Properties

Label 416.2.w
Level $416$
Weight $2$
Character orbit 416.w
Rep. character $\chi_{416}(225,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $28$
Newform subspaces $4$
Sturm bound $112$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.w (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(112\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(416, [\chi])\).

Total New Old
Modular forms 128 28 100
Cusp forms 96 28 68
Eisenstein series 32 0 32

Trace form

\( 28 q - 14 q^{9} + O(q^{10}) \) \( 28 q - 14 q^{9} + 6 q^{13} - 6 q^{17} - 40 q^{25} + 2 q^{29} + 30 q^{37} + 18 q^{41} - 30 q^{45} + 30 q^{49} - 12 q^{53} - 10 q^{61} + 10 q^{65} + 16 q^{69} + 48 q^{77} + 2 q^{81} - 6 q^{85} - 72 q^{93} - 48 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(416, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
416.2.w.a 416.w 13.e $4$ $3.322$ \(\Q(\zeta_{12})\) None 416.2.w.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+(-2+4\zeta_{12}^{2}+\cdots)q^{5}+\cdots\)
416.2.w.b 416.w 13.e $4$ $3.322$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-1}) \) 416.2.w.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{6}]$ \(q+(-1+2\zeta_{12}^{2}+\zeta_{12}^{3})q^{5}+(3-3\zeta_{12}^{2}+\cdots)q^{9}+\cdots\)
416.2.w.c 416.w 13.e $8$ $3.322$ 8.0.56070144.2 None 416.2.w.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{6}q^{3}+(-\beta _{4}+\beta _{5})q^{5}+\beta _{3}q^{7}+\cdots\)
416.2.w.d 416.w 13.e $12$ $3.322$ 12.0.\(\cdots\).1 None 416.2.w.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{9}q^{3}+(-2\beta _{4}-\beta _{5}+\beta _{6})q^{5}-\beta _{3}q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(416, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(416, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 2}\)