Defining parameters
Level: | \( N \) | \(=\) | \( 416 = 2^{5} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 416.w (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(416, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 128 | 28 | 100 |
Cusp forms | 96 | 28 | 68 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(416, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
416.2.w.a | $4$ | $3.322$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+(-2+4\zeta_{12}^{2}+\cdots)q^{5}+\cdots\) |
416.2.w.b | $4$ | $3.322$ | \(\Q(\zeta_{12})\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-1+2\zeta_{12}^{2}+\zeta_{12}^{3})q^{5}+(3-3\zeta_{12}^{2}+\cdots)q^{9}+\cdots\) |
416.2.w.c | $8$ | $3.322$ | 8.0.56070144.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{6}q^{3}+(-\beta _{4}+\beta _{5})q^{5}+\beta _{3}q^{7}+\cdots\) |
416.2.w.d | $12$ | $3.322$ | 12.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{9}q^{3}+(-2\beta _{4}-\beta _{5}+\beta _{6})q^{5}-\beta _{3}q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(416, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(416, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 2}\)