Properties

Label 416.2.w.a.225.1
Level $416$
Weight $2$
Character 416.225
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(225,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.w (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 225.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 416.225
Dual form 416.2.w.a.257.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 1.50000i) q^{3} -3.46410i q^{5} +(-2.59808 + 1.50000i) q^{7} +O(q^{10})\) \(q+(-0.866025 + 1.50000i) q^{3} -3.46410i q^{5} +(-2.59808 + 1.50000i) q^{7} +(4.33013 + 2.50000i) q^{11} +(-1.00000 + 3.46410i) q^{13} +(5.19615 + 3.00000i) q^{15} +(3.50000 + 6.06218i) q^{17} +(4.33013 - 2.50000i) q^{19} -5.19615i q^{21} +(-2.59808 + 4.50000i) q^{23} -7.00000 q^{25} -5.19615 q^{27} +(2.50000 - 4.33013i) q^{29} +2.00000i q^{31} +(-7.50000 + 4.33013i) q^{33} +(5.19615 + 9.00000i) q^{35} +(4.50000 + 2.59808i) q^{37} +(-4.33013 - 4.50000i) q^{39} +(-1.50000 - 0.866025i) q^{41} +(-2.59808 - 4.50000i) q^{43} +4.00000i q^{47} +(1.00000 - 1.73205i) q^{49} -12.1244 q^{51} +4.00000 q^{53} +(8.66025 - 15.0000i) q^{55} +8.66025i q^{57} +(-6.06218 + 3.50000i) q^{59} +(-1.50000 - 2.59808i) q^{61} +(12.0000 + 3.46410i) q^{65} +(2.59808 + 1.50000i) q^{67} +(-4.50000 - 7.79423i) q^{69} +(6.06218 - 3.50000i) q^{71} -3.46410i q^{73} +(6.06218 - 10.5000i) q^{75} -15.0000 q^{77} +3.46410 q^{79} +(4.50000 - 7.79423i) q^{81} -14.0000i q^{83} +(21.0000 - 12.1244i) q^{85} +(4.33013 + 7.50000i) q^{87} +(1.50000 + 0.866025i) q^{89} +(-2.59808 - 10.5000i) q^{91} +(-3.00000 - 1.73205i) q^{93} +(-8.66025 - 15.0000i) q^{95} +(7.50000 - 4.33013i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{13} + 14 q^{17} - 28 q^{25} + 10 q^{29} - 30 q^{33} + 18 q^{37} - 6 q^{41} + 4 q^{49} + 16 q^{53} - 6 q^{61} + 48 q^{65} - 18 q^{69} - 60 q^{77} + 18 q^{81} + 84 q^{85} + 6 q^{89} - 12 q^{93} + 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.866025 + 1.50000i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) 3.46410i 1.54919i −0.632456 0.774597i \(-0.717953\pi\)
0.632456 0.774597i \(-0.282047\pi\)
\(6\) 0 0
\(7\) −2.59808 + 1.50000i −0.981981 + 0.566947i −0.902867 0.429919i \(-0.858542\pi\)
−0.0791130 + 0.996866i \(0.525209\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.33013 + 2.50000i 1.30558 + 0.753778i 0.981356 0.192201i \(-0.0615626\pi\)
0.324227 + 0.945979i \(0.394896\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) 0 0
\(15\) 5.19615 + 3.00000i 1.34164 + 0.774597i
\(16\) 0 0
\(17\) 3.50000 + 6.06218i 0.848875 + 1.47029i 0.882213 + 0.470850i \(0.156053\pi\)
−0.0333386 + 0.999444i \(0.510614\pi\)
\(18\) 0 0
\(19\) 4.33013 2.50000i 0.993399 0.573539i 0.0871106 0.996199i \(-0.472237\pi\)
0.906289 + 0.422659i \(0.138903\pi\)
\(20\) 0 0
\(21\) 5.19615i 1.13389i
\(22\) 0 0
\(23\) −2.59808 + 4.50000i −0.541736 + 0.938315i 0.457068 + 0.889432i \(0.348900\pi\)
−0.998805 + 0.0488832i \(0.984434\pi\)
\(24\) 0 0
\(25\) −7.00000 −1.40000
\(26\) 0 0
\(27\) −5.19615 −1.00000
\(28\) 0 0
\(29\) 2.50000 4.33013i 0.464238 0.804084i −0.534928 0.844897i \(-0.679661\pi\)
0.999167 + 0.0408130i \(0.0129948\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 0 0
\(33\) −7.50000 + 4.33013i −1.30558 + 0.753778i
\(34\) 0 0
\(35\) 5.19615 + 9.00000i 0.878310 + 1.52128i
\(36\) 0 0
\(37\) 4.50000 + 2.59808i 0.739795 + 0.427121i 0.821995 0.569495i \(-0.192861\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) −4.33013 4.50000i −0.693375 0.720577i
\(40\) 0 0
\(41\) −1.50000 0.866025i −0.234261 0.135250i 0.378275 0.925693i \(-0.376517\pi\)
−0.612536 + 0.790443i \(0.709851\pi\)
\(42\) 0 0
\(43\) −2.59808 4.50000i −0.396203 0.686244i 0.597051 0.802203i \(-0.296339\pi\)
−0.993254 + 0.115960i \(0.963006\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) 1.00000 1.73205i 0.142857 0.247436i
\(50\) 0 0
\(51\) −12.1244 −1.69775
\(52\) 0 0
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 8.66025 15.0000i 1.16775 2.02260i
\(56\) 0 0
\(57\) 8.66025i 1.14708i
\(58\) 0 0
\(59\) −6.06218 + 3.50000i −0.789228 + 0.455661i −0.839691 0.543065i \(-0.817264\pi\)
0.0504625 + 0.998726i \(0.483930\pi\)
\(60\) 0 0
\(61\) −1.50000 2.59808i −0.192055 0.332650i 0.753876 0.657017i \(-0.228182\pi\)
−0.945931 + 0.324367i \(0.894849\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 12.0000 + 3.46410i 1.48842 + 0.429669i
\(66\) 0 0
\(67\) 2.59808 + 1.50000i 0.317406 + 0.183254i 0.650236 0.759733i \(-0.274670\pi\)
−0.332830 + 0.942987i \(0.608004\pi\)
\(68\) 0 0
\(69\) −4.50000 7.79423i −0.541736 0.938315i
\(70\) 0 0
\(71\) 6.06218 3.50000i 0.719448 0.415374i −0.0951014 0.995468i \(-0.530318\pi\)
0.814550 + 0.580094i \(0.196984\pi\)
\(72\) 0 0
\(73\) 3.46410i 0.405442i −0.979236 0.202721i \(-0.935021\pi\)
0.979236 0.202721i \(-0.0649785\pi\)
\(74\) 0 0
\(75\) 6.06218 10.5000i 0.700000 1.21244i
\(76\) 0 0
\(77\) −15.0000 −1.70941
\(78\) 0 0
\(79\) 3.46410 0.389742 0.194871 0.980829i \(-0.437571\pi\)
0.194871 + 0.980829i \(0.437571\pi\)
\(80\) 0 0
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) 0 0
\(83\) 14.0000i 1.53670i −0.640030 0.768350i \(-0.721078\pi\)
0.640030 0.768350i \(-0.278922\pi\)
\(84\) 0 0
\(85\) 21.0000 12.1244i 2.27777 1.31507i
\(86\) 0 0
\(87\) 4.33013 + 7.50000i 0.464238 + 0.804084i
\(88\) 0 0
\(89\) 1.50000 + 0.866025i 0.159000 + 0.0917985i 0.577389 0.816469i \(-0.304072\pi\)
−0.418389 + 0.908268i \(0.637405\pi\)
\(90\) 0 0
\(91\) −2.59808 10.5000i −0.272352 1.10070i
\(92\) 0 0
\(93\) −3.00000 1.73205i −0.311086 0.179605i
\(94\) 0 0
\(95\) −8.66025 15.0000i −0.888523 1.53897i
\(96\) 0 0
\(97\) 7.50000 4.33013i 0.761510 0.439658i −0.0683279 0.997663i \(-0.521766\pi\)
0.829837 + 0.558005i \(0.188433\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.50000 + 14.7224i −0.845782 + 1.46494i 0.0391591 + 0.999233i \(0.487532\pi\)
−0.884941 + 0.465704i \(0.845801\pi\)
\(102\) 0 0
\(103\) −6.92820 −0.682656 −0.341328 0.939944i \(-0.610877\pi\)
−0.341328 + 0.939944i \(0.610877\pi\)
\(104\) 0 0
\(105\) −18.0000 −1.75662
\(106\) 0 0
\(107\) −4.33013 + 7.50000i −0.418609 + 0.725052i −0.995800 0.0915571i \(-0.970816\pi\)
0.577191 + 0.816609i \(0.304149\pi\)
\(108\) 0 0
\(109\) 10.3923i 0.995402i 0.867349 + 0.497701i \(0.165822\pi\)
−0.867349 + 0.497701i \(0.834178\pi\)
\(110\) 0 0
\(111\) −7.79423 + 4.50000i −0.739795 + 0.427121i
\(112\) 0 0
\(113\) −2.50000 4.33013i −0.235180 0.407344i 0.724145 0.689648i \(-0.242235\pi\)
−0.959325 + 0.282304i \(0.908901\pi\)
\(114\) 0 0
\(115\) 15.5885 + 9.00000i 1.45363 + 0.839254i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −18.1865 10.5000i −1.66716 0.962533i
\(120\) 0 0
\(121\) 7.00000 + 12.1244i 0.636364 + 1.10221i
\(122\) 0 0
\(123\) 2.59808 1.50000i 0.234261 0.135250i
\(124\) 0 0
\(125\) 6.92820i 0.619677i
\(126\) 0 0
\(127\) 9.52628 16.5000i 0.845321 1.46414i −0.0400219 0.999199i \(-0.512743\pi\)
0.885342 0.464939i \(-0.153924\pi\)
\(128\) 0 0
\(129\) 9.00000 0.792406
\(130\) 0 0
\(131\) −13.8564 −1.21064 −0.605320 0.795982i \(-0.706955\pi\)
−0.605320 + 0.795982i \(0.706955\pi\)
\(132\) 0 0
\(133\) −7.50000 + 12.9904i −0.650332 + 1.12641i
\(134\) 0 0
\(135\) 18.0000i 1.54919i
\(136\) 0 0
\(137\) −4.50000 + 2.59808i −0.384461 + 0.221969i −0.679757 0.733437i \(-0.737915\pi\)
0.295296 + 0.955406i \(0.404582\pi\)
\(138\) 0 0
\(139\) −4.33013 7.50000i −0.367277 0.636142i 0.621862 0.783127i \(-0.286376\pi\)
−0.989139 + 0.146985i \(0.953043\pi\)
\(140\) 0 0
\(141\) −6.00000 3.46410i −0.505291 0.291730i
\(142\) 0 0
\(143\) −12.9904 + 12.5000i −1.08631 + 1.04530i
\(144\) 0 0
\(145\) −15.0000 8.66025i −1.24568 0.719195i
\(146\) 0 0
\(147\) 1.73205 + 3.00000i 0.142857 + 0.247436i
\(148\) 0 0
\(149\) 7.50000 4.33013i 0.614424 0.354738i −0.160271 0.987073i \(-0.551237\pi\)
0.774695 + 0.632335i \(0.217903\pi\)
\(150\) 0 0
\(151\) 2.00000i 0.162758i 0.996683 + 0.0813788i \(0.0259324\pi\)
−0.996683 + 0.0813788i \(0.974068\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.92820 0.556487
\(156\) 0 0
\(157\) −8.00000 −0.638470 −0.319235 0.947676i \(-0.603426\pi\)
−0.319235 + 0.947676i \(0.603426\pi\)
\(158\) 0 0
\(159\) −3.46410 + 6.00000i −0.274721 + 0.475831i
\(160\) 0 0
\(161\) 15.5885i 1.22854i
\(162\) 0 0
\(163\) 16.4545 9.50000i 1.28881 0.744097i 0.310372 0.950615i \(-0.399546\pi\)
0.978443 + 0.206518i \(0.0662131\pi\)
\(164\) 0 0
\(165\) 15.0000 + 25.9808i 1.16775 + 2.02260i
\(166\) 0 0
\(167\) 16.4545 + 9.50000i 1.27329 + 0.735132i 0.975605 0.219533i \(-0.0704535\pi\)
0.297681 + 0.954665i \(0.403787\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.50000 6.06218i −0.266100 0.460899i 0.701751 0.712422i \(-0.252402\pi\)
−0.967851 + 0.251523i \(0.919068\pi\)
\(174\) 0 0
\(175\) 18.1865 10.5000i 1.37477 0.793725i
\(176\) 0 0
\(177\) 12.1244i 0.911322i
\(178\) 0 0
\(179\) 9.52628 16.5000i 0.712028 1.23327i −0.252067 0.967710i \(-0.581110\pi\)
0.964095 0.265558i \(-0.0855562\pi\)
\(180\) 0 0
\(181\) 12.0000 0.891953 0.445976 0.895045i \(-0.352856\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(182\) 0 0
\(183\) 5.19615 0.384111
\(184\) 0 0
\(185\) 9.00000 15.5885i 0.661693 1.14609i
\(186\) 0 0
\(187\) 35.0000i 2.55945i
\(188\) 0 0
\(189\) 13.5000 7.79423i 0.981981 0.566947i
\(190\) 0 0
\(191\) 6.06218 + 10.5000i 0.438644 + 0.759753i 0.997585 0.0694538i \(-0.0221257\pi\)
−0.558941 + 0.829207i \(0.688792\pi\)
\(192\) 0 0
\(193\) 10.5000 + 6.06218i 0.755807 + 0.436365i 0.827788 0.561041i \(-0.189599\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) −15.5885 + 15.0000i −1.11631 + 1.07417i
\(196\) 0 0
\(197\) 1.50000 + 0.866025i 0.106871 + 0.0617018i 0.552483 0.833524i \(-0.313681\pi\)
−0.445612 + 0.895226i \(0.647014\pi\)
\(198\) 0 0
\(199\) 0.866025 + 1.50000i 0.0613909 + 0.106332i 0.895087 0.445891i \(-0.147113\pi\)
−0.833696 + 0.552223i \(0.813780\pi\)
\(200\) 0 0
\(201\) −4.50000 + 2.59808i −0.317406 + 0.183254i
\(202\) 0 0
\(203\) 15.0000i 1.05279i
\(204\) 0 0
\(205\) −3.00000 + 5.19615i −0.209529 + 0.362915i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 25.0000 1.72929
\(210\) 0 0
\(211\) 2.59808 4.50000i 0.178859 0.309793i −0.762631 0.646834i \(-0.776093\pi\)
0.941490 + 0.337041i \(0.109426\pi\)
\(212\) 0 0
\(213\) 12.1244i 0.830747i
\(214\) 0 0
\(215\) −15.5885 + 9.00000i −1.06312 + 0.613795i
\(216\) 0 0
\(217\) −3.00000 5.19615i −0.203653 0.352738i
\(218\) 0 0
\(219\) 5.19615 + 3.00000i 0.351123 + 0.202721i
\(220\) 0 0
\(221\) −24.5000 + 6.06218i −1.64805 + 0.407786i
\(222\) 0 0
\(223\) −11.2583 6.50000i −0.753914 0.435272i 0.0731927 0.997318i \(-0.476681\pi\)
−0.827106 + 0.562046i \(0.810015\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.9186 + 11.5000i −1.32204 + 0.763282i −0.984054 0.177868i \(-0.943080\pi\)
−0.337989 + 0.941150i \(0.609747\pi\)
\(228\) 0 0
\(229\) 24.2487i 1.60240i −0.598397 0.801200i \(-0.704195\pi\)
0.598397 0.801200i \(-0.295805\pi\)
\(230\) 0 0
\(231\) 12.9904 22.5000i 0.854704 1.48039i
\(232\) 0 0
\(233\) −8.00000 −0.524097 −0.262049 0.965055i \(-0.584398\pi\)
−0.262049 + 0.965055i \(0.584398\pi\)
\(234\) 0 0
\(235\) 13.8564 0.903892
\(236\) 0 0
\(237\) −3.00000 + 5.19615i −0.194871 + 0.337526i
\(238\) 0 0
\(239\) 2.00000i 0.129369i −0.997906 0.0646846i \(-0.979396\pi\)
0.997906 0.0646846i \(-0.0206041\pi\)
\(240\) 0 0
\(241\) −7.50000 + 4.33013i −0.483117 + 0.278928i −0.721715 0.692191i \(-0.756646\pi\)
0.238597 + 0.971119i \(0.423312\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.00000 3.46410i −0.383326 0.221313i
\(246\) 0 0
\(247\) 4.33013 + 17.5000i 0.275519 + 1.11350i
\(248\) 0 0
\(249\) 21.0000 + 12.1244i 1.33082 + 0.768350i
\(250\) 0 0
\(251\) 7.79423 + 13.5000i 0.491967 + 0.852112i 0.999957 0.00925060i \(-0.00294460\pi\)
−0.507990 + 0.861363i \(0.669611\pi\)
\(252\) 0 0
\(253\) −22.5000 + 12.9904i −1.41456 + 0.816698i
\(254\) 0 0
\(255\) 42.0000i 2.63014i
\(256\) 0 0
\(257\) 11.5000 19.9186i 0.717350 1.24249i −0.244696 0.969600i \(-0.578688\pi\)
0.962046 0.272887i \(-0.0879786\pi\)
\(258\) 0 0
\(259\) −15.5885 −0.968620
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.866025 1.50000i 0.0534014 0.0924940i −0.838089 0.545534i \(-0.816327\pi\)
0.891490 + 0.453040i \(0.149660\pi\)
\(264\) 0 0
\(265\) 13.8564i 0.851192i
\(266\) 0 0
\(267\) −2.59808 + 1.50000i −0.159000 + 0.0917985i
\(268\) 0 0
\(269\) −0.500000 0.866025i −0.0304855 0.0528025i 0.850380 0.526169i \(-0.176372\pi\)
−0.880866 + 0.473366i \(0.843039\pi\)
\(270\) 0 0
\(271\) −7.79423 4.50000i −0.473466 0.273356i 0.244224 0.969719i \(-0.421467\pi\)
−0.717689 + 0.696363i \(0.754800\pi\)
\(272\) 0 0
\(273\) 18.0000 + 5.19615i 1.08941 + 0.314485i
\(274\) 0 0
\(275\) −30.3109 17.5000i −1.82782 1.05529i
\(276\) 0 0
\(277\) −4.50000 7.79423i −0.270379 0.468310i 0.698580 0.715532i \(-0.253816\pi\)
−0.968959 + 0.247222i \(0.920482\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.2487i 1.44656i 0.690557 + 0.723278i \(0.257366\pi\)
−0.690557 + 0.723278i \(0.742634\pi\)
\(282\) 0 0
\(283\) 16.4545 28.5000i 0.978117 1.69415i 0.308879 0.951101i \(-0.400046\pi\)
0.669238 0.743048i \(-0.266621\pi\)
\(284\) 0 0
\(285\) 30.0000 1.77705
\(286\) 0 0
\(287\) 5.19615 0.306719
\(288\) 0 0
\(289\) −16.0000 + 27.7128i −0.941176 + 1.63017i
\(290\) 0 0
\(291\) 15.0000i 0.879316i
\(292\) 0 0
\(293\) −22.5000 + 12.9904i −1.31446 + 0.758906i −0.982832 0.184503i \(-0.940933\pi\)
−0.331632 + 0.943409i \(0.607599\pi\)
\(294\) 0 0
\(295\) 12.1244 + 21.0000i 0.705907 + 1.22267i
\(296\) 0 0
\(297\) −22.5000 12.9904i −1.30558 0.753778i
\(298\) 0 0
\(299\) −12.9904 13.5000i −0.751253 0.780725i
\(300\) 0 0
\(301\) 13.5000 + 7.79423i 0.778127 + 0.449252i
\(302\) 0 0
\(303\) −14.7224 25.5000i −0.845782 1.46494i
\(304\) 0 0
\(305\) −9.00000 + 5.19615i −0.515339 + 0.297531i
\(306\) 0 0
\(307\) 6.00000i 0.342438i −0.985233 0.171219i \(-0.945229\pi\)
0.985233 0.171219i \(-0.0547706\pi\)
\(308\) 0 0
\(309\) 6.00000 10.3923i 0.341328 0.591198i
\(310\) 0 0
\(311\) 20.7846 1.17859 0.589294 0.807919i \(-0.299406\pi\)
0.589294 + 0.807919i \(0.299406\pi\)
\(312\) 0 0
\(313\) 12.0000 0.678280 0.339140 0.940736i \(-0.389864\pi\)
0.339140 + 0.940736i \(0.389864\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.92820i 0.389127i 0.980890 + 0.194563i \(0.0623290\pi\)
−0.980890 + 0.194563i \(0.937671\pi\)
\(318\) 0 0
\(319\) 21.6506 12.5000i 1.21220 0.699866i
\(320\) 0 0
\(321\) −7.50000 12.9904i −0.418609 0.725052i
\(322\) 0 0
\(323\) 30.3109 + 17.5000i 1.68654 + 0.973726i
\(324\) 0 0
\(325\) 7.00000 24.2487i 0.388290 1.34508i
\(326\) 0 0
\(327\) −15.5885 9.00000i −0.862044 0.497701i
\(328\) 0 0
\(329\) −6.00000 10.3923i −0.330791 0.572946i
\(330\) 0 0
\(331\) 12.9904 7.50000i 0.714016 0.412237i −0.0985303 0.995134i \(-0.531414\pi\)
0.812546 + 0.582897i \(0.198081\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.19615 9.00000i 0.283896 0.491723i
\(336\) 0 0
\(337\) −28.0000 −1.52526 −0.762629 0.646837i \(-0.776092\pi\)
−0.762629 + 0.646837i \(0.776092\pi\)
\(338\) 0 0
\(339\) 8.66025 0.470360
\(340\) 0 0
\(341\) −5.00000 + 8.66025i −0.270765 + 0.468979i
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) 0 0
\(345\) −27.0000 + 15.5885i −1.45363 + 0.839254i
\(346\) 0 0
\(347\) 7.79423 + 13.5000i 0.418416 + 0.724718i 0.995780 0.0917687i \(-0.0292521\pi\)
−0.577364 + 0.816487i \(0.695919\pi\)
\(348\) 0 0
\(349\) −13.5000 7.79423i −0.722638 0.417215i 0.0930846 0.995658i \(-0.470327\pi\)
−0.815723 + 0.578443i \(0.803661\pi\)
\(350\) 0 0
\(351\) 5.19615 18.0000i 0.277350 0.960769i
\(352\) 0 0
\(353\) 13.5000 + 7.79423i 0.718532 + 0.414845i 0.814212 0.580567i \(-0.197169\pi\)
−0.0956798 + 0.995412i \(0.530502\pi\)
\(354\) 0 0
\(355\) −12.1244 21.0000i −0.643494 1.11456i
\(356\) 0 0
\(357\) 31.5000 18.1865i 1.66716 0.962533i
\(358\) 0 0
\(359\) 22.0000i 1.16112i −0.814219 0.580558i \(-0.802835\pi\)
0.814219 0.580558i \(-0.197165\pi\)
\(360\) 0 0
\(361\) 3.00000 5.19615i 0.157895 0.273482i
\(362\) 0 0
\(363\) −24.2487 −1.27273
\(364\) 0 0
\(365\) −12.0000 −0.628109
\(366\) 0 0
\(367\) −6.06218 + 10.5000i −0.316443 + 0.548096i −0.979743 0.200258i \(-0.935822\pi\)
0.663300 + 0.748354i \(0.269155\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.3923 + 6.00000i −0.539542 + 0.311504i
\(372\) 0 0
\(373\) 1.50000 + 2.59808i 0.0776671 + 0.134523i 0.902243 0.431228i \(-0.141920\pi\)
−0.824576 + 0.565751i \(0.808586\pi\)
\(374\) 0 0
\(375\) −10.3923 6.00000i −0.536656 0.309839i
\(376\) 0 0
\(377\) 12.5000 + 12.9904i 0.643783 + 0.669039i
\(378\) 0 0
\(379\) −6.06218 3.50000i −0.311393 0.179783i 0.336157 0.941806i \(-0.390873\pi\)
−0.647550 + 0.762023i \(0.724206\pi\)
\(380\) 0 0
\(381\) 16.5000 + 28.5788i 0.845321 + 1.46414i
\(382\) 0 0
\(383\) −6.06218 + 3.50000i −0.309763 + 0.178842i −0.646820 0.762642i \(-0.723902\pi\)
0.337058 + 0.941484i \(0.390568\pi\)
\(384\) 0 0
\(385\) 51.9615i 2.64820i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.0000 0.709828 0.354914 0.934899i \(-0.384510\pi\)
0.354914 + 0.934899i \(0.384510\pi\)
\(390\) 0 0
\(391\) −36.3731 −1.83947
\(392\) 0 0
\(393\) 12.0000 20.7846i 0.605320 1.04844i
\(394\) 0 0
\(395\) 12.0000i 0.603786i
\(396\) 0 0
\(397\) 28.5000 16.4545i 1.43037 0.825827i 0.433225 0.901286i \(-0.357376\pi\)
0.997149 + 0.0754589i \(0.0240422\pi\)
\(398\) 0 0
\(399\) −12.9904 22.5000i −0.650332 1.12641i
\(400\) 0 0
\(401\) 28.5000 + 16.4545i 1.42322 + 0.821698i 0.996573 0.0827195i \(-0.0263606\pi\)
0.426649 + 0.904417i \(0.359694\pi\)
\(402\) 0 0
\(403\) −6.92820 2.00000i −0.345118 0.0996271i
\(404\) 0 0
\(405\) −27.0000 15.5885i −1.34164 0.774597i
\(406\) 0 0
\(407\) 12.9904 + 22.5000i 0.643909 + 1.11528i
\(408\) 0 0
\(409\) −13.5000 + 7.79423i −0.667532 + 0.385400i −0.795141 0.606425i \(-0.792603\pi\)
0.127609 + 0.991825i \(0.459270\pi\)
\(410\) 0 0
\(411\) 9.00000i 0.443937i
\(412\) 0 0
\(413\) 10.5000 18.1865i 0.516671 0.894901i
\(414\) 0 0
\(415\) −48.4974 −2.38064
\(416\) 0 0
\(417\) 15.0000 0.734553
\(418\) 0 0
\(419\) 14.7224 25.5000i 0.719238 1.24576i −0.242064 0.970260i \(-0.577824\pi\)
0.961302 0.275496i \(-0.0888422\pi\)
\(420\) 0 0
\(421\) 31.1769i 1.51947i −0.650233 0.759735i \(-0.725329\pi\)
0.650233 0.759735i \(-0.274671\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −24.5000 42.4352i −1.18842 2.05841i
\(426\) 0 0
\(427\) 7.79423 + 4.50000i 0.377189 + 0.217770i
\(428\) 0 0
\(429\) −7.50000 30.3109i −0.362103 1.46342i
\(430\) 0 0
\(431\) 32.0429 + 18.5000i 1.54345 + 0.891114i 0.998617 + 0.0525716i \(0.0167418\pi\)
0.544837 + 0.838542i \(0.316592\pi\)
\(432\) 0 0
\(433\) −16.5000 28.5788i −0.792939 1.37341i −0.924139 0.382055i \(-0.875216\pi\)
0.131200 0.991356i \(-0.458117\pi\)
\(434\) 0 0
\(435\) 25.9808 15.0000i 1.24568 0.719195i
\(436\) 0 0
\(437\) 25.9808i 1.24283i
\(438\) 0 0
\(439\) 2.59808 4.50000i 0.123999 0.214773i −0.797342 0.603528i \(-0.793761\pi\)
0.921341 + 0.388755i \(0.127095\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.8564 −0.658338 −0.329169 0.944271i \(-0.606769\pi\)
−0.329169 + 0.944271i \(0.606769\pi\)
\(444\) 0 0
\(445\) 3.00000 5.19615i 0.142214 0.246321i
\(446\) 0 0
\(447\) 15.0000i 0.709476i
\(448\) 0 0
\(449\) −7.50000 + 4.33013i −0.353947 + 0.204351i −0.666422 0.745575i \(-0.732175\pi\)
0.312475 + 0.949926i \(0.398842\pi\)
\(450\) 0 0
\(451\) −4.33013 7.50000i −0.203898 0.353161i
\(452\) 0 0
\(453\) −3.00000 1.73205i −0.140952 0.0813788i
\(454\) 0 0
\(455\) −36.3731 + 9.00000i −1.70520 + 0.421927i
\(456\) 0 0
\(457\) 31.5000 + 18.1865i 1.47351 + 0.850730i 0.999555 0.0298202i \(-0.00949348\pi\)
0.473953 + 0.880550i \(0.342827\pi\)
\(458\) 0 0
\(459\) −18.1865 31.5000i −0.848875 1.47029i
\(460\) 0 0
\(461\) 4.50000 2.59808i 0.209586 0.121004i −0.391533 0.920164i \(-0.628055\pi\)
0.601119 + 0.799160i \(0.294722\pi\)
\(462\) 0 0
\(463\) 18.0000i 0.836531i −0.908325 0.418265i \(-0.862638\pi\)
0.908325 0.418265i \(-0.137362\pi\)
\(464\) 0 0
\(465\) −6.00000 + 10.3923i −0.278243 + 0.481932i
\(466\) 0 0
\(467\) 38.1051 1.76329 0.881647 0.471909i \(-0.156435\pi\)
0.881647 + 0.471909i \(0.156435\pi\)
\(468\) 0 0
\(469\) −9.00000 −0.415581
\(470\) 0 0
\(471\) 6.92820 12.0000i 0.319235 0.552931i
\(472\) 0 0
\(473\) 25.9808i 1.19460i
\(474\) 0 0
\(475\) −30.3109 + 17.5000i −1.39076 + 0.802955i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.7224 + 8.50000i 0.672685 + 0.388375i 0.797093 0.603856i \(-0.206370\pi\)
−0.124408 + 0.992231i \(0.539703\pi\)
\(480\) 0 0
\(481\) −13.5000 + 12.9904i −0.615547 + 0.592310i
\(482\) 0 0
\(483\) 23.3827 + 13.5000i 1.06395 + 0.614271i
\(484\) 0 0
\(485\) −15.0000 25.9808i −0.681115 1.17973i
\(486\) 0 0
\(487\) 19.9186 11.5000i 0.902597 0.521115i 0.0245553 0.999698i \(-0.492183\pi\)
0.878042 + 0.478584i \(0.158850\pi\)
\(488\) 0 0
\(489\) 32.9090i 1.48819i
\(490\) 0 0
\(491\) −6.06218 + 10.5000i −0.273582 + 0.473858i −0.969776 0.243995i \(-0.921542\pi\)
0.696194 + 0.717853i \(0.254875\pi\)
\(492\) 0 0
\(493\) 35.0000 1.57632
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.5000 + 18.1865i −0.470989 + 0.815778i
\(498\) 0 0
\(499\) 6.00000i 0.268597i −0.990941 0.134298i \(-0.957122\pi\)
0.990941 0.134298i \(-0.0428781\pi\)
\(500\) 0 0
\(501\) −28.5000 + 16.4545i −1.27329 + 0.735132i
\(502\) 0 0
\(503\) −4.33013 7.50000i −0.193071 0.334408i 0.753196 0.657797i \(-0.228511\pi\)
−0.946266 + 0.323388i \(0.895178\pi\)
\(504\) 0 0
\(505\) 51.0000 + 29.4449i 2.26947 + 1.31028i
\(506\) 0 0
\(507\) 19.9186 10.5000i 0.884615 0.466321i
\(508\) 0 0
\(509\) −19.5000 11.2583i −0.864322 0.499017i 0.00113503 0.999999i \(-0.499639\pi\)
−0.865457 + 0.500983i \(0.832972\pi\)
\(510\) 0 0
\(511\) 5.19615 + 9.00000i 0.229864 + 0.398137i
\(512\) 0 0
\(513\) −22.5000 + 12.9904i −0.993399 + 0.573539i
\(514\) 0 0
\(515\) 24.0000i 1.05757i
\(516\) 0 0
\(517\) −10.0000 + 17.3205i −0.439799 + 0.761755i
\(518\) 0 0
\(519\) 12.1244 0.532200
\(520\) 0 0
\(521\) 4.00000 0.175243 0.0876216 0.996154i \(-0.472073\pi\)
0.0876216 + 0.996154i \(0.472073\pi\)
\(522\) 0 0
\(523\) −6.06218 + 10.5000i −0.265081 + 0.459133i −0.967585 0.252547i \(-0.918732\pi\)
0.702504 + 0.711680i \(0.252065\pi\)
\(524\) 0 0
\(525\) 36.3731i 1.58745i
\(526\) 0 0
\(527\) −12.1244 + 7.00000i −0.528145 + 0.304925i
\(528\) 0 0
\(529\) −2.00000 3.46410i −0.0869565 0.150613i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.50000 4.33013i 0.194917 0.187559i
\(534\) 0 0
\(535\) 25.9808 + 15.0000i 1.12325 + 0.648507i
\(536\) 0 0
\(537\) 16.5000 + 28.5788i 0.712028 + 1.23327i
\(538\) 0 0
\(539\) 8.66025 5.00000i 0.373024 0.215365i
\(540\) 0 0
\(541\) 20.7846i 0.893600i −0.894634 0.446800i \(-0.852564\pi\)
0.894634 0.446800i \(-0.147436\pi\)
\(542\) 0 0
\(543\) −10.3923 + 18.0000i −0.445976 + 0.772454i
\(544\) 0 0
\(545\) 36.0000 1.54207
\(546\) 0 0
\(547\) 6.92820 0.296229 0.148114 0.988970i \(-0.452680\pi\)
0.148114 + 0.988970i \(0.452680\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 25.0000i 1.06504i
\(552\) 0 0
\(553\) −9.00000 + 5.19615i −0.382719 + 0.220963i
\(554\) 0 0
\(555\) 15.5885 + 27.0000i 0.661693 + 1.14609i
\(556\) 0 0
\(557\) −34.5000 19.9186i −1.46181 0.843978i −0.462717 0.886506i \(-0.653125\pi\)
−0.999095 + 0.0425287i \(0.986459\pi\)
\(558\) 0 0
\(559\) 18.1865 4.50000i 0.769208 0.190330i
\(560\) 0 0
\(561\) −52.5000 30.3109i −2.21655 1.27973i
\(562\) 0 0
\(563\) −4.33013 7.50000i −0.182493 0.316087i 0.760236 0.649647i \(-0.225083\pi\)
−0.942729 + 0.333560i \(0.891750\pi\)
\(564\) 0 0
\(565\) −15.0000 + 8.66025i −0.631055 + 0.364340i
\(566\) 0 0
\(567\) 27.0000i 1.13389i
\(568\) 0 0
\(569\) −15.5000 + 26.8468i −0.649794 + 1.12548i 0.333378 + 0.942793i \(0.391811\pi\)
−0.983172 + 0.182683i \(0.941522\pi\)
\(570\) 0 0
\(571\) −27.7128 −1.15975 −0.579873 0.814707i \(-0.696898\pi\)
−0.579873 + 0.814707i \(0.696898\pi\)
\(572\) 0 0
\(573\) −21.0000 −0.877288
\(574\) 0 0
\(575\) 18.1865 31.5000i 0.758431 1.31364i
\(576\) 0 0
\(577\) 24.2487i 1.00949i −0.863269 0.504744i \(-0.831587\pi\)
0.863269 0.504744i \(-0.168413\pi\)
\(578\) 0 0
\(579\) −18.1865 + 10.5000i −0.755807 + 0.436365i
\(580\) 0 0
\(581\) 21.0000 + 36.3731i 0.871227 + 1.50901i
\(582\) 0 0
\(583\) 17.3205 + 10.0000i 0.717342 + 0.414158i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.4545 + 9.50000i 0.679149 + 0.392107i 0.799534 0.600620i \(-0.205080\pi\)
−0.120385 + 0.992727i \(0.538413\pi\)
\(588\) 0 0
\(589\) 5.00000 + 8.66025i 0.206021 + 0.356840i
\(590\) 0 0
\(591\) −2.59808 + 1.50000i −0.106871 + 0.0617018i
\(592\) 0 0
\(593\) 38.1051i 1.56479i −0.622783 0.782395i \(-0.713998\pi\)
0.622783 0.782395i \(-0.286002\pi\)
\(594\) 0 0
\(595\) −36.3731 + 63.0000i −1.49115 + 2.58275i
\(596\) 0 0
\(597\) −3.00000 −0.122782
\(598\) 0 0
\(599\) −17.3205 −0.707697 −0.353848 0.935303i \(-0.615127\pi\)
−0.353848 + 0.935303i \(0.615127\pi\)
\(600\) 0 0
\(601\) 19.5000 33.7750i 0.795422 1.37771i −0.127150 0.991884i \(-0.540583\pi\)
0.922571 0.385827i \(-0.126084\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 42.0000 24.2487i 1.70754 0.985850i
\(606\) 0 0
\(607\) 21.6506 + 37.5000i 0.878772 + 1.52208i 0.852689 + 0.522418i \(0.174970\pi\)
0.0260828 + 0.999660i \(0.491697\pi\)
\(608\) 0 0
\(609\) −22.5000 12.9904i −0.911746 0.526397i
\(610\) 0 0
\(611\) −13.8564 4.00000i −0.560570 0.161823i
\(612\) 0 0
\(613\) 34.5000 + 19.9186i 1.39344 + 0.804504i 0.993695 0.112121i \(-0.0357645\pi\)
0.399747 + 0.916625i \(0.369098\pi\)
\(614\) 0 0
\(615\) −5.19615 9.00000i −0.209529 0.362915i
\(616\) 0 0
\(617\) −4.50000 + 2.59808i −0.181163 + 0.104595i −0.587839 0.808978i \(-0.700021\pi\)
0.406676 + 0.913573i \(0.366688\pi\)
\(618\) 0 0
\(619\) 6.00000i 0.241160i −0.992704 0.120580i \(-0.961525\pi\)
0.992704 0.120580i \(-0.0384755\pi\)
\(620\) 0 0
\(621\) 13.5000 23.3827i 0.541736 0.938315i
\(622\) 0 0
\(623\) −5.19615 −0.208179
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) −21.6506 + 37.5000i −0.864643 + 1.49761i
\(628\) 0 0
\(629\) 36.3731i 1.45029i
\(630\) 0 0
\(631\) −4.33013 + 2.50000i −0.172380 + 0.0995234i −0.583707 0.811964i \(-0.698398\pi\)
0.411328 + 0.911487i \(0.365065\pi\)
\(632\) 0 0
\(633\) 4.50000 + 7.79423i 0.178859 + 0.309793i
\(634\) 0 0
\(635\) −57.1577 33.0000i −2.26823 1.30957i
\(636\) 0 0
\(637\) 5.00000 + 5.19615i 0.198107 + 0.205879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.500000 0.866025i −0.0197488 0.0342059i 0.855982 0.517005i \(-0.172953\pi\)
−0.875731 + 0.482800i \(0.839620\pi\)
\(642\) 0 0
\(643\) −7.79423 + 4.50000i −0.307374 + 0.177463i −0.645751 0.763548i \(-0.723456\pi\)
0.338377 + 0.941011i \(0.390122\pi\)
\(644\) 0 0
\(645\) 31.1769i 1.22759i
\(646\) 0 0
\(647\) −7.79423 + 13.5000i −0.306423 + 0.530740i −0.977577 0.210578i \(-0.932465\pi\)
0.671154 + 0.741318i \(0.265799\pi\)
\(648\) 0 0
\(649\) −35.0000 −1.37387
\(650\) 0 0
\(651\) 10.3923 0.407307
\(652\) 0 0
\(653\) −2.50000 + 4.33013i −0.0978326 + 0.169451i −0.910787 0.412876i \(-0.864524\pi\)
0.812955 + 0.582327i \(0.197858\pi\)
\(654\) 0 0
\(655\) 48.0000i 1.87552i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.1865 + 31.5000i 0.708447 + 1.22707i 0.965433 + 0.260651i \(0.0839371\pi\)
−0.256986 + 0.966415i \(0.582730\pi\)
\(660\) 0 0
\(661\) −1.50000 0.866025i −0.0583432 0.0336845i 0.470545 0.882376i \(-0.344057\pi\)
−0.528888 + 0.848692i \(0.677391\pi\)
\(662\) 0 0
\(663\) 12.1244 42.0000i 0.470871 1.63114i
\(664\) 0 0
\(665\) 45.0000 + 25.9808i 1.74503 + 1.00749i
\(666\) 0 0
\(667\) 12.9904 + 22.5000i 0.502990 + 0.871203i
\(668\) 0 0
\(669\) 19.5000 11.2583i 0.753914 0.435272i
\(670\) 0 0
\(671\) 15.0000i 0.579069i
\(672\) 0 0
\(673\) 20.5000 35.5070i 0.790217 1.36870i −0.135615 0.990762i \(-0.543301\pi\)
0.925832 0.377934i \(-0.123365\pi\)
\(674\) 0 0
\(675\) 36.3731 1.40000
\(676\) 0 0
\(677\) −8.00000 −0.307465 −0.153732 0.988113i \(-0.549129\pi\)
−0.153732 + 0.988113i \(0.549129\pi\)
\(678\) 0 0
\(679\) −12.9904 + 22.5000i −0.498525 + 0.863471i
\(680\) 0 0
\(681\) 39.8372i 1.52656i
\(682\) 0 0
\(683\) 35.5070 20.5000i 1.35864 0.784411i 0.369199 0.929350i \(-0.379632\pi\)
0.989440 + 0.144940i \(0.0462988\pi\)
\(684\) 0 0
\(685\) 9.00000 + 15.5885i 0.343872 + 0.595604i
\(686\) 0 0
\(687\) 36.3731 + 21.0000i 1.38772 + 0.801200i
\(688\) 0 0
\(689\) −4.00000 + 13.8564i −0.152388 + 0.527887i
\(690\) 0 0
\(691\) −12.9904 7.50000i −0.494177 0.285313i 0.232128 0.972685i \(-0.425431\pi\)
−0.726306 + 0.687372i \(0.758764\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −25.9808 + 15.0000i −0.985506 + 0.568982i
\(696\) 0 0
\(697\) 12.1244i 0.459243i
\(698\) 0 0
\(699\) 6.92820 12.0000i 0.262049 0.453882i
\(700\) 0 0
\(701\) 8.00000 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(702\) 0 0
\(703\) 25.9808 0.979883
\(704\) 0 0
\(705\) −12.0000 + 20.7846i −0.451946 + 0.782794i
\(706\) 0 0
\(707\) 51.0000i 1.91805i
\(708\) 0 0
\(709\) −1.50000 + 0.866025i −0.0563337 + 0.0325243i −0.527902 0.849305i \(-0.677021\pi\)
0.471569 + 0.881829i \(0.343688\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.00000 5.19615i −0.337053 0.194597i
\(714\) 0 0
\(715\) 43.3013 + 45.0000i 1.61938 + 1.68290i
\(716\) 0 0
\(717\) 3.00000 + 1.73205i 0.112037 + 0.0646846i
\(718\) 0 0
\(719\) 6.06218 + 10.5000i 0.226081 + 0.391584i 0.956643 0.291262i \(-0.0940752\pi\)
−0.730562 + 0.682846i \(0.760742\pi\)
\(720\) 0 0
\(721\) 18.0000 10.3923i 0.670355 0.387030i
\(722\) 0 0
\(723\) 15.0000i 0.557856i
\(724\) 0 0
\(725\) −17.5000 + 30.3109i −0.649934 + 1.12572i
\(726\) 0 0
\(727\) −41.5692 −1.54172 −0.770859 0.637006i \(-0.780172\pi\)
−0.770859 + 0.637006i \(0.780172\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 18.1865 31.5000i 0.672653 1.16507i
\(732\) 0 0
\(733\) 48.4974i 1.79129i 0.444766 + 0.895647i \(0.353287\pi\)
−0.444766 + 0.895647i \(0.646713\pi\)
\(734\) 0 0
\(735\) 10.3923 6.00000i 0.383326 0.221313i
\(736\) 0 0
\(737\) 7.50000 + 12.9904i 0.276266 + 0.478507i
\(738\) 0 0
\(739\) −18.1865 10.5000i −0.669002 0.386249i 0.126696 0.991942i \(-0.459563\pi\)
−0.795699 + 0.605693i \(0.792896\pi\)
\(740\) 0 0
\(741\) −30.0000 8.66025i −1.10208 0.318142i
\(742\) 0 0
\(743\) 11.2583 + 6.50000i 0.413028 + 0.238462i 0.692090 0.721811i \(-0.256690\pi\)
−0.279062 + 0.960273i \(0.590023\pi\)
\(744\) 0 0
\(745\) −15.0000 25.9808i −0.549557 0.951861i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 25.9808i 0.949316i
\(750\) 0 0
\(751\) −6.06218 + 10.5000i −0.221212 + 0.383150i −0.955176 0.296038i \(-0.904335\pi\)
0.733964 + 0.679188i \(0.237668\pi\)
\(752\) 0 0
\(753\) −27.0000 −0.983935
\(754\) 0 0
\(755\) 6.92820 0.252143
\(756\) 0 0
\(757\) −26.5000 + 45.8993i −0.963159 + 1.66824i −0.248677 + 0.968587i \(0.579996\pi\)
−0.714482 + 0.699654i \(0.753338\pi\)
\(758\) 0 0
\(759\) 45.0000i 1.63340i
\(760\) 0 0
\(761\) 40.5000 23.3827i 1.46812 0.847622i 0.468761 0.883325i \(-0.344700\pi\)
0.999362 + 0.0357031i \(0.0113671\pi\)
\(762\) 0 0
\(763\) −15.5885 27.0000i −0.564340 0.977466i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.06218 24.5000i −0.218893 0.884644i
\(768\) 0 0
\(769\) −25.5000 14.7224i −0.919554 0.530904i −0.0360609 0.999350i \(-0.511481\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) 19.9186 + 34.5000i 0.717350 + 1.24249i
\(772\) 0 0
\(773\) −1.50000 + 0.866025i −0.0539513 + 0.0311488i −0.526733 0.850031i \(-0.676583\pi\)
0.472782 + 0.881180i \(0.343250\pi\)
\(774\) 0 0
\(775\) 14.0000i 0.502895i
\(776\) 0 0
\(777\) 13.5000 23.3827i 0.484310 0.838849i
\(778\) 0 0
\(779\) −8.66025 −0.310286
\(780\) 0 0
\(781\) 35.0000 1.25240
\(782\) 0 0
\(783\) −12.9904 + 22.5000i −0.464238 + 0.804084i
\(784\) 0 0
\(785\) 27.7128i 0.989113i
\(786\) 0 0
\(787\) −7.79423 + 4.50000i −0.277834 + 0.160408i −0.632443 0.774607i \(-0.717948\pi\)
0.354608 + 0.935015i \(0.384614\pi\)
\(788\) 0 0
\(789\) 1.50000 + 2.59808i 0.0534014 + 0.0924940i
\(790\) 0 0
\(791\) 12.9904 + 7.50000i 0.461885 + 0.266669i