Properties

Label 416.2.w.c.225.1
Level $416$
Weight $2$
Character 416.225
Analytic conductor $3.322$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(225,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.w (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.56070144.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 225.1
Root \(0.500000 - 1.56488i\) of defining polynomial
Character \(\chi\) \(=\) 416.225
Dual form 416.2.w.c.257.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.45466 + 2.51954i) q^{3} -2.00000i q^{5} +(-0.675108 + 0.389774i) q^{7} +(-2.73205 - 4.73205i) q^{9} +O(q^{10})\) \(q+(-1.45466 + 2.51954i) q^{3} -2.00000i q^{5} +(-0.675108 + 0.389774i) q^{7} +(-2.73205 - 4.73205i) q^{9} +(-4.36397 - 2.51954i) q^{11} +(-1.00000 + 3.46410i) q^{13} +(5.03908 + 2.90931i) q^{15} +(-3.23205 - 5.59808i) q^{17} +(-0.675108 + 0.389774i) q^{19} -2.26795i q^{21} +(3.58442 - 6.20840i) q^{23} +1.00000 q^{25} +7.16884 q^{27} +(-1.50000 + 2.59808i) q^{29} -1.55910i q^{31} +(12.6962 - 7.33013i) q^{33} +(0.779548 + 1.35022i) q^{35} +(-3.69615 - 2.13397i) q^{37} +(-7.27328 - 7.55862i) q^{39} +(-2.76795 - 1.59808i) q^{41} +(-4.36397 - 7.55862i) q^{43} +(-9.46410 + 5.46410i) q^{45} +7.37772i q^{47} +(-3.19615 + 5.53590i) q^{49} +18.8061 q^{51} +9.46410 q^{53} +(-5.03908 + 8.72794i) q^{55} -2.26795i q^{57} +(-10.7533 + 6.20840i) q^{59} +(-1.50000 - 2.59808i) q^{61} +(3.68886 + 2.12976i) q^{63} +(6.92820 + 2.00000i) q^{65} +(0.675108 + 0.389774i) q^{67} +(10.4282 + 18.0622i) q^{69} +(-13.0919 + 7.55862i) q^{71} +6.00000i q^{73} +(-1.45466 + 2.51954i) q^{75} +3.92820 q^{77} -10.0782 q^{79} +(-2.23205 + 3.86603i) q^{81} -10.0782i q^{83} +(-11.1962 + 6.46410i) q^{85} +(-4.36397 - 7.55862i) q^{87} +(-7.96410 - 4.59808i) q^{89} +(-0.675108 - 2.72842i) q^{91} +(3.92820 + 2.26795i) q^{93} +(0.779548 + 1.35022i) q^{95} +(-8.89230 + 5.13397i) q^{97} +27.5340i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{9} - 8 q^{13} - 12 q^{17} + 8 q^{25} - 12 q^{29} + 60 q^{33} + 12 q^{37} - 36 q^{41} - 48 q^{45} + 16 q^{49} + 48 q^{53} - 12 q^{61} + 28 q^{69} - 24 q^{77} - 4 q^{81} - 48 q^{85} - 36 q^{89} - 24 q^{93} + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.45466 + 2.51954i −0.839846 + 1.45466i 0.0501765 + 0.998740i \(0.484022\pi\)
−0.890023 + 0.455916i \(0.849312\pi\)
\(4\) 0 0
\(5\) 2.00000i 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) −0.675108 + 0.389774i −0.255167 + 0.147321i −0.622128 0.782916i \(-0.713732\pi\)
0.366961 + 0.930236i \(0.380398\pi\)
\(8\) 0 0
\(9\) −2.73205 4.73205i −0.910684 1.57735i
\(10\) 0 0
\(11\) −4.36397 2.51954i −1.31579 0.759670i −0.332738 0.943019i \(-0.607973\pi\)
−0.983048 + 0.183350i \(0.941306\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) 5.03908 + 2.90931i 1.30108 + 0.751181i
\(16\) 0 0
\(17\) −3.23205 5.59808i −0.783887 1.35773i −0.929661 0.368415i \(-0.879901\pi\)
0.145774 0.989318i \(-0.453433\pi\)
\(18\) 0 0
\(19\) −0.675108 + 0.389774i −0.154880 + 0.0894203i −0.575437 0.817846i \(-0.695168\pi\)
0.420557 + 0.907266i \(0.361835\pi\)
\(20\) 0 0
\(21\) 2.26795i 0.494907i
\(22\) 0 0
\(23\) 3.58442 6.20840i 0.747404 1.29454i −0.201660 0.979456i \(-0.564634\pi\)
0.949063 0.315085i \(-0.102033\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 7.16884 1.37964
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) 1.55910i 0.280022i −0.990150 0.140011i \(-0.955286\pi\)
0.990150 0.140011i \(-0.0447138\pi\)
\(32\) 0 0
\(33\) 12.6962 7.33013i 2.21012 1.27601i
\(34\) 0 0
\(35\) 0.779548 + 1.35022i 0.131768 + 0.228228i
\(36\) 0 0
\(37\) −3.69615 2.13397i −0.607644 0.350823i 0.164399 0.986394i \(-0.447432\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) 0 0
\(39\) −7.27328 7.55862i −1.16466 1.21035i
\(40\) 0 0
\(41\) −2.76795 1.59808i −0.432281 0.249578i 0.268037 0.963409i \(-0.413625\pi\)
−0.700318 + 0.713831i \(0.746958\pi\)
\(42\) 0 0
\(43\) −4.36397 7.55862i −0.665499 1.15268i −0.979150 0.203140i \(-0.934885\pi\)
0.313651 0.949538i \(-0.398448\pi\)
\(44\) 0 0
\(45\) −9.46410 + 5.46410i −1.41082 + 0.814540i
\(46\) 0 0
\(47\) 7.37772i 1.07615i 0.842897 + 0.538076i \(0.180849\pi\)
−0.842897 + 0.538076i \(0.819151\pi\)
\(48\) 0 0
\(49\) −3.19615 + 5.53590i −0.456593 + 0.790843i
\(50\) 0 0
\(51\) 18.8061 2.63338
\(52\) 0 0
\(53\) 9.46410 1.29999 0.649997 0.759937i \(-0.274770\pi\)
0.649997 + 0.759937i \(0.274770\pi\)
\(54\) 0 0
\(55\) −5.03908 + 8.72794i −0.679469 + 1.17688i
\(56\) 0 0
\(57\) 2.26795i 0.300397i
\(58\) 0 0
\(59\) −10.7533 + 6.20840i −1.39996 + 0.808265i −0.994387 0.105800i \(-0.966260\pi\)
−0.405568 + 0.914065i \(0.632926\pi\)
\(60\) 0 0
\(61\) −1.50000 2.59808i −0.192055 0.332650i 0.753876 0.657017i \(-0.228182\pi\)
−0.945931 + 0.324367i \(0.894849\pi\)
\(62\) 0 0
\(63\) 3.68886 + 2.12976i 0.464753 + 0.268325i
\(64\) 0 0
\(65\) 6.92820 + 2.00000i 0.859338 + 0.248069i
\(66\) 0 0
\(67\) 0.675108 + 0.389774i 0.0824776 + 0.0476185i 0.540672 0.841234i \(-0.318170\pi\)
−0.458194 + 0.888852i \(0.651504\pi\)
\(68\) 0 0
\(69\) 10.4282 + 18.0622i 1.25541 + 2.17443i
\(70\) 0 0
\(71\) −13.0919 + 7.55862i −1.55372 + 0.897043i −0.555890 + 0.831256i \(0.687622\pi\)
−0.997834 + 0.0657869i \(0.979044\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) −1.45466 + 2.51954i −0.167969 + 0.290931i
\(76\) 0 0
\(77\) 3.92820 0.447660
\(78\) 0 0
\(79\) −10.0782 −1.13388 −0.566941 0.823759i \(-0.691873\pi\)
−0.566941 + 0.823759i \(0.691873\pi\)
\(80\) 0 0
\(81\) −2.23205 + 3.86603i −0.248006 + 0.429558i
\(82\) 0 0
\(83\) 10.0782i 1.10622i −0.833108 0.553111i \(-0.813441\pi\)
0.833108 0.553111i \(-0.186559\pi\)
\(84\) 0 0
\(85\) −11.1962 + 6.46410i −1.21439 + 0.701130i
\(86\) 0 0
\(87\) −4.36397 7.55862i −0.467867 0.810369i
\(88\) 0 0
\(89\) −7.96410 4.59808i −0.844193 0.487395i 0.0144942 0.999895i \(-0.495386\pi\)
−0.858687 + 0.512500i \(0.828720\pi\)
\(90\) 0 0
\(91\) −0.675108 2.72842i −0.0707706 0.286016i
\(92\) 0 0
\(93\) 3.92820 + 2.26795i 0.407336 + 0.235175i
\(94\) 0 0
\(95\) 0.779548 + 1.35022i 0.0799799 + 0.138529i
\(96\) 0 0
\(97\) −8.89230 + 5.13397i −0.902877 + 0.521276i −0.878132 0.478418i \(-0.841211\pi\)
−0.0247444 + 0.999694i \(0.507877\pi\)
\(98\) 0 0
\(99\) 27.5340i 2.76727i
\(100\) 0 0
\(101\) −0.696152 + 1.20577i −0.0692698 + 0.119979i −0.898580 0.438810i \(-0.855400\pi\)
0.829310 + 0.558788i \(0.188734\pi\)
\(102\) 0 0
\(103\) 20.1563 1.98606 0.993030 0.117860i \(-0.0376035\pi\)
0.993030 + 0.117860i \(0.0376035\pi\)
\(104\) 0 0
\(105\) −4.53590 −0.442658
\(106\) 0 0
\(107\) 4.36397 7.55862i 0.421881 0.730719i −0.574243 0.818685i \(-0.694703\pi\)
0.996123 + 0.0879661i \(0.0280367\pi\)
\(108\) 0 0
\(109\) 6.00000i 0.574696i 0.957826 + 0.287348i \(0.0927736\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) 10.7533 6.20840i 1.02065 0.589275i
\(112\) 0 0
\(113\) 2.76795 + 4.79423i 0.260387 + 0.451003i 0.966345 0.257251i \(-0.0828166\pi\)
−0.705958 + 0.708254i \(0.749483\pi\)
\(114\) 0 0
\(115\) −12.4168 7.16884i −1.15787 0.668498i
\(116\) 0 0
\(117\) 19.1244 4.73205i 1.76805 0.437478i
\(118\) 0 0
\(119\) 4.36397 + 2.51954i 0.400044 + 0.230966i
\(120\) 0 0
\(121\) 7.19615 + 12.4641i 0.654196 + 1.13310i
\(122\) 0 0
\(123\) 8.05283 4.64930i 0.726099 0.419214i
\(124\) 0 0
\(125\) 12.0000i 1.07331i
\(126\) 0 0
\(127\) 4.36397 7.55862i 0.387240 0.670719i −0.604837 0.796349i \(-0.706762\pi\)
0.992077 + 0.125630i \(0.0400953\pi\)
\(128\) 0 0
\(129\) 25.3923 2.23567
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0.303848 0.526279i 0.0263469 0.0456342i
\(134\) 0 0
\(135\) 14.3377i 1.23399i
\(136\) 0 0
\(137\) 2.42820 1.40192i 0.207455 0.119774i −0.392673 0.919678i \(-0.628450\pi\)
0.600128 + 0.799904i \(0.295116\pi\)
\(138\) 0 0
\(139\) 0.675108 + 1.16932i 0.0572619 + 0.0991806i 0.893235 0.449589i \(-0.148430\pi\)
−0.835973 + 0.548770i \(0.815096\pi\)
\(140\) 0 0
\(141\) −18.5885 10.7321i −1.56543 0.903802i
\(142\) 0 0
\(143\) 13.0919 12.5977i 1.09480 1.05347i
\(144\) 0 0
\(145\) 5.19615 + 3.00000i 0.431517 + 0.249136i
\(146\) 0 0
\(147\) −9.29861 16.1057i −0.766936 1.32837i
\(148\) 0 0
\(149\) 16.9641 9.79423i 1.38975 0.802374i 0.396466 0.918049i \(-0.370236\pi\)
0.993287 + 0.115675i \(0.0369031\pi\)
\(150\) 0 0
\(151\) 1.55910i 0.126877i −0.997986 0.0634387i \(-0.979793\pi\)
0.997986 0.0634387i \(-0.0202067\pi\)
\(152\) 0 0
\(153\) −17.6603 + 30.5885i −1.42775 + 2.47293i
\(154\) 0 0
\(155\) −3.11819 −0.250459
\(156\) 0 0
\(157\) −16.3923 −1.30825 −0.654124 0.756387i \(-0.726963\pi\)
−0.654124 + 0.756387i \(0.726963\pi\)
\(158\) 0 0
\(159\) −13.7670 + 23.8452i −1.09180 + 1.89105i
\(160\) 0 0
\(161\) 5.58846i 0.440432i
\(162\) 0 0
\(163\) −10.3915 + 5.99952i −0.813923 + 0.469919i −0.848316 0.529490i \(-0.822383\pi\)
0.0343933 + 0.999408i \(0.489050\pi\)
\(164\) 0 0
\(165\) −14.6603 25.3923i −1.14130 1.97679i
\(166\) 0 0
\(167\) 15.4306 + 8.90883i 1.19405 + 0.689386i 0.959223 0.282650i \(-0.0912136\pi\)
0.234829 + 0.972037i \(0.424547\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) 3.68886 + 2.12976i 0.282094 + 0.162867i
\(172\) 0 0
\(173\) 1.96410 + 3.40192i 0.149328 + 0.258643i 0.930979 0.365072i \(-0.118956\pi\)
−0.781651 + 0.623716i \(0.785622\pi\)
\(174\) 0 0
\(175\) −0.675108 + 0.389774i −0.0510334 + 0.0294641i
\(176\) 0 0
\(177\) 36.1244i 2.71527i
\(178\) 0 0
\(179\) 4.36397 7.55862i 0.326178 0.564958i −0.655572 0.755133i \(-0.727572\pi\)
0.981750 + 0.190175i \(0.0609057\pi\)
\(180\) 0 0
\(181\) 4.39230 0.326477 0.163239 0.986587i \(-0.447806\pi\)
0.163239 + 0.986587i \(0.447806\pi\)
\(182\) 0 0
\(183\) 8.72794 0.645188
\(184\) 0 0
\(185\) −4.26795 + 7.39230i −0.313786 + 0.543493i
\(186\) 0 0
\(187\) 32.5731i 2.38198i
\(188\) 0 0
\(189\) −4.83975 + 2.79423i −0.352040 + 0.203250i
\(190\) 0 0
\(191\) −5.14352 8.90883i −0.372172 0.644621i 0.617728 0.786392i \(-0.288053\pi\)
−0.989899 + 0.141772i \(0.954720\pi\)
\(192\) 0 0
\(193\) −14.0885 8.13397i −1.01411 0.585496i −0.101717 0.994813i \(-0.532434\pi\)
−0.912392 + 0.409317i \(0.865767\pi\)
\(194\) 0 0
\(195\) −15.1172 + 14.5466i −1.08257 + 1.04170i
\(196\) 0 0
\(197\) 6.57180 + 3.79423i 0.468221 + 0.270328i 0.715495 0.698618i \(-0.246201\pi\)
−0.247274 + 0.968946i \(0.579535\pi\)
\(198\) 0 0
\(199\) 5.71419 + 9.89726i 0.405068 + 0.701598i 0.994329 0.106344i \(-0.0339145\pi\)
−0.589261 + 0.807942i \(0.700581\pi\)
\(200\) 0 0
\(201\) −1.96410 + 1.13397i −0.138537 + 0.0799844i
\(202\) 0 0
\(203\) 2.33864i 0.164141i
\(204\) 0 0
\(205\) −3.19615 + 5.53590i −0.223229 + 0.386644i
\(206\) 0 0
\(207\) −39.1713 −2.72259
\(208\) 0 0
\(209\) 3.92820 0.271719
\(210\) 0 0
\(211\) 11.7417 20.3372i 0.808331 1.40007i −0.105688 0.994399i \(-0.533704\pi\)
0.914019 0.405672i \(-0.132962\pi\)
\(212\) 0 0
\(213\) 43.9808i 3.01351i
\(214\) 0 0
\(215\) −15.1172 + 8.72794i −1.03099 + 0.595240i
\(216\) 0 0
\(217\) 0.607695 + 1.05256i 0.0412530 + 0.0714524i
\(218\) 0 0
\(219\) −15.1172 8.72794i −1.02153 0.589779i
\(220\) 0 0
\(221\) 22.6244 5.59808i 1.52188 0.376567i
\(222\) 0 0
\(223\) 0.675108 + 0.389774i 0.0452086 + 0.0261012i 0.522434 0.852680i \(-0.325024\pi\)
−0.477225 + 0.878781i \(0.658357\pi\)
\(224\) 0 0
\(225\) −2.73205 4.73205i −0.182137 0.315470i
\(226\) 0 0
\(227\) 2.02533 1.16932i 0.134426 0.0776106i −0.431279 0.902219i \(-0.641938\pi\)
0.565705 + 0.824608i \(0.308604\pi\)
\(228\) 0 0
\(229\) 12.9282i 0.854320i 0.904176 + 0.427160i \(0.140486\pi\)
−0.904176 + 0.427160i \(0.859514\pi\)
\(230\) 0 0
\(231\) −5.71419 + 9.89726i −0.375966 + 0.651192i
\(232\) 0 0
\(233\) −21.4641 −1.40616 −0.703080 0.711111i \(-0.748192\pi\)
−0.703080 + 0.711111i \(0.748192\pi\)
\(234\) 0 0
\(235\) 14.7554 0.962539
\(236\) 0 0
\(237\) 14.6603 25.3923i 0.952286 1.64941i
\(238\) 0 0
\(239\) 10.0782i 0.651902i 0.945387 + 0.325951i \(0.105684\pi\)
−0.945387 + 0.325951i \(0.894316\pi\)
\(240\) 0 0
\(241\) 8.30385 4.79423i 0.534898 0.308823i −0.208111 0.978105i \(-0.566731\pi\)
0.743009 + 0.669282i \(0.233398\pi\)
\(242\) 0 0
\(243\) 4.25953 + 7.37772i 0.273249 + 0.473281i
\(244\) 0 0
\(245\) 11.0718 + 6.39230i 0.707351 + 0.408389i
\(246\) 0 0
\(247\) −0.675108 2.72842i −0.0429561 0.173605i
\(248\) 0 0
\(249\) 25.3923 + 14.6603i 1.60917 + 0.929056i
\(250\) 0 0
\(251\) 9.97372 + 17.2750i 0.629535 + 1.09039i 0.987645 + 0.156708i \(0.0500881\pi\)
−0.358110 + 0.933680i \(0.616579\pi\)
\(252\) 0 0
\(253\) −31.2846 + 18.0622i −1.96685 + 1.13556i
\(254\) 0 0
\(255\) 37.6122i 2.35537i
\(256\) 0 0
\(257\) −3.23205 + 5.59808i −0.201610 + 0.349198i −0.949047 0.315134i \(-0.897951\pi\)
0.747437 + 0.664332i \(0.231284\pi\)
\(258\) 0 0
\(259\) 3.32707 0.206734
\(260\) 0 0
\(261\) 16.3923 1.01466
\(262\) 0 0
\(263\) 2.02533 3.50797i 0.124887 0.216310i −0.796802 0.604241i \(-0.793477\pi\)
0.921689 + 0.387930i \(0.126810\pi\)
\(264\) 0 0
\(265\) 18.9282i 1.16275i
\(266\) 0 0
\(267\) 23.1701 13.3772i 1.41798 0.818674i
\(268\) 0 0
\(269\) −12.6962 21.9904i −0.774098 1.34078i −0.935300 0.353856i \(-0.884870\pi\)
0.161202 0.986921i \(-0.448463\pi\)
\(270\) 0 0
\(271\) 3.37554 + 1.94887i 0.205050 + 0.118385i 0.599009 0.800743i \(-0.295561\pi\)
−0.393959 + 0.919128i \(0.628895\pi\)
\(272\) 0 0
\(273\) 7.85641 + 2.26795i 0.475491 + 0.137263i
\(274\) 0 0
\(275\) −4.36397 2.51954i −0.263157 0.151934i
\(276\) 0 0
\(277\) −8.69615 15.0622i −0.522501 0.904999i −0.999657 0.0261800i \(-0.991666\pi\)
0.477156 0.878819i \(-0.341668\pi\)
\(278\) 0 0
\(279\) −7.37772 + 4.25953i −0.441693 + 0.255011i
\(280\) 0 0
\(281\) 10.0000i 0.596550i −0.954480 0.298275i \(-0.903589\pi\)
0.954480 0.298275i \(-0.0964112\pi\)
\(282\) 0 0
\(283\) −3.01375 + 5.21997i −0.179149 + 0.310295i −0.941589 0.336763i \(-0.890668\pi\)
0.762440 + 0.647059i \(0.224001\pi\)
\(284\) 0 0
\(285\) −4.53590 −0.268683
\(286\) 0 0
\(287\) 2.49155 0.147072
\(288\) 0 0
\(289\) −12.3923 + 21.4641i −0.728959 + 1.26259i
\(290\) 0 0
\(291\) 29.8727i 1.75117i
\(292\) 0 0
\(293\) 12.8205 7.40192i 0.748982 0.432425i −0.0763439 0.997082i \(-0.524325\pi\)
0.825326 + 0.564657i \(0.190991\pi\)
\(294\) 0 0
\(295\) 12.4168 + 21.5065i 0.722934 + 1.25216i
\(296\) 0 0
\(297\) −31.2846 18.0622i −1.81532 1.04807i
\(298\) 0 0
\(299\) 17.9221 + 18.6252i 1.03646 + 1.07712i
\(300\) 0 0
\(301\) 5.89230 + 3.40192i 0.339627 + 0.196084i
\(302\) 0 0
\(303\) −2.02533 3.50797i −0.116352 0.201527i
\(304\) 0 0
\(305\) −5.19615 + 3.00000i −0.297531 + 0.171780i
\(306\) 0 0
\(307\) 33.3527i 1.90354i −0.306817 0.951768i \(-0.599264\pi\)
0.306817 0.951768i \(-0.400736\pi\)
\(308\) 0 0
\(309\) −29.3205 + 50.7846i −1.66799 + 2.88904i
\(310\) 0 0
\(311\) 3.11819 0.176816 0.0884082 0.996084i \(-0.471822\pi\)
0.0884082 + 0.996084i \(0.471822\pi\)
\(312\) 0 0
\(313\) 12.3923 0.700454 0.350227 0.936665i \(-0.386104\pi\)
0.350227 + 0.936665i \(0.386104\pi\)
\(314\) 0 0
\(315\) 4.25953 7.37772i 0.239997 0.415688i
\(316\) 0 0
\(317\) 4.00000i 0.224662i −0.993671 0.112331i \(-0.964168\pi\)
0.993671 0.112331i \(-0.0358318\pi\)
\(318\) 0 0
\(319\) 13.0919 7.55862i 0.733006 0.423201i
\(320\) 0 0
\(321\) 12.6962 + 21.9904i 0.708630 + 1.22738i
\(322\) 0 0
\(323\) 4.36397 + 2.51954i 0.242818 + 0.140191i
\(324\) 0 0
\(325\) −1.00000 + 3.46410i −0.0554700 + 0.192154i
\(326\) 0 0
\(327\) −15.1172 8.72794i −0.835985 0.482656i
\(328\) 0 0
\(329\) −2.87564 4.98076i −0.158539 0.274598i
\(330\) 0 0
\(331\) 14.4421 8.33816i 0.793811 0.458307i −0.0474915 0.998872i \(-0.515123\pi\)
0.841302 + 0.540565i \(0.181789\pi\)
\(332\) 0 0
\(333\) 23.3205i 1.27796i
\(334\) 0 0
\(335\) 0.779548 1.35022i 0.0425913 0.0737702i
\(336\) 0 0
\(337\) 20.3923 1.11084 0.555420 0.831570i \(-0.312558\pi\)
0.555420 + 0.831570i \(0.312558\pi\)
\(338\) 0 0
\(339\) −16.1057 −0.874739
\(340\) 0 0
\(341\) −3.92820 + 6.80385i −0.212724 + 0.368449i
\(342\) 0 0
\(343\) 10.4399i 0.563704i
\(344\) 0 0
\(345\) 36.1244 20.8564i 1.94487 1.12287i
\(346\) 0 0
\(347\) −2.80487 4.85818i −0.150573 0.260801i 0.780865 0.624700i \(-0.214779\pi\)
−0.931438 + 0.363899i \(0.881445\pi\)
\(348\) 0 0
\(349\) 18.6962 + 10.7942i 1.00078 + 0.577802i 0.908480 0.417929i \(-0.137244\pi\)
0.0923025 + 0.995731i \(0.470577\pi\)
\(350\) 0 0
\(351\) −7.16884 + 24.8336i −0.382645 + 1.32552i
\(352\) 0 0
\(353\) −1.03590 0.598076i −0.0551353 0.0318324i 0.472179 0.881503i \(-0.343468\pi\)
−0.527314 + 0.849670i \(0.676801\pi\)
\(354\) 0 0
\(355\) 15.1172 + 26.1838i 0.802339 + 1.38969i
\(356\) 0 0
\(357\) −12.6962 + 7.33013i −0.671952 + 0.387951i
\(358\) 0 0
\(359\) 10.0782i 0.531905i −0.963986 0.265952i \(-0.914314\pi\)
0.963986 0.265952i \(-0.0856864\pi\)
\(360\) 0 0
\(361\) −9.19615 + 15.9282i −0.484008 + 0.838326i
\(362\) 0 0
\(363\) −41.8717 −2.19770
\(364\) 0 0
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) 9.40305 16.2866i 0.490835 0.850151i −0.509109 0.860702i \(-0.670025\pi\)
0.999944 + 0.0105506i \(0.00335843\pi\)
\(368\) 0 0
\(369\) 17.4641i 0.909145i
\(370\) 0 0
\(371\) −6.38929 + 3.68886i −0.331716 + 0.191516i
\(372\) 0 0
\(373\) 5.69615 + 9.86603i 0.294936 + 0.510843i 0.974970 0.222337i \(-0.0713685\pi\)
−0.680034 + 0.733180i \(0.738035\pi\)
\(374\) 0 0
\(375\) 30.2345 + 17.4559i 1.56130 + 0.901418i
\(376\) 0 0
\(377\) −7.50000 7.79423i −0.386270 0.401423i
\(378\) 0 0
\(379\) −14.4421 8.33816i −0.741842 0.428303i 0.0808966 0.996723i \(-0.474222\pi\)
−0.822739 + 0.568420i \(0.807555\pi\)
\(380\) 0 0
\(381\) 12.6962 + 21.9904i 0.650444 + 1.12660i
\(382\) 0 0
\(383\) 24.1585 13.9479i 1.23444 0.712705i 0.266489 0.963838i \(-0.414137\pi\)
0.967953 + 0.251133i \(0.0808032\pi\)
\(384\) 0 0
\(385\) 7.85641i 0.400400i
\(386\) 0 0
\(387\) −23.8452 + 41.3010i −1.21212 + 2.09945i
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) −46.3401 −2.34352
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 20.1563i 1.01417i
\(396\) 0 0
\(397\) −11.3038 + 6.52628i −0.567324 + 0.327545i −0.756080 0.654479i \(-0.772888\pi\)
0.188756 + 0.982024i \(0.439554\pi\)
\(398\) 0 0
\(399\) 0.883988 + 1.53111i 0.0442547 + 0.0766515i
\(400\) 0 0
\(401\) −13.8397 7.99038i −0.691124 0.399021i 0.112909 0.993605i \(-0.463983\pi\)
−0.804033 + 0.594585i \(0.797316\pi\)
\(402\) 0 0
\(403\) 5.40087 + 1.55910i 0.269036 + 0.0776641i
\(404\) 0 0
\(405\) 7.73205 + 4.46410i 0.384209 + 0.221823i
\(406\) 0 0
\(407\) 10.7533 + 18.6252i 0.533020 + 0.923217i
\(408\) 0 0
\(409\) 14.3038 8.25833i 0.707280 0.408348i −0.102773 0.994705i \(-0.532772\pi\)
0.810053 + 0.586357i \(0.199438\pi\)
\(410\) 0 0
\(411\) 8.15727i 0.402368i
\(412\) 0 0
\(413\) 4.83975 8.38269i 0.238148 0.412485i
\(414\) 0 0
\(415\) −20.1563 −0.989434
\(416\) 0 0
\(417\) −3.92820 −0.192365
\(418\) 0 0
\(419\) 2.02533 3.50797i 0.0989436 0.171375i −0.812304 0.583234i \(-0.801787\pi\)
0.911248 + 0.411859i \(0.135120\pi\)
\(420\) 0 0
\(421\) 12.9282i 0.630082i −0.949078 0.315041i \(-0.897982\pi\)
0.949078 0.315041i \(-0.102018\pi\)
\(422\) 0 0
\(423\) 34.9118 20.1563i 1.69747 0.980033i
\(424\) 0 0
\(425\) −3.23205 5.59808i −0.156777 0.271547i
\(426\) 0 0
\(427\) 2.02533 + 1.16932i 0.0980124 + 0.0565875i
\(428\) 0 0
\(429\) 12.6962 + 51.3109i 0.612976 + 2.47731i
\(430\) 0 0
\(431\) −17.1426 9.89726i −0.825728 0.476734i 0.0266597 0.999645i \(-0.491513\pi\)
−0.852388 + 0.522910i \(0.824846\pi\)
\(432\) 0 0
\(433\) 3.69615 + 6.40192i 0.177626 + 0.307657i 0.941067 0.338221i \(-0.109825\pi\)
−0.763441 + 0.645877i \(0.776492\pi\)
\(434\) 0 0
\(435\) −15.1172 + 8.72794i −0.724816 + 0.418473i
\(436\) 0 0
\(437\) 5.58846i 0.267332i
\(438\) 0 0
\(439\) −3.01375 + 5.21997i −0.143839 + 0.249136i −0.928939 0.370233i \(-0.879278\pi\)
0.785100 + 0.619368i \(0.212611\pi\)
\(440\) 0 0
\(441\) 34.9282 1.66325
\(442\) 0 0
\(443\) −25.5572 −1.21426 −0.607129 0.794603i \(-0.707679\pi\)
−0.607129 + 0.794603i \(0.707679\pi\)
\(444\) 0 0
\(445\) −9.19615 + 15.9282i −0.435939 + 0.755069i
\(446\) 0 0
\(447\) 56.9890i 2.69548i
\(448\) 0 0
\(449\) −5.55256 + 3.20577i −0.262041 + 0.151290i −0.625265 0.780412i \(-0.715009\pi\)
0.363224 + 0.931702i \(0.381676\pi\)
\(450\) 0 0
\(451\) 8.05283 + 13.9479i 0.379193 + 0.656781i
\(452\) 0 0
\(453\) 3.92820 + 2.26795i 0.184563 + 0.106558i
\(454\) 0 0
\(455\) −5.45684 + 1.35022i −0.255820 + 0.0632991i
\(456\) 0 0
\(457\) −0.107695 0.0621778i −0.00503777 0.00290856i 0.497479 0.867476i \(-0.334259\pi\)
−0.502517 + 0.864567i \(0.667592\pi\)
\(458\) 0 0
\(459\) −23.1701 40.1317i −1.08149 1.87319i
\(460\) 0 0
\(461\) −6.23205 + 3.59808i −0.290256 + 0.167579i −0.638057 0.769989i \(-0.720262\pi\)
0.347802 + 0.937568i \(0.386928\pi\)
\(462\) 0 0
\(463\) 27.1163i 1.26020i 0.776514 + 0.630100i \(0.216986\pi\)
−0.776514 + 0.630100i \(0.783014\pi\)
\(464\) 0 0
\(465\) 4.53590 7.85641i 0.210347 0.364332i
\(466\) 0 0
\(467\) 1.55910 0.0721464 0.0360732 0.999349i \(-0.488515\pi\)
0.0360732 + 0.999349i \(0.488515\pi\)
\(468\) 0 0
\(469\) −0.607695 −0.0280608
\(470\) 0 0
\(471\) 23.8452 41.3010i 1.09873 1.90305i
\(472\) 0 0
\(473\) 43.9808i 2.02224i
\(474\) 0 0
\(475\) −0.675108 + 0.389774i −0.0309761 + 0.0178841i
\(476\) 0 0
\(477\) −25.8564 44.7846i −1.18388 2.05055i
\(478\) 0 0
\(479\) −21.8198 12.5977i −0.996974 0.575603i −0.0896226 0.995976i \(-0.528566\pi\)
−0.907352 + 0.420372i \(0.861899\pi\)
\(480\) 0 0
\(481\) 11.0885 10.6699i 0.505590 0.486504i
\(482\) 0 0
\(483\) −14.0803 8.12929i −0.640677 0.369895i
\(484\) 0 0
\(485\) 10.2679 + 17.7846i 0.466244 + 0.807558i
\(486\) 0 0
\(487\) 14.4421 8.33816i 0.654435 0.377838i −0.135718 0.990747i \(-0.543334\pi\)
0.790153 + 0.612909i \(0.210001\pi\)
\(488\) 0 0
\(489\) 34.9090i 1.57864i
\(490\) 0 0
\(491\) 5.14352 8.90883i 0.232124 0.402050i −0.726309 0.687368i \(-0.758766\pi\)
0.958433 + 0.285318i \(0.0920993\pi\)
\(492\) 0 0
\(493\) 19.3923 0.873385
\(494\) 0 0
\(495\) 55.0681 2.47513
\(496\) 0 0
\(497\) 5.89230 10.2058i 0.264306 0.457791i
\(498\) 0 0
\(499\) 1.55910i 0.0697947i −0.999391 0.0348974i \(-0.988890\pi\)
0.999391 0.0348974i \(-0.0111104\pi\)
\(500\) 0 0
\(501\) −44.8923 + 25.9186i −2.00564 + 1.15796i
\(502\) 0 0
\(503\) −6.70261 11.6093i −0.298855 0.517632i 0.677019 0.735965i \(-0.263271\pi\)
−0.975874 + 0.218333i \(0.929938\pi\)
\(504\) 0 0
\(505\) 2.41154 + 1.39230i 0.107312 + 0.0619568i
\(506\) 0 0
\(507\) 33.4571 17.6368i 1.48588 0.783277i
\(508\) 0 0
\(509\) 14.5526 + 8.40192i 0.645031 + 0.372409i 0.786550 0.617527i \(-0.211865\pi\)
−0.141519 + 0.989936i \(0.545199\pi\)
\(510\) 0 0
\(511\) −2.33864 4.05065i −0.103456 0.179190i
\(512\) 0 0
\(513\) −4.83975 + 2.79423i −0.213680 + 0.123368i
\(514\) 0 0
\(515\) 40.3126i 1.77639i
\(516\) 0 0
\(517\) 18.5885 32.1962i 0.817519 1.41599i
\(518\) 0 0
\(519\) −11.4284 −0.501650
\(520\) 0 0
\(521\) −42.2487 −1.85095 −0.925475 0.378809i \(-0.876334\pi\)
−0.925475 + 0.378809i \(0.876334\pi\)
\(522\) 0 0
\(523\) −18.1310 + 31.4038i −0.792813 + 1.37319i 0.131406 + 0.991329i \(0.458051\pi\)
−0.924219 + 0.381863i \(0.875283\pi\)
\(524\) 0 0
\(525\) 2.26795i 0.0989814i
\(526\) 0 0
\(527\) −8.72794 + 5.03908i −0.380195 + 0.219506i
\(528\) 0 0
\(529\) −14.1962 24.5885i −0.617224 1.06906i
\(530\) 0 0
\(531\) 58.7569 + 33.9233i 2.54983 + 1.47215i
\(532\) 0 0
\(533\) 8.30385 7.99038i 0.359680 0.346102i
\(534\) 0 0
\(535\) −15.1172 8.72794i −0.653575 0.377342i
\(536\) 0 0
\(537\) 12.6962 + 21.9904i 0.547879 + 0.948955i
\(538\) 0 0
\(539\) 27.8958 16.1057i 1.20156 0.693720i
\(540\) 0 0
\(541\) 6.92820i 0.297867i 0.988847 + 0.148933i \(0.0475840\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) 0 0
\(543\) −6.38929 + 11.0666i −0.274191 + 0.474913i
\(544\) 0 0
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) 20.1563 0.861822 0.430911 0.902395i \(-0.358192\pi\)
0.430911 + 0.902395i \(0.358192\pi\)
\(548\) 0 0
\(549\) −8.19615 + 14.1962i −0.349803 + 0.605877i
\(550\) 0 0
\(551\) 2.33864i 0.0996296i
\(552\) 0 0
\(553\) 6.80385 3.92820i 0.289329 0.167044i
\(554\) 0 0
\(555\) −12.4168 21.5065i −0.527064 0.912901i
\(556\) 0 0
\(557\) −28.7487 16.5981i −1.21812 0.703283i −0.253606 0.967308i \(-0.581617\pi\)
−0.964516 + 0.264025i \(0.914950\pi\)
\(558\) 0 0
\(559\) 30.5478 7.55862i 1.29203 0.319695i
\(560\) 0 0
\(561\) −82.0692 47.3827i −3.46497 2.00050i
\(562\) 0 0
\(563\) 15.4306 + 26.7265i 0.650320 + 1.12639i 0.983045 + 0.183364i \(0.0586986\pi\)
−0.332725 + 0.943024i \(0.607968\pi\)
\(564\) 0 0
\(565\) 9.58846 5.53590i 0.403389 0.232897i
\(566\) 0 0
\(567\) 3.47998i 0.146145i
\(568\) 0 0
\(569\) 1.96410 3.40192i 0.0823394 0.142616i −0.821915 0.569610i \(-0.807094\pi\)
0.904254 + 0.426994i \(0.140428\pi\)
\(570\) 0 0
\(571\) −14.7554 −0.617496 −0.308748 0.951144i \(-0.599910\pi\)
−0.308748 + 0.951144i \(0.599910\pi\)
\(572\) 0 0
\(573\) 29.9282 1.25027
\(574\) 0 0
\(575\) 3.58442 6.20840i 0.149481 0.258908i
\(576\) 0 0
\(577\) 16.1436i 0.672067i −0.941850 0.336033i \(-0.890915\pi\)
0.941850 0.336033i \(-0.109085\pi\)
\(578\) 0 0
\(579\) 40.9877 23.6643i 1.70339 0.983454i
\(580\) 0 0
\(581\) 3.92820 + 6.80385i 0.162969 + 0.282271i
\(582\) 0 0
\(583\) −41.3010 23.8452i −1.71051 0.987566i
\(584\) 0 0
\(585\) −9.46410 38.2487i −0.391292 1.58139i
\(586\) 0 0
\(587\) 15.4306 + 8.90883i 0.636887 + 0.367707i 0.783414 0.621500i \(-0.213476\pi\)
−0.146527 + 0.989207i \(0.546810\pi\)
\(588\) 0 0
\(589\) 0.607695 + 1.05256i 0.0250396 + 0.0433699i
\(590\) 0 0
\(591\) −19.1194 + 11.0386i −0.786468 + 0.454067i
\(592\) 0 0
\(593\) 18.7846i 0.771391i 0.922626 + 0.385696i \(0.126039\pi\)
−0.922626 + 0.385696i \(0.873961\pi\)
\(594\) 0 0
\(595\) 5.03908 8.72794i 0.206582 0.357811i
\(596\) 0 0
\(597\) −33.2487 −1.36078
\(598\) 0 0
\(599\) −30.2345 −1.23535 −0.617673 0.786435i \(-0.711925\pi\)
−0.617673 + 0.786435i \(0.711925\pi\)
\(600\) 0 0
\(601\) 7.69615 13.3301i 0.313933 0.543747i −0.665277 0.746596i \(-0.731687\pi\)
0.979210 + 0.202849i \(0.0650201\pi\)
\(602\) 0 0
\(603\) 4.25953i 0.173461i
\(604\) 0 0
\(605\) 24.9282 14.3923i 1.01348 0.585130i
\(606\) 0 0
\(607\) −14.4421 25.0145i −0.586188 1.01531i −0.994726 0.102566i \(-0.967295\pi\)
0.408538 0.912741i \(-0.366039\pi\)
\(608\) 0 0
\(609\) 5.89230 + 3.40192i 0.238768 + 0.137853i
\(610\) 0 0
\(611\) −25.5572 7.37772i −1.03393 0.298471i
\(612\) 0 0
\(613\) −9.69615 5.59808i −0.391624 0.226104i 0.291240 0.956650i \(-0.405932\pi\)
−0.682864 + 0.730546i \(0.739266\pi\)
\(614\) 0 0
\(615\) −9.29861 16.1057i −0.374956 0.649443i
\(616\) 0 0
\(617\) 16.9641 9.79423i 0.682949 0.394301i −0.118016 0.993012i \(-0.537653\pi\)
0.800965 + 0.598711i \(0.204320\pi\)
\(618\) 0 0
\(619\) 1.55910i 0.0626654i −0.999509 0.0313327i \(-0.990025\pi\)
0.999509 0.0313327i \(-0.00997513\pi\)
\(620\) 0 0
\(621\) 25.6962 44.5070i 1.03115 1.78601i
\(622\) 0 0
\(623\) 7.16884 0.287214
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) −5.71419 + 9.89726i −0.228203 + 0.395259i
\(628\) 0 0
\(629\) 27.5885i 1.10002i
\(630\) 0 0
\(631\) −37.9255 + 21.8963i −1.50979 + 0.871678i −0.509856 + 0.860260i \(0.670301\pi\)
−0.999935 + 0.0114181i \(0.996365\pi\)
\(632\) 0 0
\(633\) 34.1603 + 59.1673i 1.35775 + 2.35169i
\(634\) 0 0
\(635\) −15.1172 8.72794i −0.599909 0.346358i
\(636\) 0 0
\(637\) −15.9808 16.6077i −0.633181 0.658021i
\(638\) 0 0
\(639\) 71.5355 + 41.3010i 2.82990 + 1.63384i
\(640\) 0 0
\(641\) −0.696152 1.20577i −0.0274964 0.0476251i 0.851950 0.523624i \(-0.175420\pi\)
−0.879446 + 0.475998i \(0.842087\pi\)
\(642\) 0 0
\(643\) −18.4928 + 10.6768i −0.729284 + 0.421052i −0.818160 0.574990i \(-0.805006\pi\)
0.0888763 + 0.996043i \(0.471672\pi\)
\(644\) 0 0
\(645\) 50.7846i 1.99964i
\(646\) 0 0
\(647\) −13.0919 + 22.6758i −0.514696 + 0.891480i 0.485159 + 0.874426i \(0.338762\pi\)
−0.999855 + 0.0170535i \(0.994571\pi\)
\(648\) 0 0
\(649\) 62.5692 2.45606
\(650\) 0 0
\(651\) −3.53595 −0.138585
\(652\) 0 0
\(653\) 16.6244 28.7942i 0.650561 1.12681i −0.332426 0.943129i \(-0.607867\pi\)
0.982987 0.183676i \(-0.0587996\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 28.3923 16.3923i 1.10769 0.639525i
\(658\) 0 0
\(659\) 11.5328 + 19.9754i 0.449255 + 0.778132i 0.998338 0.0576360i \(-0.0183563\pi\)
−0.549083 + 0.835768i \(0.685023\pi\)
\(660\) 0 0
\(661\) −21.6962 12.5263i −0.843883 0.487216i 0.0146995 0.999892i \(-0.495321\pi\)
−0.858582 + 0.512676i \(0.828654\pi\)
\(662\) 0 0
\(663\) −18.8061 + 65.1462i −0.730368 + 2.53007i
\(664\) 0 0
\(665\) −1.05256 0.607695i −0.0408165 0.0235654i
\(666\) 0 0
\(667\) 10.7533 + 18.6252i 0.416368 + 0.721171i
\(668\) 0 0
\(669\) −1.96410 + 1.13397i −0.0759366 + 0.0438420i
\(670\) 0 0
\(671\) 15.1172i 0.583594i
\(672\) 0 0
\(673\) 8.89230 15.4019i 0.342773 0.593701i −0.642173 0.766559i \(-0.721967\pi\)
0.984947 + 0.172859i \(0.0553004\pi\)
\(674\) 0 0
\(675\) 7.16884 0.275929
\(676\) 0 0
\(677\) 2.53590 0.0974625 0.0487312 0.998812i \(-0.484482\pi\)
0.0487312 + 0.998812i \(0.484482\pi\)
\(678\) 0 0
\(679\) 4.00218 6.93198i 0.153590 0.266025i
\(680\) 0 0
\(681\) 6.80385i 0.260724i
\(682\) 0 0
\(683\) −10.7533 + 6.20840i −0.411462 + 0.237558i −0.691418 0.722455i \(-0.743014\pi\)
0.279956 + 0.960013i \(0.409680\pi\)
\(684\) 0 0
\(685\) −2.80385 4.85641i −0.107130 0.185554i
\(686\) 0 0
\(687\) −32.5731 18.8061i −1.24274 0.717497i
\(688\) 0 0
\(689\) −9.46410 + 32.7846i −0.360554 + 1.24899i
\(690\) 0 0
\(691\) −19.8430 11.4564i −0.754863 0.435820i 0.0725853 0.997362i \(-0.476875\pi\)
−0.827448 + 0.561542i \(0.810208\pi\)
\(692\) 0 0
\(693\) −10.7321 18.5885i −0.407677 0.706117i
\(694\) 0 0
\(695\) 2.33864 1.35022i 0.0887098 0.0512166i
\(696\) 0 0
\(697\) 20.6603i 0.782563i
\(698\) 0 0
\(699\) 31.2229 54.0796i 1.18096 2.04548i
\(700\) 0 0
\(701\) −44.1051 −1.66583 −0.832914 0.553403i \(-0.813329\pi\)
−0.832914 + 0.553403i \(0.813329\pi\)
\(702\) 0 0
\(703\) 3.32707 0.125483
\(704\) 0 0
\(705\) −21.4641 + 37.1769i −0.808385 + 1.40016i
\(706\) 0 0
\(707\) 1.08537i 0.0408195i
\(708\) 0 0
\(709\) −33.6962 + 19.4545i −1.26549 + 0.730628i −0.974130 0.225987i \(-0.927439\pi\)
−0.291355 + 0.956615i \(0.594106\pi\)
\(710\) 0 0
\(711\) 27.5340 + 47.6903i 1.03261 + 1.78853i
\(712\) 0 0
\(713\) −9.67949 5.58846i −0.362500 0.209289i
\(714\) 0 0
\(715\) −25.1954 26.1838i −0.942254 0.979219i
\(716\) 0 0
\(717\) −25.3923 14.6603i −0.948293 0.547497i
\(718\) 0 0
\(719\) −5.14352 8.90883i −0.191821 0.332243i 0.754033 0.656837i \(-0.228106\pi\)
−0.945854 + 0.324593i \(0.894773\pi\)
\(720\) 0 0
\(721\) −13.6077 + 7.85641i −0.506777 + 0.292588i
\(722\) 0 0
\(723\) 27.8958i 1.03746i
\(724\) 0 0
\(725\) −1.50000 + 2.59808i −0.0557086 + 0.0964901i
\(726\) 0 0
\(727\) 40.3126 1.49511 0.747556 0.664199i \(-0.231227\pi\)
0.747556 + 0.664199i \(0.231227\pi\)
\(728\) 0 0
\(729\) −38.1769 −1.41396
\(730\) 0 0
\(731\) −28.2091 + 48.8597i −1.04335 + 1.80714i
\(732\) 0 0
\(733\) 39.7128i 1.46683i −0.679783 0.733413i \(-0.737926\pi\)
0.679783 0.733413i \(-0.262074\pi\)
\(734\) 0 0
\(735\) −32.2113 + 18.5972i −1.18813 + 0.685969i
\(736\) 0 0
\(737\) −1.96410 3.40192i −0.0723486 0.125311i
\(738\) 0 0
\(739\) 22.8083 + 13.1684i 0.839016 + 0.484406i 0.856930 0.515433i \(-0.172369\pi\)
−0.0179137 + 0.999840i \(0.505702\pi\)
\(740\) 0 0
\(741\) 7.85641 + 2.26795i 0.288612 + 0.0833152i
\(742\) 0 0
\(743\) −26.4971 15.2981i −0.972086 0.561234i −0.0722142 0.997389i \(-0.523007\pi\)
−0.899871 + 0.436155i \(0.856340\pi\)
\(744\) 0 0
\(745\) −19.5885 33.9282i −0.717666 1.24303i
\(746\) 0 0
\(747\) −47.6903 + 27.5340i −1.74490 + 1.00742i
\(748\) 0 0
\(749\) 6.80385i 0.248607i
\(750\) 0 0
\(751\) 9.40305 16.2866i 0.343122 0.594305i −0.641889 0.766798i \(-0.721849\pi\)
0.985011 + 0.172493i \(0.0551822\pi\)
\(752\) 0 0
\(753\) −58.0333 −2.11485
\(754\) 0 0
\(755\) −3.11819 −0.113483
\(756\) 0 0
\(757\) 21.6962 37.5788i 0.788560 1.36583i −0.138289 0.990392i \(-0.544160\pi\)
0.926849 0.375434i \(-0.122506\pi\)
\(758\) 0 0
\(759\) 105.097i 3.81478i
\(760\) 0 0
\(761\) −6.23205 + 3.59808i −0.225912 + 0.130430i −0.608685 0.793412i \(-0.708303\pi\)
0.382773 + 0.923842i \(0.374969\pi\)
\(762\) 0 0
\(763\) −2.33864 4.05065i −0.0846646 0.146643i
\(764\) 0 0
\(765\) 61.1769 + 35.3205i 2.21186 + 1.27702i
\(766\) 0 0
\(767\) −10.7533 43.4588i −0.388278 1.56921i
\(768\) 0 0
\(769\) 15.4808 + 8.93782i 0.558251 + 0.322306i 0.752443 0.658657i \(-0.228875\pi\)
−0.194192 + 0.980963i \(0.562209\pi\)
\(770\) 0 0
\(771\) −9.40305 16.2866i −0.338642 0.586546i
\(772\) 0 0
\(773\) −23.5526 + 13.5981i −0.847127 + 0.489089i −0.859680 0.510832i \(-0.829337\pi\)
0.0125537 + 0.999921i \(0.496004\pi\)
\(774\) 0 0
\(775\) 1.55910i 0.0560044i
\(776\) 0 0
\(777\) −4.83975 + 8.38269i −0.173625 + 0.300727i
\(778\) 0 0
\(779\) 2.49155 0.0892692
\(780\) 0 0
\(781\) 76.1769 2.72582
\(782\) 0 0
\(783\) −10.7533 + 18.6252i −0.384290 + 0.665610i
\(784\) 0 0
\(785\) 32.7846i 1.17013i
\(786\) 0 0
\(787\) −46.0268 + 26.5736i −1.64068 + 0.947246i −0.660086 + 0.751190i \(0.729480\pi\)
−0.980593 + 0.196056i \(0.937187\pi\)
\(788\) 0 0
\(789\) 5.89230 + 10.2058i 0.209772 + 0.363335i
\(790\) 0