −0.926461 0.376392i \(-0.877165\pi\)
0.926461 0.376392i \(-0.122835\pi\)
\(152\) 0 0
\(153\) −0.339746 + 0.588457i −0.0274668 + 0.0475740i
\(154\) 0 0
\(155\) 18.5007 1.48601
\(156\) 0 0
\(157\) 4.39230 0.350544 0.175272 0.984520i \(-0.443920\pi\)
0.175272 + 0.984520i \(0.443920\pi\)
\(158\) 0 0
\(159\) 1.57139 2.72172i 0.124619 0.215847i
\(160\) 0 0
\(161\) 25.5885i 2.01665i
\(162\) 0 0
\(163\) 21.5990 12.4702i 1.69177 0.976741i 0.738671 0.674066i \(-0.235454\pi\)
0.953094 0.302675i \(-0.0978798\pi\)
\(164\) 0 0
\(165\) 2.66025 + 4.60770i 0.207100 + 0.358709i
\(166\) 0 0
\(167\) −19.4525 11.2309i −1.50528 0.869072i −0.999981 0.00612500i \(-0.998050\pi\)
−0.505295 0.862947i \(-0.668616\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) −5.86450 3.38587i −0.448469 0.258924i
\(172\) 0 0
\(173\) −4.96410 8.59808i −0.377414 0.653700i 0.613271 0.789872i \(-0.289853\pi\)
−0.990685 + 0.136173i \(0.956520\pi\)
\(174\) 0 0
\(175\) −4.00552 + 2.31259i −0.302789 + 0.174815i
\(176\) 0 0
\(177\) 11.8756i 0.892628i
\(178\) 0 0
\(179\) −1.85897 + 3.21983i −0.138946 + 0.240661i −0.927098 0.374819i \(-0.877705\pi\)
0.788152 + 0.615481i \(0.211038\pi\)
\(180\) 0 0
\(181\) −16.3923 −1.21843 −0.609215 0.793005i \(-0.708515\pi\)
−0.609215 + 0.793005i \(0.708515\pi\)
\(182\) 0 0
\(183\) −3.71794 −0.274838
\(184\) 0 0
\(185\) −7.73205 + 13.3923i −0.568472 + 0.984622i
\(186\) 0 0
\(187\) 0.996219i 0.0728508i
\(188\) 0 0
\(189\) −22.1603 + 12.7942i −1.61192 + 0.930643i
\(190\) 0 0
\(191\) 6.48415 + 11.2309i 0.469177 + 0.812638i 0.999379 0.0352331i \(-0.0112174\pi\)
−0.530202 + 0.847871i \(0.677884\pi\)
\(192\) 0 0
\(193\) 17.0885 + 9.86603i 1.23005 + 0.710172i 0.967041 0.254620i \(-0.0819505\pi\)
0.263013 + 0.964792i \(0.415284\pi\)
\(194\) 0 0
\(195\) −6.43966 + 6.19657i −0.461154 + 0.443745i
\(196\) 0 0
\(197\) 20.4282 + 11.7942i 1.45545 + 0.840304i 0.998782 0.0493338i \(-0.0157098\pi\)
0.456667 + 0.889638i \(0.349043\pi\)
\(198\) 0 0
\(199\) 6.15208 + 10.6557i 0.436109 + 0.755363i 0.997385 0.0722651i \(-0.0230228\pi\)
−0.561276 + 0.827629i \(0.689689\pi\)
\(200\) 0 0
\(201\) 4.96410 2.86603i 0.350141 0.202154i
\(202\) 0 0
\(203\) 13.8755i 0.973872i
\(204\) 0 0
\(205\) 7.19615 12.4641i 0.502601 0.870531i
\(206\) 0 0
\(207\) 8.10003 0.562991
\(208\) 0 0
\(209\) −9.92820 −0.686748
\(210\) 0 0
\(211\) −13.5880 + 23.5350i −0.935434 + 1.62022i −0.161575 + 0.986860i \(0.551657\pi\)
−0.773859 + 0.633359i \(0.781676\pi\)
\(212\) 0 0
\(213\) 7.98076i 0.546833i
\(214\) 0 0
\(215\) −6.43966 + 3.71794i −0.439181 + 0.253561i
\(216\) 0 0
\(217\) 21.3923 + 37.0526i 1.45220 + 2.51529i
\(218\) 0 0
\(219\) −6.43966 3.71794i −0.435152 0.251235i
\(220\) 0 0
\(221\) −1.62436 + 0.401924i −0.109266 + 0.0270363i
\(222\) 0 0
\(223\) 4.00552 + 2.31259i 0.268230 + 0.154863i 0.628083 0.778146i \(-0.283840\pi\)
−0.359853 + 0.933009i \(0.617173\pi\)
\(224\) 0 0
\(225\) 0.732051 + 1.26795i 0.0488034 + 0.0845299i
\(226\) 0 0
\(227\) 12.0166 6.93777i 0.797568 0.460476i −0.0450520 0.998985i \(-0.514345\pi\)
0.842620 + 0.538509i \(0.181012\pi\)
\(228\) 0 0
\(229\) 0.928203i 0.0613374i 0.999530 + 0.0306687i \(0.00976368\pi\)
−0.999530 + 0.0306687i \(0.990236\pi\)
\(230\) 0 0
\(231\) −6.15208 + 10.6557i −0.404777 + 0.701094i
\(232\) 0 0
\(233\) −14.5359 −0.952278 −0.476139 0.879370i \(-0.657964\pi\)
−0.476139 + 0.879370i \(0.657964\pi\)
\(234\) 0 0
\(235\) −23.4580 −1.53023
\(236\) 0 0
\(237\) −2.66025 + 4.60770i −0.172802 + 0.299302i
\(238\) 0 0
\(239\) 4.29311i 0.277698i −0.990314 0.138849i \(-0.955660\pi\)
0.990314 0.138849i \(-0.0443403\pi\)
\(240\) 0 0
\(241\) 18.6962 10.7942i 1.20433 0.695317i 0.242811 0.970074i \(-0.421930\pi\)
0.961514 + 0.274756i \(0.0885971\pi\)
\(242\) 0 0
\(243\) 6.77174 + 11.7290i 0.434407 + 0.752415i
\(244\) 0 0
\(245\) 24.9282 + 14.3923i 1.59260 + 0.919491i
\(246\) 0 0
\(247\) −4.00552 16.1881i −0.254865 1.03003i
\(248\) 0 0
\(249\) 4.60770 + 2.66025i 0.292001 + 0.168587i
\(250\) 0 0
\(251\) 12.9238 + 22.3847i 0.815744 + 1.41291i 0.908792 + 0.417248i \(0.137005\pi\)
−0.0930485 + 0.995662i \(0.529661\pi\)
\(252\) 0 0
\(253\) 10.2846 5.93782i 0.646588 0.373308i
\(254\) 0 0
\(255\) 1.15033i 0.0720368i
\(256\) 0 0
\(257\) 0.232051 0.401924i 0.0144749 0.0250713i −0.858697 0.512483i \(-0.828726\pi\)
0.873172 + 0.487412i \(0.162059\pi\)
\(258\) 0 0
\(259\) −35.7621 −2.22215
\(260\) 0 0
\(261\) −4.39230 −0.271877
\(262\) 0 0
\(263\) 12.0166 20.8133i 0.740974 1.28340i −0.211079 0.977469i \(-0.567698\pi\)
0.952052 0.305935i \(-0.0989690\pi\)
\(264\) 0 0
\(265\) 5.07180i 0.311558i
\(266\) 0 0
\(267\) −1.28380 + 0.741204i −0.0785675 + 0.0453609i
\(268\) 0 0
\(269\) −2.30385 3.99038i −0.140468 0.243298i 0.787205 0.616692i \(-0.211527\pi\)
−0.927673 + 0.373394i \(0.878194\pi\)
\(270\) 0 0
\(271\) 20.0276 + 11.5630i 1.21659 + 0.702399i 0.964187 0.265222i \(-0.0854454\pi\)
0.252404 + 0.967622i \(0.418779\pi\)
\(272\) 0 0
\(273\) −19.8564 5.73205i −1.20176 0.346919i
\(274\) 0 0
\(275\) 1.85897 + 1.07328i 0.112100 + 0.0647210i
\(276\) 0 0
\(277\) 1.69615 + 2.93782i 0.101912 + 0.176517i 0.912472 0.409138i \(-0.134171\pi\)
−0.810560 + 0.585655i \(0.800837\pi\)
\(278\) 0 0
\(279\) 11.7290 6.77174i 0.702196 0.405413i
\(280\) 0 0
\(281\) 10.0000i 0.596550i 0.954480 + 0.298275i \(0.0964112\pi\)
−0.954480 + 0.298275i \(0.903589\pi\)
\(282\) 0 0
\(283\) 9.87002 17.0954i 0.586712 1.01621i −0.407948 0.913005i \(-0.633755\pi\)
0.994660 0.103209i \(-0.0329112\pi\)
\(284\) 0 0
\(285\) −11.4641 −0.679075
\(286\) 0 0
\(287\) 33.2835 1.96466
\(288\) 0 0
\(289\) 8.39230 14.5359i 0.493665 0.855053i
\(290\) 0 0
\(291\) 17.0183i 0.997631i
\(292\) 0 0
\(293\) −21.8205 + 12.5981i −1.27477 + 0.735987i −0.975881 0.218301i \(-0.929948\pi\)
−0.298886 + 0.954289i \(0.596615\pi\)
\(294\) 0 0
\(295\) −9.58244 16.5973i −0.557911 0.966330i
\(296\) 0 0
\(297\) 10.2846 + 5.93782i 0.596774 + 0.344547i
\(298\) 0 0
\(299\) 13.8311 + 14.3737i 0.799871 + 0.831250i
\(300\) 0 0
\(301\) −14.8923 8.59808i −0.858378 0.495585i
\(302\) 0 0
\(303\) −12.0166 20.8133i −0.690334 1.19569i
\(304\) 0 0
\(305\) 5.19615 3.00000i 0.297531 0.171780i
\(306\) 0 0
\(307\) 5.62140i 0.320830i −0.987050 0.160415i \(-0.948717\pi\)
0.987050 0.160415i \(-0.0512833\pi\)
\(308\) 0 0
\(309\) 5.32051 9.21539i 0.302673 0.524245i
\(310\) 0 0
\(311\) −18.5007 −1.04908 −0.524540 0.851386i \(-0.675763\pi\)
−0.524540 + 0.851386i \(0.675763\pi\)
\(312\) 0 0
\(313\) −8.39230 −0.474361 −0.237181 0.971466i \(-0.576223\pi\)
−0.237181 + 0.971466i \(0.576223\pi\)
\(314\) 0 0
\(315\) 6.77174 11.7290i 0.381544 0.660854i
\(316\) 0 0
\(317\) 4.00000i 0.224662i 0.993671 + 0.112331i \(0.0358318\pi\)
−0.993671 + 0.112331i \(0.964168\pi\)
\(318\) 0 0
\(319\) −5.57691 + 3.21983i −0.312247 + 0.180276i
\(320\) 0 0
\(321\) 2.30385 + 3.99038i 0.128588 + 0.222721i
\(322\) 0 0
\(323\) −1.85897 1.07328i −0.103436 0.0597187i
\(324\) 0 0
\(325\) −1.00000 + 3.46410i −0.0554700 + 0.192154i
\(326\) 0 0
\(327\) −6.43966 3.71794i −0.356114 0.205603i
\(328\) 0 0
\(329\) −27.1244 46.9808i −1.49541 2.59013i
\(330\) 0 0
\(331\) 2.43414 1.40535i 0.133792 0.0772450i −0.431610 0.902060i \(-0.642054\pi\)
0.565402 + 0.824815i \(0.308721\pi\)
\(332\) 0 0
\(333\) 11.3205i 0.620360i
\(334\) 0 0
\(335\) −4.62518 + 8.01105i −0.252701 + 0.437690i
\(336\) 0 0
\(337\) −0.392305 −0.0213702 −0.0106851 0.999943i \(-0.503401\pi\)
−0.0106851 + 0.999943i \(0.503401\pi\)
\(338\) 0 0
\(339\) 15.4469 0.838962
\(340\) 0 0
\(341\) 9.92820 17.1962i 0.537642 0.931224i
\(342\) 0 0
\(343\) 34.1908i 1.84613i
\(344\) 0 0
\(345\) 11.8756 6.85641i 0.639363 0.369137i
\(346\) 0 0
\(347\) −7.39139 12.8023i −0.396791 0.687262i 0.596537 0.802585i \(-0.296543\pi\)
−0.993328 + 0.115324i \(0.963209\pi\)
\(348\) 0 0
\(349\) 8.30385 + 4.79423i 0.444495 + 0.256629i 0.705502 0.708708i \(-0.250721\pi\)
−0.261008 + 0.965337i \(0.584055\pi\)
\(350\) 0 0
\(351\) −5.53242 + 19.1649i −0.295299 + 1.02295i
\(352\) 0 0
\(353\) −7.96410 4.59808i −0.423886 0.244731i 0.272852 0.962056i \(-0.412033\pi\)
−0.696739 + 0.717325i \(0.745366\pi\)
\(354\) 0 0
\(355\) 6.43966 + 11.1538i 0.341782 + 0.591983i
\(356\) 0 0
\(357\) −2.30385 + 1.33013i −0.121933 + 0.0703978i
\(358\) 0 0
\(359\) 4.29311i 0.226582i 0.993562 + 0.113291i \(0.0361392\pi\)
−0.993562 + 0.113291i \(0.963861\pi\)
\(360\) 0 0
\(361\) 1.19615 2.07180i 0.0629554 0.109042i
\(362\) 0 0
\(363\) −7.92207 −0.415801
\(364\) 0 0
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) 0.287584 0.498110i 0.0150117 0.0260011i −0.858422 0.512944i \(-0.828555\pi\)
0.873434 + 0.486943i \(0.161888\pi\)
\(368\) 0 0
\(369\) 10.5359i 0.548477i
\(370\) 0 0
\(371\) −10.1576 + 5.86450i −0.527357 + 0.304469i
\(372\) 0 0
\(373\) −4.69615 8.13397i −0.243158 0.421161i 0.718454 0.695574i \(-0.244850\pi\)
−0.961612 + 0.274413i \(0.911517\pi\)
\(374\) 0 0
\(375\) 12.8793 + 7.43588i 0.665086 + 0.383987i
\(376\) 0 0
\(377\) −7.50000 7.79423i −0.386270 0.401423i
\(378\) 0 0
\(379\) −2.43414 1.40535i −0.125033 0.0721880i 0.436179 0.899860i \(-0.356331\pi\)
−0.561212 + 0.827672i \(0.689665\pi\)
\(380\) 0 0
\(381\) 2.30385 + 3.99038i 0.118030 + 0.204433i
\(382\) 0 0
\(383\) −23.1704 + 13.3774i −1.18395 + 0.683555i −0.956926 0.290334i \(-0.906234\pi\)
−0.227026 + 0.973889i \(0.572900\pi\)
\(384\) 0 0
\(385\) 19.8564i 1.01198i
\(386\) 0 0
\(387\) −2.72172 + 4.71416i −0.138353 + 0.239634i
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 2.56761 0.129849
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 8.58622i 0.432019i
\(396\) 0 0
\(397\) −21.6962 + 12.5263i −1.08890 + 0.628676i −0.933283 0.359142i \(-0.883069\pi\)
−0.155616 + 0.987818i \(0.549736\pi\)
\(398\) 0 0
\(399\) −13.2559 22.9599i −0.663624 1.14943i
\(400\) 0 0
\(401\) −31.1603 17.9904i −1.55607 0.898397i −0.997627 0.0688532i \(-0.978066\pi\)
−0.558442 0.829544i \(-0.688601\pi\)
\(402\) 0 0
\(403\) 32.0442 + 9.25036i 1.59624 + 0.460793i
\(404\) 0 0
\(405\) 4.26795 + 2.46410i 0.212076 + 0.122442i
\(406\) 0 0
\(407\) 8.29863 + 14.3737i 0.411348 + 0.712476i
\(408\) 0 0
\(409\) 24.6962 14.2583i 1.22115 0.705029i 0.255984 0.966681i \(-0.417601\pi\)
0.965162 + 0.261652i \(0.0842673\pi\)
\(410\) 0 0
\(411\) 16.3542i 0.806692i
\(412\) 0 0
\(413\) 22.1603 38.3827i 1.09043 1.88869i
\(414\) 0 0
\(415\) −8.58622 −0.421481
\(416\) 0 0
\(417\) 9.92820 0.486186
\(418\) 0 0
\(419\) 12.0166 20.8133i 0.587048 1.01680i −0.407569 0.913175i \(-0.633623\pi\)
0.994617 0.103623i \(-0.0330434\pi\)
\(420\) 0 0
\(421\) 0.928203i 0.0452379i −0.999744 0.0226189i \(-0.992800\pi\)
0.999744 0.0226189i \(-0.00720044\pi\)
\(422\) 0 0
\(423\) −14.8718 + 8.58622i −0.723090 + 0.417476i
\(424\) 0 0
\(425\) 0.232051 + 0.401924i 0.0112561 + 0.0194962i
\(426\) 0 0
\(427\) 12.0166 + 6.93777i 0.581523 + 0.335742i
\(428\) 0 0
\(429\) 2.30385 + 9.31089i 0.111231 + 0.449534i
\(430\) 0 0
\(431\) −18.4562 10.6557i −0.889006 0.513268i −0.0153885 0.999882i \(-0.504899\pi\)
−0.873617 + 0.486614i \(0.838232\pi\)
\(432\) 0 0
\(433\) −6.69615 11.5981i −0.321797 0.557368i 0.659062 0.752088i \(-0.270953\pi\)
−0.980859 + 0.194720i \(0.937620\pi\)
\(434\) 0 0
\(435\) −6.43966 + 3.71794i −0.308758 + 0.178262i
\(436\) 0 0
\(437\) 25.5885i 1.22406i
\(438\) 0 0
\(439\) 9.87002 17.0954i 0.471070 0.815918i −0.528382 0.849007i \(-0.677201\pi\)
0.999452 + 0.0330889i \(0.0105345\pi\)
\(440\) 0 0
\(441\) 21.0718 1.00342
\(442\) 0 0
\(443\) −40.6304 −1.93041 −0.965205 0.261496i \(-0.915784\pi\)
−0.965205 + 0.261496i \(0.915784\pi\)
\(444\) 0 0
\(445\) 1.19615 2.07180i 0.0567031 0.0982126i
\(446\) 0 0
\(447\) 14.3617i 0.679287i
\(448\) 0 0
\(449\) 32.5526 18.7942i 1.53625 0.886954i 0.537197 0.843457i \(-0.319483\pi\)
0.999054 0.0434975i \(-0.0138501\pi\)
\(450\) 0 0
\(451\) −7.72347 13.3774i −0.363684 0.629919i
\(452\) 0 0
\(453\) −9.92820 5.73205i −0.466468 0.269315i
\(454\) 0 0
\(455\) 32.3763 8.01105i 1.51782 0.375564i
\(456\) 0 0
\(457\) −20.8923 12.0622i −0.977301 0.564245i −0.0758467 0.997119i \(-0.524166\pi\)
−0.901454 + 0.432875i \(0.857499\pi\)
\(458\) 0 0
\(459\) 1.28380 + 2.22361i 0.0599228 + 0.103789i
\(460\) 0 0
\(461\) −2.76795 + 1.59808i −0.128916 + 0.0744298i −0.563071 0.826408i \(-0.690380\pi\)
0.434155 + 0.900838i \(0.357047\pi\)
\(462\) 0 0
\(463\) 31.3801i 1.45835i −0.684325 0.729177i \(-0.739903\pi\)
0.684325 0.729177i \(-0.260097\pi\)
\(464\) 0 0
\(465\) 11.4641 19.8564i 0.531635 0.920819i
\(466\) 0 0
\(467\) −9.25036 −0.428056 −0.214028 0.976828i \(-0.568658\pi\)
−0.214028 + 0.976828i \(0.568658\pi\)
\(468\) 0 0
\(469\) −21.3923 −0.987805
\(470\) 0 0
\(471\) 2.72172 4.71416i 0.125410 0.217217i
\(472\) 0 0
\(473\) 7.98076i 0.366956i
\(474\) 0 0
\(475\) −4.00552 + 2.31259i −0.183786 + 0.106109i
\(476\) 0 0
\(477\) 1.85641 + 3.21539i 0.0849990 + 0.147223i
\(478\) 0 0
\(479\) 9.29485 + 5.36639i 0.424693 + 0.245196i 0.697083 0.716990i \(-0.254481\pi\)
−0.272390 + 0.962187i \(0.587814\pi\)
\(480\) 0 0
\(481\) −20.0885 + 19.3301i −0.915955 + 0.881378i
\(482\) 0 0
\(483\) 27.4635 + 15.8561i 1.24963 + 0.721476i
\(484\) 0 0
\(485\) 13.7321 + 23.7846i 0.623540 + 1.08000i
\(486\) 0 0
\(487\) 2.43414 1.40535i 0.110301 0.0636825i −0.443834 0.896109i \(-0.646382\pi\)
0.554136 + 0.832426i \(0.313049\pi\)
\(488\) 0 0
\(489\) 30.9090i 1.39775i
\(490\) 0 0
\(491\) −6.48415 + 11.2309i −0.292626 + 0.506843i −0.974430 0.224692i \(-0.927862\pi\)
0.681804 + 0.731535i \(0.261196\pi\)
\(492\) 0 0
\(493\) −1.39230 −0.0627063
\(494\) 0 0
\(495\) −6.28555 −0.282514
\(496\) 0 0
\(497\) −14.8923 + 25.7942i −0.668011 + 1.15703i
\(498\) 0 0
\(499\) 9.25036i 0.414103i −0.978330 0.207052i \(-0.933613\pi\)
0.978330 0.207052i \(-0.0663868\pi\)
\(500\) 0 0
\(501\) −24.1077 + 13.9186i −1.07705 + 0.621836i
\(502\) 0 0
\(503\) 15.7345 + 27.2530i 0.701567 + 1.21515i 0.967916 + 0.251274i \(0.0808494\pi\)
−0.266349 + 0.963877i \(0.585817\pi\)
\(504\) 0 0
\(505\) 33.5885 + 19.3923i 1.49467 + 0.862946i
\(506\) 0 0
\(507\) −14.2521 + 7.51294i −0.632958 + 0.333661i
\(508\) 0 0
\(509\) −23.5526 13.5981i −1.04395 0.602724i −0.123000 0.992407i \(-0.539251\pi\)
−0.920949 + 0.389683i \(0.872585\pi\)
\(510\) 0 0
\(511\) 13.8755 + 24.0331i 0.613818 + 1.06316i
\(512\) 0 0
\(513\) −22.1603 + 12.7942i −0.978399 + 0.564879i
\(514\) 0 0
\(515\) 17.1724i 0.756708i
\(516\) 0 0
\(517\) −12.5885 + 21.8038i −0.553640 + 0.958932i
\(518\) 0 0
\(519\) −12.3042 −0.540093
\(520\) 0 0
\(521\) 6.24871 0.273761 0.136881 0.990588i \(-0.456292\pi\)
0.136881 + 0.990588i \(0.456292\pi\)
\(522\) 0 0
\(523\) 3.43036 5.94155i 0.149999 0.259806i −0.781228 0.624246i \(-0.785406\pi\)
0.931227 + 0.364440i \(0.118740\pi\)
\(524\) 0 0
\(525\) 5.73205i 0.250167i
\(526\) 0 0
\(527\) 3.71794 2.14655i 0.161956 0.0935054i
\(528\) 0 0
\(529\) −3.80385 6.58846i −0.165385 0.286455i
\(530\) 0 0
\(531\) −12.1500 7.01483i −0.527267 0.304418i
\(532\) 0 0
\(533\) 18.6962 17.9904i 0.809820 0.779250i
\(534\) 0 0
\(535\) −6.43966 3.71794i −0.278411 0.160741i
\(536\) 0 0
\(537\) 2.30385 + 3.99038i 0.0994184 + 0.172198i
\(538\) 0 0
\(539\) 26.7549 15.4469i 1.15241 0.665346i
\(540\) 0 0
\(541\) 6.92820i 0.297867i 0.988847 + 0.148933i \(0.0475840\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 0 0
\(543\) −10.1576 + 17.5935i −0.435905 + 0.755009i
\(544\) 0 0
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) 8.58622 0.367120 0.183560 0.983008i \(-0.441238\pi\)
0.183560 + 0.983008i \(0.441238\pi\)
\(548\) 0 0
\(549\) 2.19615 3.80385i 0.0937295 0.162344i
\(550\) 0 0
\(551\) 13.8755i 0.591118i
\(552\) 0 0
\(553\) 17.1962 9.92820i 0.731255 0.422190i
\(554\) 0 0
\(555\) 9.58244 + 16.5973i 0.406752 + 0.704515i
\(556\) 0 0
\(557\) 19.7487 + 11.4019i 0.836780 + 0.483115i 0.856168 0.516697i \(-0.172839\pi\)
−0.0193886 + 0.999812i \(0.506172\pi\)
\(558\) 0 0
\(559\) −13.0128 + 3.21983i −0.550383 + 0.136184i
\(560\) 0 0
\(561\) 1.06922 + 0.617314i 0.0451425 + 0.0260630i
\(562\) 0 0
\(563\) −19.4525 33.6926i −0.819823 1.41998i −0.905812 0.423679i \(-0.860738\pi\)
0.0859889 0.996296i \(-0.472595\pi\)
\(564\) 0 0
\(565\) −21.5885 + 12.4641i −0.908233 + 0.524369i
\(566\) 0 0
\(567\) 11.3969i 0.478626i
\(568\) 0 0
\(569\) −4.96410 + 8.59808i −0.208106 + 0.360450i −0.951118 0.308828i \(-0.900063\pi\)
0.743012 + 0.669278i \(0.233397\pi\)
\(570\) 0 0
\(571\) 23.4580 0.981686 0.490843 0.871248i \(-0.336689\pi\)
0.490843 + 0.871248i \(0.336689\pi\)
\(572\) 0 0
\(573\) 16.0718 0.671409
\(574\) 0 0
\(575\) 2.76621 4.79122i 0.115359 0.199808i
\(576\) 0 0
\(577\) 43.8564i 1.82577i 0.408221 + 0.912883i \(0.366149\pi\)
−0.408221 + 0.912883i \(0.633851\pi\)
\(578\) 0 0
\(579\) 21.1780 12.2271i 0.880126 0.508141i
\(580\) 0 0
\(581\) −9.92820 17.1962i −0.411891 0.713417i
\(582\) 0 0
\(583\) 4.71416 + 2.72172i 0.195241 + 0.112722i
\(584\) 0 0
\(585\) −2.53590 10.2487i −0.104846 0.423732i
\(586\) 0 0
\(587\) −19.4525 11.2309i −0.802889 0.463548i 0.0415915 0.999135i \(-0.486757\pi\)
−0.844480 + 0.535587i \(0.820091\pi\)
\(588\) 0 0
\(589\) 21.3923 + 37.0526i 0.881455 + 1.52672i
\(590\) 0 0
\(591\) 25.3170 14.6167i 1.04140 0.601253i
\(592\) 0 0
\(593\) 22.7846i 0.935652i 0.883821 + 0.467826i \(0.154963\pi\)
−0.883821 + 0.467826i \(0.845037\pi\)
\(594\) 0 0
\(595\) 2.14655 3.71794i 0.0880001 0.152421i
\(596\) 0 0
\(597\) 15.2487 0.624088
\(598\) 0 0
\(599\) −12.8793 −0.526235 −0.263117 0.964764i \(-0.584751\pi\)
−0.263117 + 0.964764i \(0.584751\pi\)
\(600\) 0 0
\(601\) −2.69615 + 4.66987i −0.109978 + 0.190488i −0.915761 0.401723i \(-0.868411\pi\)
0.805783 + 0.592211i \(0.201745\pi\)
\(602\) 0 0
\(603\) 6.77174i 0.275766i
\(604\) 0 0
\(605\) 11.0718 6.39230i 0.450133 0.259884i
\(606\) 0 0
\(607\) −2.43414 4.21605i −0.0987986 0.171124i 0.812389 0.583116i \(-0.198167\pi\)
−0.911188 + 0.411992i \(0.864833\pi\)
\(608\) 0 0
\(609\) −14.8923 8.59808i −0.603467 0.348412i
\(610\) 0 0
\(611\) −40.6304 11.7290i −1.64373 0.474504i
\(612\) 0 0
\(613\) 0.696152 + 0.401924i 0.0281173 + 0.0162335i 0.513993 0.857795i \(-0.328166\pi\)
−0.485875 + 0.874028i \(0.661499\pi\)
\(614\) 0 0
\(615\) −8.91829 15.4469i −0.359620 0.622880i
\(616\) 0 0
\(617\) 10.0359 5.79423i 0.404030 0.233267i −0.284191 0.958768i \(-0.591725\pi\)
0.688221 + 0.725501i \(0.258392\pi\)
\(618\) 0 0
\(619\) 9.25036i 0.371803i −0.982568 0.185902i \(-0.940479\pi\)
0.982568 0.185902i \(-0.0595206\pi\)
\(620\) 0 0
\(621\) 15.3038 26.5070i 0.614122 1.06369i
\(622\) 0 0
\(623\) 5.53242 0.221652
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) −6.15208 + 10.6557i −0.245690 + 0.425548i
\(628\) 0 0
\(629\) 3.58846i 0.143081i
\(630\) 0 0
\(631\) 24.7418 14.2847i 0.984955 0.568664i 0.0811925 0.996698i \(-0.474127\pi\)
0.903762 + 0.428034i \(0.140794\pi\)
\(632\) 0 0
\(633\) 16.8397 + 29.1673i 0.669320 + 1.15930i
\(634\) 0 0
\(635\) −6.43966 3.71794i −0.255550 0.147542i
\(636\) 0 0
\(637\) 35.9808 + 37.3923i 1.42561 + 1.48154i
\(638\) 0 0
\(639\) 8.16517 + 4.71416i 0.323009 + 0.186489i
\(640\) 0 0
\(641\) 9.69615 + 16.7942i 0.382975 + 0.663332i 0.991486 0.130213i \(-0.0415662\pi\)
−0.608511 + 0.793545i \(0.708233\pi\)
\(642\) 0 0
\(643\) −26.4673 + 15.2809i −1.04377 + 0.602620i −0.920898 0.389803i \(-0.872543\pi\)
−0.122870 + 0.992423i \(0.539210\pi\)
\(644\) 0 0
\(645\) 9.21539i 0.362856i
\(646\) 0 0
\(647\) 5.57691 9.65949i 0.219251 0.379754i −0.735328 0.677711i \(-0.762972\pi\)
0.954579 + 0.297957i \(0.0963053\pi\)
\(648\) 0 0
\(649\) −20.5692 −0.807412
\(650\) 0 0
\(651\) 53.0236 2.07816
\(652\) 0 0
\(653\) −7.62436 + 13.2058i −0.298364 + 0.516782i −0.975762 0.218835i \(-0.929774\pi\)
0.677398 + 0.735617i \(0.263108\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 7.60770 4.39230i 0.296804 0.171360i
\(658\) 0 0
\(659\) 3.67345 + 6.36260i 0.143097 + 0.247852i 0.928661 0.370928i \(-0.120960\pi\)
−0.785564 + 0.618780i \(0.787627\pi\)
\(660\) 0 0
\(661\) −11.3038 6.52628i −0.439669 0.253843i 0.263788 0.964581i \(-0.415028\pi\)
−0.703457 + 0.710738i \(0.748361\pi\)
\(662\) 0 0
\(663\) −0.575167 + 1.99244i −0.0223377 + 0.0773799i
\(664\) 0 0
\(665\) 37.0526 + 21.3923i 1.43684 + 0.829558i
\(666\) 0 0
\(667\) 8.29863 + 14.3737i 0.321324 + 0.556550i
\(668\) 0 0
\(669\) 4.96410 2.86603i 0.191923 0.110807i
\(670\) 0 0
\(671\) 6.43966i 0.248600i
\(672\) 0 0
\(673\) −11.8923 + 20.5981i −0.458415 + 0.793997i −0.998877 0.0473705i \(-0.984916\pi\)
0.540463 + 0.841368i \(0.318249\pi\)
\(674\) 0 0
\(675\) 5.53242 0.212943
\(676\) 0 0
\(677\) 9.46410 0.363735 0.181867 0.983323i \(-0.441786\pi\)
0.181867 + 0.983323i \(0.441786\pi\)
\(678\) 0 0
\(679\) −31.7566 + 55.0041i −1.21871 + 2.11086i
\(680\) 0 0
\(681\) 17.1962i 0.658958i
\(682\) 0 0
\(683\) −8.29863 + 4.79122i −0.317538 + 0.183331i −0.650295 0.759682i \(-0.725355\pi\)
0.332756 + 0.943013i \(0.392021\pi\)
\(684\) 0 0
\(685\) −13.1962 22.8564i −0.504199 0.873298i
\(686\) 0 0
\(687\) 0.996219 + 0.575167i 0.0380081 + 0.0219440i
\(688\) 0 0
\(689\) −2.53590 + 8.78461i −0.0966100 + 0.334667i
\(690\) 0 0
\(691\) −34.4783 19.9061i −1.31162 0.757263i −0.329254 0.944241i \(-0.606797\pi\)
−0.982364 + 0.186979i \(0.940130\pi\)
\(692\) 0 0
\(693\) −7.26795 12.5885i −0.276087 0.478196i
\(694\) 0 0
\(695\) −13.8755 + 8.01105i −0.526329 + 0.303876i
\(696\) 0 0
\(697\) 3.33975i 0.126502i
\(698\) 0 0
\(699\) −9.00727 + 15.6010i −0.340686 + 0.590086i
\(700\) 0 0
\(701\) 32.1051 1.21259 0.606297 0.795238i \(-0.292654\pi\)
0.606297 + 0.795238i \(0.292654\pi\)
\(702\) 0 0
\(703\) −35.7621 −1.34879
\(704\) 0 0
\(705\) −14.5359 + 25.1769i −0.547454 + 0.948217i
\(706\) 0 0
\(707\) 89.6929i 3.37325i
\(708\) 0 0
\(709\) −23.3038 + 13.4545i −0.875194 + 0.505294i −0.869071 0.494688i \(-0.835283\pi\)
−0.00612347 + 0.999981i \(0.501949\pi\)
\(710\) 0 0
\(711\) −3.14277 5.44344i −0.117863 0.204145i
\(712\) 0 0
\(713\) −44.3205 25.5885i −1.65982 0.958295i
\(714\) 0 0
\(715\) −10.7328 11.1538i −0.401383 0.417129i
\(716\) 0 0
\(717\) −4.60770 2.66025i −0.172078 0.0993490i
\(718\) 0 0
\(719\) 6.48415 + 11.2309i 0.241818 + 0.418841i 0.961232 0.275740i \(-0.0889229\pi\)
−0.719414 + 0.694581i \(0.755590\pi\)
\(720\) 0 0
\(721\) −34.3923 + 19.8564i −1.28084 + 0.739491i
\(722\) 0 0
\(723\) 26.7549i 0.995024i
\(724\) 0 0
\(725\) −1.50000 + 2.59808i −0.0557086 + 0.0964901i
\(726\) 0 0
\(727\) 17.1724 0.636890 0.318445 0.947941i \(-0.396839\pi\)
0.318445 + 0.947941i \(0.396839\pi\)
\(728\) 0 0
\(729\) 24.1769 0.895441
\(730\) 0 0
\(731\) −0.862751 + 1.49433i −0.0319100 + 0.0552698i
\(732\) 0 0
\(733\) 15.7128i 0.580366i −0.956971 0.290183i \(-0.906284\pi\)
0.956971 0.290183i \(-0.0937162\pi\)
\(734\) 0 0
\(735\) 30.8939 17.8366i 1.13954 0.657912i
\(736\) 0 0
\(737\) 4.96410 + 8.59808i 0.182855 + 0.316714i
\(738\) 0 0
\(739\) −31.1814 18.0026i −1.14703 0.662237i −0.198867 0.980027i \(-0.563726\pi\)
−0.948161 + 0.317790i \(0.897059\pi\)
\(740\) 0 0
\(741\) −19.8564 5.73205i −0.729443 0.210572i
\(742\) 0 0
\(743\) 37.0459 + 21.3885i 1.35908 + 0.784667i 0.989500 0.144530i \(-0.0461671\pi\)
0.369583 + 0.929198i \(0.379500\pi\)
\(744\) 0 0
\(745\) 11.5885 + 20.0718i 0.424568 + 0.735374i
\(746\) 0 0
\(747\) −5.44344 + 3.14277i −0.199165 + 0.114988i
\(748\) 0 0
\(749\) 17.1962i 0.628334i
\(750\) 0 0
\(751\) 0.287584 0.498110i 0.0104941 0.0181763i −0.860731 0.509061i \(-0.829993\pi\)
0.871225 + 0.490884i \(0.163326\pi\)
\(752\) 0 0
\(753\) 32.0333 1.16736
\(754\) 0 0
\(755\) 18.5007 0.673310
\(756\) 0 0
\(757\) 11.3038 19.5788i 0.410845 0.711605i −0.584137 0.811655i \(-0.698567\pi\)
0.994982 + 0.100050i \(0.0319003\pi\)
\(758\) 0 0
\(759\) 14.7176i 0.534217i
\(760\) 0 0
\(761\) −2.76795 + 1.59808i −0.100338 + 0.0579302i −0.549329 0.835606i \(-0.685117\pi\)
0.448991 + 0.893536i \(0.351783\pi\)
\(762\) 0 0
\(763\) 13.8755 + 24.0331i 0.502328 + 0.870058i
\(764\) 0 0
\(765\) −1.17691 0.679492i −0.0425514 0.0245671i
\(766\) 0 0
\(767\) −8.29863 33.5385i −0.299646 1.21101i
\(768\) 0 0
\(769\) −36.4808 21.0622i −1.31553 0.759522i −0.332524 0.943095i \(-0.607900\pi\)
−0.983006 + 0.183573i \(0.941234\pi\)
\(770\) 0 0
\(771\) −0.287584 0.498110i −0.0103571 0.0179390i
\(772\) 0 0
\(773\) 14.5526 8.40192i 0.523419 0.302196i −0.214913 0.976633i \(-0.568947\pi\)
0.738332 + 0.674437i \(0.235614\pi\)
\(774\) 0 0
\(775\) 9.25036i 0.332283i
\(776\) 0 0
\(777\) −22.1603 + 38.3827i −0.794995 + 1.37697i
\(778\) 0 0
\(779\) 33.2835 1.19251
\(780\) 0 0
\(781\) 13.8231 0.494629
\(782\) 0 0
\(783\) −8.29863 + 14.3737i −0.296569 + 0.513673i
\(784\) 0 0
\(785\) 8.78461i 0.313536i
\(786\) 0 0
\(787\) −23.3245 + 13.4664i −0.831429 + 0.480026i −0.854342 0.519712i \(-0.826039\pi\)
0.0229126 + 0.999737i \(0.492706\pi\)
\(788\) 0 0
\(789\) −14.8923 25.7942i −0.530180 0.918299i
\(790\) 0