Properties

Label 416.2.u.a.239.1
Level $416$
Weight $2$
Character 416.239
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(47,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.u (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{26})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.1
Root \(-2.54951 - 2.54951i\) of defining polynomial
Character \(\chi\) \(=\) 416.239
Dual form 416.2.u.a.47.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-2.54951 - 2.54951i) q^{5} +(-2.54951 + 2.54951i) q^{7} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +(-2.54951 - 2.54951i) q^{5} +(-2.54951 + 2.54951i) q^{7} -2.00000 q^{9} +(-1.00000 - 1.00000i) q^{11} +(-2.54951 - 2.54951i) q^{13} +(-2.54951 - 2.54951i) q^{15} -3.00000i q^{17} +(-2.00000 + 2.00000i) q^{19} +(-2.54951 + 2.54951i) q^{21} +5.09902 q^{23} +8.00000i q^{25} -5.00000 q^{27} +5.09902i q^{29} +(-5.09902 - 5.09902i) q^{31} +(-1.00000 - 1.00000i) q^{33} +13.0000 q^{35} +(2.54951 - 2.54951i) q^{37} +(-2.54951 - 2.54951i) q^{39} +(6.00000 - 6.00000i) q^{41} +1.00000i q^{43} +(5.09902 + 5.09902i) q^{45} +(-2.54951 + 2.54951i) q^{47} -6.00000i q^{49} -3.00000i q^{51} -5.09902i q^{53} +5.09902i q^{55} +(-2.00000 + 2.00000i) q^{57} +(-8.00000 - 8.00000i) q^{59} +(5.09902 - 5.09902i) q^{63} +13.0000i q^{65} +(-3.00000 + 3.00000i) q^{67} +5.09902 q^{69} +(7.64853 + 7.64853i) q^{71} +(-6.00000 - 6.00000i) q^{73} +8.00000i q^{75} +5.09902 q^{77} -5.09902i q^{79} +1.00000 q^{81} +(-5.00000 + 5.00000i) q^{83} +(-7.64853 + 7.64853i) q^{85} +5.09902i q^{87} +(-2.00000 - 2.00000i) q^{89} +13.0000 q^{91} +(-5.09902 - 5.09902i) q^{93} +10.1980 q^{95} +(-7.00000 + 7.00000i) q^{97} +(2.00000 + 2.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{3} - 8 q^{9} - 4 q^{11} - 8 q^{19} - 20 q^{27} - 4 q^{33} + 52 q^{35} + 24 q^{41} - 8 q^{57} - 32 q^{59} - 12 q^{67} - 24 q^{73} + 4 q^{81} - 20 q^{83} - 8 q^{89} + 52 q^{91} - 28 q^{97} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) −2.54951 2.54951i −1.14018 1.14018i −0.988418 0.151758i \(-0.951507\pi\)
−0.151758 0.988418i \(-0.548493\pi\)
\(6\) 0 0
\(7\) −2.54951 + 2.54951i −0.963624 + 0.963624i −0.999361 0.0357371i \(-0.988622\pi\)
0.0357371 + 0.999361i \(0.488622\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) −1.00000 1.00000i −0.301511 0.301511i 0.540094 0.841605i \(-0.318389\pi\)
−0.841605 + 0.540094i \(0.818389\pi\)
\(12\) 0 0
\(13\) −2.54951 2.54951i −0.707107 0.707107i
\(14\) 0 0
\(15\) −2.54951 2.54951i −0.658281 0.658281i
\(16\) 0 0
\(17\) 3.00000i 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 0 0
\(19\) −2.00000 + 2.00000i −0.458831 + 0.458831i −0.898272 0.439440i \(-0.855177\pi\)
0.439440 + 0.898272i \(0.355177\pi\)
\(20\) 0 0
\(21\) −2.54951 + 2.54951i −0.556349 + 0.556349i
\(22\) 0 0
\(23\) 5.09902 1.06322 0.531610 0.846990i \(-0.321587\pi\)
0.531610 + 0.846990i \(0.321587\pi\)
\(24\) 0 0
\(25\) 8.00000i 1.60000i
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 5.09902i 0.946864i 0.880830 + 0.473432i \(0.156985\pi\)
−0.880830 + 0.473432i \(0.843015\pi\)
\(30\) 0 0
\(31\) −5.09902 5.09902i −0.915811 0.915811i 0.0809104 0.996721i \(-0.474217\pi\)
−0.996721 + 0.0809104i \(0.974217\pi\)
\(32\) 0 0
\(33\) −1.00000 1.00000i −0.174078 0.174078i
\(34\) 0 0
\(35\) 13.0000 2.19740
\(36\) 0 0
\(37\) 2.54951 2.54951i 0.419137 0.419137i −0.465769 0.884906i \(-0.654222\pi\)
0.884906 + 0.465769i \(0.154222\pi\)
\(38\) 0 0
\(39\) −2.54951 2.54951i −0.408248 0.408248i
\(40\) 0 0
\(41\) 6.00000 6.00000i 0.937043 0.937043i −0.0610897 0.998132i \(-0.519458\pi\)
0.998132 + 0.0610897i \(0.0194576\pi\)
\(42\) 0 0
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) 0 0
\(45\) 5.09902 + 5.09902i 0.760117 + 0.760117i
\(46\) 0 0
\(47\) −2.54951 + 2.54951i −0.371884 + 0.371884i −0.868163 0.496279i \(-0.834699\pi\)
0.496279 + 0.868163i \(0.334699\pi\)
\(48\) 0 0
\(49\) 6.00000i 0.857143i
\(50\) 0 0
\(51\) 3.00000i 0.420084i
\(52\) 0 0
\(53\) 5.09902i 0.700404i −0.936674 0.350202i \(-0.886113\pi\)
0.936674 0.350202i \(-0.113887\pi\)
\(54\) 0 0
\(55\) 5.09902i 0.687552i
\(56\) 0 0
\(57\) −2.00000 + 2.00000i −0.264906 + 0.264906i
\(58\) 0 0
\(59\) −8.00000 8.00000i −1.04151 1.04151i −0.999100 0.0424110i \(-0.986496\pi\)
−0.0424110 0.999100i \(-0.513504\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 5.09902 5.09902i 0.642416 0.642416i
\(64\) 0 0
\(65\) 13.0000i 1.61245i
\(66\) 0 0
\(67\) −3.00000 + 3.00000i −0.366508 + 0.366508i −0.866202 0.499694i \(-0.833446\pi\)
0.499694 + 0.866202i \(0.333446\pi\)
\(68\) 0 0
\(69\) 5.09902 0.613850
\(70\) 0 0
\(71\) 7.64853 + 7.64853i 0.907713 + 0.907713i 0.996087 0.0883739i \(-0.0281670\pi\)
−0.0883739 + 0.996087i \(0.528167\pi\)
\(72\) 0 0
\(73\) −6.00000 6.00000i −0.702247 0.702247i 0.262646 0.964892i \(-0.415405\pi\)
−0.964892 + 0.262646i \(0.915405\pi\)
\(74\) 0 0
\(75\) 8.00000i 0.923760i
\(76\) 0 0
\(77\) 5.09902 0.581087
\(78\) 0 0
\(79\) 5.09902i 0.573685i −0.957978 0.286842i \(-0.907394\pi\)
0.957978 0.286842i \(-0.0926056\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −5.00000 + 5.00000i −0.548821 + 0.548821i −0.926100 0.377279i \(-0.876860\pi\)
0.377279 + 0.926100i \(0.376860\pi\)
\(84\) 0 0
\(85\) −7.64853 + 7.64853i −0.829599 + 0.829599i
\(86\) 0 0
\(87\) 5.09902i 0.546672i
\(88\) 0 0
\(89\) −2.00000 2.00000i −0.212000 0.212000i 0.593117 0.805116i \(-0.297897\pi\)
−0.805116 + 0.593117i \(0.797897\pi\)
\(90\) 0 0
\(91\) 13.0000 1.36277
\(92\) 0 0
\(93\) −5.09902 5.09902i −0.528744 0.528744i
\(94\) 0 0
\(95\) 10.1980 1.04630
\(96\) 0 0
\(97\) −7.00000 + 7.00000i −0.710742 + 0.710742i −0.966691 0.255948i \(-0.917612\pi\)
0.255948 + 0.966691i \(0.417612\pi\)
\(98\) 0 0
\(99\) 2.00000 + 2.00000i 0.201008 + 0.201008i
\(100\) 0 0
\(101\) 10.1980 1.01474 0.507371 0.861727i \(-0.330617\pi\)
0.507371 + 0.861727i \(0.330617\pi\)
\(102\) 0 0
\(103\) 5.09902 0.502421 0.251211 0.967932i \(-0.419171\pi\)
0.251211 + 0.967932i \(0.419171\pi\)
\(104\) 0 0
\(105\) 13.0000 1.26867
\(106\) 0 0
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 0 0
\(109\) 2.54951 + 2.54951i 0.244199 + 0.244199i 0.818585 0.574386i \(-0.194759\pi\)
−0.574386 + 0.818585i \(0.694759\pi\)
\(110\) 0 0
\(111\) 2.54951 2.54951i 0.241989 0.241989i
\(112\) 0 0
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 0 0
\(115\) −13.0000 13.0000i −1.21226 1.21226i
\(116\) 0 0
\(117\) 5.09902 + 5.09902i 0.471405 + 0.471405i
\(118\) 0 0
\(119\) 7.64853 + 7.64853i 0.701140 + 0.701140i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 6.00000 6.00000i 0.541002 0.541002i
\(124\) 0 0
\(125\) 7.64853 7.64853i 0.684105 0.684105i
\(126\) 0 0
\(127\) −15.2971 −1.35739 −0.678697 0.734418i \(-0.737455\pi\)
−0.678697 + 0.734418i \(0.737455\pi\)
\(128\) 0 0
\(129\) 1.00000i 0.0880451i
\(130\) 0 0
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) 10.1980i 0.884282i
\(134\) 0 0
\(135\) 12.7475 + 12.7475i 1.09713 + 1.09713i
\(136\) 0 0
\(137\) −5.00000 5.00000i −0.427179 0.427179i 0.460487 0.887666i \(-0.347675\pi\)
−0.887666 + 0.460487i \(0.847675\pi\)
\(138\) 0 0
\(139\) 15.0000 1.27228 0.636142 0.771572i \(-0.280529\pi\)
0.636142 + 0.771572i \(0.280529\pi\)
\(140\) 0 0
\(141\) −2.54951 + 2.54951i −0.214707 + 0.214707i
\(142\) 0 0
\(143\) 5.09902i 0.426401i
\(144\) 0 0
\(145\) 13.0000 13.0000i 1.07959 1.07959i
\(146\) 0 0
\(147\) 6.00000i 0.494872i
\(148\) 0 0
\(149\) −10.1980 10.1980i −0.835456 0.835456i 0.152801 0.988257i \(-0.451171\pi\)
−0.988257 + 0.152801i \(0.951171\pi\)
\(150\) 0 0
\(151\) 7.64853 7.64853i 0.622428 0.622428i −0.323723 0.946152i \(-0.604935\pi\)
0.946152 + 0.323723i \(0.104935\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 26.0000i 2.08837i
\(156\) 0 0
\(157\) 10.1980i 0.813892i 0.913452 + 0.406946i \(0.133406\pi\)
−0.913452 + 0.406946i \(0.866594\pi\)
\(158\) 0 0
\(159\) 5.09902i 0.404379i
\(160\) 0 0
\(161\) −13.0000 + 13.0000i −1.02454 + 1.02454i
\(162\) 0 0
\(163\) −9.00000 9.00000i −0.704934 0.704934i 0.260531 0.965465i \(-0.416102\pi\)
−0.965465 + 0.260531i \(0.916102\pi\)
\(164\) 0 0
\(165\) 5.09902i 0.396958i
\(166\) 0 0
\(167\) −15.2971 + 15.2971i −1.18372 + 1.18372i −0.204949 + 0.978773i \(0.565703\pi\)
−0.978773 + 0.204949i \(0.934297\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 4.00000 4.00000i 0.305888 0.305888i
\(172\) 0 0
\(173\) −5.09902 −0.387671 −0.193836 0.981034i \(-0.562093\pi\)
−0.193836 + 0.981034i \(0.562093\pi\)
\(174\) 0 0
\(175\) −20.3961 20.3961i −1.54180 1.54180i
\(176\) 0 0
\(177\) −8.00000 8.00000i −0.601317 0.601317i
\(178\) 0 0
\(179\) 9.00000i 0.672692i 0.941739 + 0.336346i \(0.109191\pi\)
−0.941739 + 0.336346i \(0.890809\pi\)
\(180\) 0 0
\(181\) −15.2971 −1.13702 −0.568511 0.822676i \(-0.692480\pi\)
−0.568511 + 0.822676i \(0.692480\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −13.0000 −0.955779
\(186\) 0 0
\(187\) −3.00000 + 3.00000i −0.219382 + 0.219382i
\(188\) 0 0
\(189\) 12.7475 12.7475i 0.927248 0.927248i
\(190\) 0 0
\(191\) 25.4951i 1.84476i −0.386283 0.922380i \(-0.626241\pi\)
0.386283 0.922380i \(-0.373759\pi\)
\(192\) 0 0
\(193\) 9.00000 + 9.00000i 0.647834 + 0.647834i 0.952469 0.304635i \(-0.0985345\pi\)
−0.304635 + 0.952469i \(0.598534\pi\)
\(194\) 0 0
\(195\) 13.0000i 0.930949i
\(196\) 0 0
\(197\) 12.7475 + 12.7475i 0.908225 + 0.908225i 0.996129 0.0879037i \(-0.0280168\pi\)
−0.0879037 + 0.996129i \(0.528017\pi\)
\(198\) 0 0
\(199\) −25.4951 −1.80730 −0.903650 0.428272i \(-0.859122\pi\)
−0.903650 + 0.428272i \(0.859122\pi\)
\(200\) 0 0
\(201\) −3.00000 + 3.00000i −0.211604 + 0.211604i
\(202\) 0 0
\(203\) −13.0000 13.0000i −0.912421 0.912421i
\(204\) 0 0
\(205\) −30.5941 −2.13679
\(206\) 0 0
\(207\) −10.1980 −0.708813
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −7.00000 −0.481900 −0.240950 0.970538i \(-0.577459\pi\)
−0.240950 + 0.970538i \(0.577459\pi\)
\(212\) 0 0
\(213\) 7.64853 + 7.64853i 0.524069 + 0.524069i
\(214\) 0 0
\(215\) 2.54951 2.54951i 0.173875 0.173875i
\(216\) 0 0
\(217\) 26.0000 1.76500
\(218\) 0 0
\(219\) −6.00000 6.00000i −0.405442 0.405442i
\(220\) 0 0
\(221\) −7.64853 + 7.64853i −0.514496 + 0.514496i
\(222\) 0 0
\(223\) −7.64853 7.64853i −0.512183 0.512183i 0.403012 0.915195i \(-0.367963\pi\)
−0.915195 + 0.403012i \(0.867963\pi\)
\(224\) 0 0
\(225\) 16.0000i 1.06667i
\(226\) 0 0
\(227\) 12.0000 12.0000i 0.796468 0.796468i −0.186069 0.982537i \(-0.559575\pi\)
0.982537 + 0.186069i \(0.0595747\pi\)
\(228\) 0 0
\(229\) −2.54951 + 2.54951i −0.168476 + 0.168476i −0.786309 0.617833i \(-0.788011\pi\)
0.617833 + 0.786309i \(0.288011\pi\)
\(230\) 0 0
\(231\) 5.09902 0.335491
\(232\) 0 0
\(233\) 11.0000i 0.720634i −0.932830 0.360317i \(-0.882669\pi\)
0.932830 0.360317i \(-0.117331\pi\)
\(234\) 0 0
\(235\) 13.0000 0.848026
\(236\) 0 0
\(237\) 5.09902i 0.331217i
\(238\) 0 0
\(239\) −2.54951 2.54951i −0.164914 0.164914i 0.619826 0.784740i \(-0.287203\pi\)
−0.784740 + 0.619826i \(0.787203\pi\)
\(240\) 0 0
\(241\) −14.0000 14.0000i −0.901819 0.901819i 0.0937742 0.995593i \(-0.470107\pi\)
−0.995593 + 0.0937742i \(0.970107\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) −15.2971 + 15.2971i −0.977293 + 0.977293i
\(246\) 0 0
\(247\) 10.1980 0.648886
\(248\) 0 0
\(249\) −5.00000 + 5.00000i −0.316862 + 0.316862i
\(250\) 0 0
\(251\) 10.0000i 0.631194i −0.948893 0.315597i \(-0.897795\pi\)
0.948893 0.315597i \(-0.102205\pi\)
\(252\) 0 0
\(253\) −5.09902 5.09902i −0.320573 0.320573i
\(254\) 0 0
\(255\) −7.64853 + 7.64853i −0.478969 + 0.478969i
\(256\) 0 0
\(257\) 3.00000i 0.187135i −0.995613 0.0935674i \(-0.970173\pi\)
0.995613 0.0935674i \(-0.0298271\pi\)
\(258\) 0 0
\(259\) 13.0000i 0.807781i
\(260\) 0 0
\(261\) 10.1980i 0.631243i
\(262\) 0 0
\(263\) 20.3961i 1.25768i −0.777536 0.628838i \(-0.783531\pi\)
0.777536 0.628838i \(-0.216469\pi\)
\(264\) 0 0
\(265\) −13.0000 + 13.0000i −0.798584 + 0.798584i
\(266\) 0 0
\(267\) −2.00000 2.00000i −0.122398 0.122398i
\(268\) 0 0
\(269\) 20.3961i 1.24357i −0.783188 0.621785i \(-0.786408\pi\)
0.783188 0.621785i \(-0.213592\pi\)
\(270\) 0 0
\(271\) 7.64853 7.64853i 0.464615 0.464615i −0.435550 0.900165i \(-0.643446\pi\)
0.900165 + 0.435550i \(0.143446\pi\)
\(272\) 0 0
\(273\) 13.0000 0.786796
\(274\) 0 0
\(275\) 8.00000 8.00000i 0.482418 0.482418i
\(276\) 0 0
\(277\) −10.1980 −0.612741 −0.306370 0.951912i \(-0.599115\pi\)
−0.306370 + 0.951912i \(0.599115\pi\)
\(278\) 0 0
\(279\) 10.1980 + 10.1980i 0.610541 + 0.610541i
\(280\) 0 0
\(281\) 16.0000 + 16.0000i 0.954480 + 0.954480i 0.999008 0.0445282i \(-0.0141784\pi\)
−0.0445282 + 0.999008i \(0.514178\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i 0.879688 + 0.475551i \(0.157751\pi\)
−0.879688 + 0.475551i \(0.842249\pi\)
\(284\) 0 0
\(285\) 10.1980 0.604080
\(286\) 0 0
\(287\) 30.5941i 1.80591i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) −7.00000 + 7.00000i −0.410347 + 0.410347i
\(292\) 0 0
\(293\) 12.7475 12.7475i 0.744720 0.744720i −0.228763 0.973482i \(-0.573468\pi\)
0.973482 + 0.228763i \(0.0734679\pi\)
\(294\) 0 0
\(295\) 40.7922i 2.37501i
\(296\) 0 0
\(297\) 5.00000 + 5.00000i 0.290129 + 0.290129i
\(298\) 0 0
\(299\) −13.0000 13.0000i −0.751809 0.751809i
\(300\) 0 0
\(301\) −2.54951 2.54951i −0.146951 0.146951i
\(302\) 0 0
\(303\) 10.1980 0.585862
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 10.0000 + 10.0000i 0.570730 + 0.570730i 0.932332 0.361602i \(-0.117770\pi\)
−0.361602 + 0.932332i \(0.617770\pi\)
\(308\) 0 0
\(309\) 5.09902 0.290073
\(310\) 0 0
\(311\) −10.1980 −0.578278 −0.289139 0.957287i \(-0.593369\pi\)
−0.289139 + 0.957287i \(0.593369\pi\)
\(312\) 0 0
\(313\) −31.0000 −1.75222 −0.876112 0.482108i \(-0.839871\pi\)
−0.876112 + 0.482108i \(0.839871\pi\)
\(314\) 0 0
\(315\) −26.0000 −1.46493
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 5.09902 5.09902i 0.285490 0.285490i
\(320\) 0 0
\(321\) 2.00000 0.111629
\(322\) 0 0
\(323\) 6.00000 + 6.00000i 0.333849 + 0.333849i
\(324\) 0 0
\(325\) 20.3961 20.3961i 1.13137 1.13137i
\(326\) 0 0
\(327\) 2.54951 + 2.54951i 0.140988 + 0.140988i
\(328\) 0 0
\(329\) 13.0000i 0.716713i
\(330\) 0 0
\(331\) −21.0000 + 21.0000i −1.15426 + 1.15426i −0.168576 + 0.985689i \(0.553917\pi\)
−0.985689 + 0.168576i \(0.946083\pi\)
\(332\) 0 0
\(333\) −5.09902 + 5.09902i −0.279425 + 0.279425i
\(334\) 0 0
\(335\) 15.2971 0.835768
\(336\) 0 0
\(337\) 17.0000i 0.926049i 0.886345 + 0.463025i \(0.153236\pi\)
−0.886345 + 0.463025i \(0.846764\pi\)
\(338\) 0 0
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) 10.1980i 0.552255i
\(342\) 0 0
\(343\) −2.54951 2.54951i −0.137661 0.137661i
\(344\) 0 0
\(345\) −13.0000 13.0000i −0.699896 0.699896i
\(346\) 0 0
\(347\) 7.00000 0.375780 0.187890 0.982190i \(-0.439835\pi\)
0.187890 + 0.982190i \(0.439835\pi\)
\(348\) 0 0
\(349\) 22.9456 22.9456i 1.22825 1.22825i 0.263624 0.964626i \(-0.415082\pi\)
0.964626 0.263624i \(-0.0849177\pi\)
\(350\) 0 0
\(351\) 12.7475 + 12.7475i 0.680414 + 0.680414i
\(352\) 0 0
\(353\) 5.00000 5.00000i 0.266123 0.266123i −0.561413 0.827536i \(-0.689742\pi\)
0.827536 + 0.561413i \(0.189742\pi\)
\(354\) 0 0
\(355\) 39.0000i 2.06991i
\(356\) 0 0
\(357\) 7.64853 + 7.64853i 0.404803 + 0.404803i
\(358\) 0 0
\(359\) 15.2971 15.2971i 0.807348 0.807348i −0.176884 0.984232i \(-0.556602\pi\)
0.984232 + 0.176884i \(0.0566017\pi\)
\(360\) 0 0
\(361\) 11.0000i 0.578947i
\(362\) 0 0
\(363\) 9.00000i 0.472377i
\(364\) 0 0
\(365\) 30.5941i 1.60137i
\(366\) 0 0
\(367\) 15.2971i 0.798500i 0.916842 + 0.399250i \(0.130729\pi\)
−0.916842 + 0.399250i \(0.869271\pi\)
\(368\) 0 0
\(369\) −12.0000 + 12.0000i −0.624695 + 0.624695i
\(370\) 0 0
\(371\) 13.0000 + 13.0000i 0.674926 + 0.674926i
\(372\) 0 0
\(373\) 20.3961i 1.05607i 0.849223 + 0.528034i \(0.177071\pi\)
−0.849223 + 0.528034i \(0.822929\pi\)
\(374\) 0 0
\(375\) 7.64853 7.64853i 0.394968 0.394968i
\(376\) 0 0
\(377\) 13.0000 13.0000i 0.669534 0.669534i
\(378\) 0 0
\(379\) 23.0000 23.0000i 1.18143 1.18143i 0.202057 0.979374i \(-0.435237\pi\)
0.979374 0.202057i \(-0.0647626\pi\)
\(380\) 0 0
\(381\) −15.2971 −0.783692
\(382\) 0 0
\(383\) −7.64853 7.64853i −0.390822 0.390822i 0.484159 0.874980i \(-0.339126\pi\)
−0.874980 + 0.484159i \(0.839126\pi\)
\(384\) 0 0
\(385\) −13.0000 13.0000i −0.662541 0.662541i
\(386\) 0 0
\(387\) 2.00000i 0.101666i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 15.2971i 0.773606i
\(392\) 0 0
\(393\) −7.00000 −0.353103
\(394\) 0 0
\(395\) −13.0000 + 13.0000i −0.654101 + 0.654101i
\(396\) 0 0
\(397\) −10.1980 + 10.1980i −0.511825 + 0.511825i −0.915085 0.403260i \(-0.867877\pi\)
0.403260 + 0.915085i \(0.367877\pi\)
\(398\) 0 0
\(399\) 10.1980i 0.510541i
\(400\) 0 0
\(401\) 1.00000 + 1.00000i 0.0499376 + 0.0499376i 0.731635 0.681697i \(-0.238758\pi\)
−0.681697 + 0.731635i \(0.738758\pi\)
\(402\) 0 0
\(403\) 26.0000i 1.29515i
\(404\) 0 0
\(405\) −2.54951 2.54951i −0.126686 0.126686i
\(406\) 0 0
\(407\) −5.09902 −0.252749
\(408\) 0 0
\(409\) 27.0000 27.0000i 1.33506 1.33506i 0.434292 0.900772i \(-0.356999\pi\)
0.900772 0.434292i \(-0.143001\pi\)
\(410\) 0 0
\(411\) −5.00000 5.00000i −0.246632 0.246632i
\(412\) 0 0
\(413\) 40.7922 2.00725
\(414\) 0 0
\(415\) 25.4951 1.25151
\(416\) 0 0
\(417\) 15.0000 0.734553
\(418\) 0 0
\(419\) −5.00000 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(420\) 0 0
\(421\) −7.64853 7.64853i −0.372767 0.372767i 0.495717 0.868484i \(-0.334905\pi\)
−0.868484 + 0.495717i \(0.834905\pi\)
\(422\) 0 0
\(423\) 5.09902 5.09902i 0.247923 0.247923i
\(424\) 0 0
\(425\) 24.0000 1.16417
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 5.09902i 0.246183i
\(430\) 0 0
\(431\) 7.64853 + 7.64853i 0.368417 + 0.368417i 0.866900 0.498483i \(-0.166109\pi\)
−0.498483 + 0.866900i \(0.666109\pi\)
\(432\) 0 0
\(433\) 19.0000i 0.913082i 0.889702 + 0.456541i \(0.150912\pi\)
−0.889702 + 0.456541i \(0.849088\pi\)
\(434\) 0 0
\(435\) 13.0000 13.0000i 0.623302 0.623302i
\(436\) 0 0
\(437\) −10.1980 + 10.1980i −0.487838 + 0.487838i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 12.0000i 0.571429i
\(442\) 0 0
\(443\) 31.0000 1.47285 0.736427 0.676517i \(-0.236511\pi\)
0.736427 + 0.676517i \(0.236511\pi\)
\(444\) 0 0
\(445\) 10.1980i 0.483433i
\(446\) 0 0
\(447\) −10.1980 10.1980i −0.482351 0.482351i
\(448\) 0 0
\(449\) 3.00000 + 3.00000i 0.141579 + 0.141579i 0.774344 0.632765i \(-0.218080\pi\)
−0.632765 + 0.774344i \(0.718080\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) 0 0
\(453\) 7.64853 7.64853i 0.359359 0.359359i
\(454\) 0 0
\(455\) −33.1436 33.1436i −1.55380 1.55380i
\(456\) 0 0
\(457\) −2.00000 + 2.00000i −0.0935561 + 0.0935561i −0.752336 0.658780i \(-0.771073\pi\)
0.658780 + 0.752336i \(0.271073\pi\)
\(458\) 0 0
\(459\) 15.0000i 0.700140i
\(460\) 0 0
\(461\) 17.8466 + 17.8466i 0.831198 + 0.831198i 0.987681 0.156483i \(-0.0500157\pi\)
−0.156483 + 0.987681i \(0.550016\pi\)
\(462\) 0 0
\(463\) −25.4951 + 25.4951i −1.18486 + 1.18486i −0.206387 + 0.978470i \(0.566171\pi\)
−0.978470 + 0.206387i \(0.933829\pi\)
\(464\) 0 0
\(465\) 26.0000i 1.20572i
\(466\) 0 0
\(467\) 2.00000i 0.0925490i −0.998929 0.0462745i \(-0.985265\pi\)
0.998929 0.0462745i \(-0.0147349\pi\)
\(468\) 0 0
\(469\) 15.2971i 0.706353i
\(470\) 0 0
\(471\) 10.1980i 0.469901i
\(472\) 0 0
\(473\) 1.00000 1.00000i 0.0459800 0.0459800i
\(474\) 0 0
\(475\) −16.0000 16.0000i −0.734130 0.734130i
\(476\) 0 0
\(477\) 10.1980i 0.466936i
\(478\) 0 0
\(479\) 2.54951 2.54951i 0.116490 0.116490i −0.646459 0.762949i \(-0.723751\pi\)
0.762949 + 0.646459i \(0.223751\pi\)
\(480\) 0 0
\(481\) −13.0000 −0.592749
\(482\) 0 0
\(483\) −13.0000 + 13.0000i −0.591520 + 0.591520i
\(484\) 0 0
\(485\) 35.6931 1.62074
\(486\) 0 0
\(487\) 25.4951 + 25.4951i 1.15529 + 1.15529i 0.985476 + 0.169818i \(0.0543179\pi\)
0.169818 + 0.985476i \(0.445682\pi\)
\(488\) 0 0
\(489\) −9.00000 9.00000i −0.406994 0.406994i
\(490\) 0 0
\(491\) 5.00000i 0.225647i −0.993615 0.112823i \(-0.964011\pi\)
0.993615 0.112823i \(-0.0359894\pi\)
\(492\) 0 0
\(493\) 15.2971 0.688945
\(494\) 0 0
\(495\) 10.1980i 0.458368i
\(496\) 0 0
\(497\) −39.0000 −1.74939
\(498\) 0 0
\(499\) −2.00000 + 2.00000i −0.0895323 + 0.0895323i −0.750454 0.660922i \(-0.770165\pi\)
0.660922 + 0.750454i \(0.270165\pi\)
\(500\) 0 0
\(501\) −15.2971 + 15.2971i −0.683422 + 0.683422i
\(502\) 0 0
\(503\) 20.3961i 0.909416i −0.890641 0.454708i \(-0.849744\pi\)
0.890641 0.454708i \(-0.150256\pi\)
\(504\) 0 0
\(505\) −26.0000 26.0000i −1.15698 1.15698i
\(506\) 0 0
\(507\) 13.0000i 0.577350i
\(508\) 0 0
\(509\) −10.1980 10.1980i −0.452020 0.452020i 0.444004 0.896025i \(-0.353557\pi\)
−0.896025 + 0.444004i \(0.853557\pi\)
\(510\) 0 0
\(511\) 30.5941 1.35340
\(512\) 0 0
\(513\) 10.0000 10.0000i 0.441511 0.441511i
\(514\) 0 0
\(515\) −13.0000 13.0000i −0.572848 0.572848i
\(516\) 0 0
\(517\) 5.09902 0.224255
\(518\) 0 0
\(519\) −5.09902 −0.223822
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 0 0
\(523\) 6.00000 0.262362 0.131181 0.991358i \(-0.458123\pi\)
0.131181 + 0.991358i \(0.458123\pi\)
\(524\) 0 0
\(525\) −20.3961 20.3961i −0.890158 0.890158i
\(526\) 0 0
\(527\) −15.2971 + 15.2971i −0.666350 + 0.666350i
\(528\) 0 0
\(529\) 3.00000 0.130435
\(530\) 0 0
\(531\) 16.0000 + 16.0000i 0.694341 + 0.694341i
\(532\) 0 0
\(533\) −30.5941 −1.32518
\(534\) 0 0
\(535\) −5.09902 5.09902i −0.220450 0.220450i
\(536\) 0 0
\(537\) 9.00000i 0.388379i
\(538\) 0 0
\(539\) −6.00000 + 6.00000i −0.258438 + 0.258438i
\(540\) 0 0
\(541\) 17.8466 17.8466i 0.767284 0.767284i −0.210344 0.977628i \(-0.567458\pi\)
0.977628 + 0.210344i \(0.0674583\pi\)
\(542\) 0 0
\(543\) −15.2971 −0.656460
\(544\) 0 0
\(545\) 13.0000i 0.556859i
\(546\) 0 0
\(547\) −23.0000 −0.983409 −0.491704 0.870762i \(-0.663626\pi\)
−0.491704 + 0.870762i \(0.663626\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10.1980 10.1980i −0.434451 0.434451i
\(552\) 0 0
\(553\) 13.0000 + 13.0000i 0.552816 + 0.552816i
\(554\) 0 0
\(555\) −13.0000 −0.551819
\(556\) 0 0
\(557\) −22.9456 + 22.9456i −0.972236 + 0.972236i −0.999625 0.0273891i \(-0.991281\pi\)
0.0273891 + 0.999625i \(0.491281\pi\)
\(558\) 0 0
\(559\) 2.54951 2.54951i 0.107833 0.107833i
\(560\) 0 0
\(561\) −3.00000 + 3.00000i −0.126660 + 0.126660i
\(562\) 0 0
\(563\) 9.00000i 0.379305i −0.981851 0.189652i \(-0.939264\pi\)
0.981851 0.189652i \(-0.0607361\pi\)
\(564\) 0 0
\(565\) −10.1980 10.1980i −0.429035 0.429035i
\(566\) 0 0
\(567\) −2.54951 + 2.54951i −0.107069 + 0.107069i
\(568\) 0 0
\(569\) 31.0000i 1.29959i 0.760111 + 0.649794i \(0.225145\pi\)
−0.760111 + 0.649794i \(0.774855\pi\)
\(570\) 0 0
\(571\) 15.0000i 0.627730i −0.949468 0.313865i \(-0.898376\pi\)
0.949468 0.313865i \(-0.101624\pi\)
\(572\) 0 0
\(573\) 25.4951i 1.06507i
\(574\) 0 0
\(575\) 40.7922i 1.70115i
\(576\) 0 0
\(577\) 18.0000 18.0000i 0.749350 0.749350i −0.225007 0.974357i \(-0.572241\pi\)
0.974357 + 0.225007i \(0.0722406\pi\)
\(578\) 0 0
\(579\) 9.00000 + 9.00000i 0.374027 + 0.374027i
\(580\) 0 0
\(581\) 25.4951i 1.05771i
\(582\) 0 0
\(583\) −5.09902 + 5.09902i −0.211180 + 0.211180i
\(584\) 0 0
\(585\) 26.0000i 1.07497i
\(586\) 0 0
\(587\) 7.00000 7.00000i 0.288921 0.288921i −0.547733 0.836653i \(-0.684509\pi\)
0.836653 + 0.547733i \(0.184509\pi\)
\(588\) 0 0
\(589\) 20.3961 0.840406
\(590\) 0 0
\(591\) 12.7475 + 12.7475i 0.524364 + 0.524364i
\(592\) 0 0
\(593\) 29.0000 + 29.0000i 1.19089 + 1.19089i 0.976819 + 0.214069i \(0.0686716\pi\)
0.214069 + 0.976819i \(0.431328\pi\)
\(594\) 0 0
\(595\) 39.0000i 1.59884i
\(596\) 0 0
\(597\) −25.4951 −1.04344
\(598\) 0 0
\(599\) 30.5941i 1.25004i −0.780608 0.625021i \(-0.785090\pi\)
0.780608 0.625021i \(-0.214910\pi\)
\(600\) 0 0
\(601\) 37.0000 1.50926 0.754631 0.656150i \(-0.227816\pi\)
0.754631 + 0.656150i \(0.227816\pi\)
\(602\) 0 0
\(603\) 6.00000 6.00000i 0.244339 0.244339i
\(604\) 0 0
\(605\) −22.9456 + 22.9456i −0.932871 + 0.932871i
\(606\) 0 0
\(607\) 10.1980i 0.413926i −0.978349 0.206963i \(-0.933642\pi\)
0.978349 0.206963i \(-0.0663579\pi\)
\(608\) 0 0
\(609\) −13.0000 13.0000i −0.526787 0.526787i
\(610\) 0 0
\(611\) 13.0000 0.525924
\(612\) 0 0
\(613\) −5.09902 5.09902i −0.205947 0.205947i 0.596595 0.802542i \(-0.296520\pi\)
−0.802542 + 0.596595i \(0.796520\pi\)
\(614\) 0 0
\(615\) −30.5941 −1.23367
\(616\) 0 0
\(617\) −12.0000 + 12.0000i −0.483102 + 0.483102i −0.906121 0.423019i \(-0.860970\pi\)
0.423019 + 0.906121i \(0.360970\pi\)
\(618\) 0 0
\(619\) 22.0000 + 22.0000i 0.884255 + 0.884255i 0.993964 0.109709i \(-0.0349919\pi\)
−0.109709 + 0.993964i \(0.534992\pi\)
\(620\) 0 0
\(621\) −25.4951 −1.02308
\(622\) 0 0
\(623\) 10.1980 0.408576
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 4.00000 0.159745
\(628\) 0 0
\(629\) −7.64853 7.64853i −0.304967 0.304967i
\(630\) 0 0
\(631\) −17.8466 + 17.8466i −0.710461 + 0.710461i −0.966632 0.256171i \(-0.917539\pi\)
0.256171 + 0.966632i \(0.417539\pi\)
\(632\) 0 0
\(633\) −7.00000 −0.278225
\(634\) 0 0
\(635\) 39.0000 + 39.0000i 1.54767 + 1.54767i
\(636\) 0 0
\(637\) −15.2971 + 15.2971i −0.606092 + 0.606092i
\(638\) 0 0
\(639\) −15.2971 15.2971i −0.605142 0.605142i
\(640\) 0 0
\(641\) 40.0000i 1.57991i −0.613168 0.789953i \(-0.710105\pi\)
0.613168 0.789953i \(-0.289895\pi\)
\(642\) 0 0
\(643\) −15.0000 + 15.0000i −0.591542 + 0.591542i −0.938048 0.346506i \(-0.887368\pi\)
0.346506 + 0.938048i \(0.387368\pi\)
\(644\) 0 0
\(645\) 2.54951 2.54951i 0.100387 0.100387i
\(646\) 0 0
\(647\) 10.1980 0.400926 0.200463 0.979701i \(-0.435755\pi\)
0.200463 + 0.979701i \(0.435755\pi\)
\(648\) 0 0
\(649\) 16.0000i 0.628055i
\(650\) 0 0
\(651\) 26.0000 1.01902
\(652\) 0 0
\(653\) 30.5941i 1.19724i −0.801033 0.598620i \(-0.795716\pi\)
0.801033 0.598620i \(-0.204284\pi\)
\(654\) 0 0
\(655\) 17.8466 + 17.8466i 0.697323 + 0.697323i
\(656\) 0 0
\(657\) 12.0000 + 12.0000i 0.468165 + 0.468165i
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) 5.09902 5.09902i 0.198329 0.198329i −0.600954 0.799283i \(-0.705213\pi\)
0.799283 + 0.600954i \(0.205213\pi\)
\(662\) 0 0
\(663\) −7.64853 + 7.64853i −0.297044 + 0.297044i
\(664\) 0 0
\(665\) −26.0000 + 26.0000i −1.00824 + 1.00824i
\(666\) 0 0
\(667\) 26.0000i 1.00672i
\(668\) 0 0
\(669\) −7.64853 7.64853i −0.295709 0.295709i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 21.0000i 0.809491i −0.914429 0.404745i \(-0.867360\pi\)
0.914429 0.404745i \(-0.132640\pi\)
\(674\) 0 0
\(675\) 40.0000i 1.53960i
\(676\) 0 0
\(677\) 15.2971i 0.587914i −0.955819 0.293957i \(-0.905028\pi\)
0.955819 0.293957i \(-0.0949722\pi\)
\(678\) 0 0
\(679\) 35.6931i 1.36978i
\(680\) 0 0
\(681\) 12.0000 12.0000i 0.459841 0.459841i
\(682\) 0 0
\(683\) −29.0000 29.0000i −1.10965 1.10965i −0.993196 0.116459i \(-0.962846\pi\)
−0.116459 0.993196i \(-0.537154\pi\)
\(684\) 0 0
\(685\) 25.4951i 0.974118i
\(686\) 0 0
\(687\) −2.54951 + 2.54951i −0.0972699 + 0.0972699i
\(688\) 0 0
\(689\) −13.0000 + 13.0000i −0.495261 + 0.495261i
\(690\) 0 0
\(691\) −6.00000 + 6.00000i −0.228251 + 0.228251i −0.811962 0.583711i \(-0.801600\pi\)
0.583711 + 0.811962i \(0.301600\pi\)
\(692\) 0 0
\(693\) −10.1980 −0.387391
\(694\) 0 0
\(695\) −38.2426 38.2426i −1.45063 1.45063i
\(696\) 0 0
\(697\) −18.0000 18.0000i −0.681799 0.681799i
\(698\) 0 0
\(699\) 11.0000i 0.416058i
\(700\) 0 0
\(701\) −15.2971 −0.577762 −0.288881 0.957365i \(-0.593283\pi\)
−0.288881 + 0.957365i \(0.593283\pi\)
\(702\) 0 0
\(703\) 10.1980i 0.384626i
\(704\) 0 0
\(705\) 13.0000 0.489608
\(706\) 0 0
\(707\) −26.0000 + 26.0000i −0.977831 + 0.977831i
\(708\) 0 0
\(709\) 10.1980 10.1980i 0.382995 0.382995i −0.489185 0.872180i \(-0.662706\pi\)
0.872180 + 0.489185i \(0.162706\pi\)
\(710\) 0 0
\(711\) 10.1980i 0.382456i
\(712\) 0 0
\(713\) −26.0000 26.0000i −0.973708 0.973708i
\(714\) 0 0
\(715\) 13.0000 13.0000i 0.486172 0.486172i
\(716\) 0 0
\(717\) −2.54951 2.54951i −0.0952132 0.0952132i
\(718\) 0 0
\(719\) 25.4951 0.950807 0.475403 0.879768i \(-0.342302\pi\)
0.475403 + 0.879768i \(0.342302\pi\)
\(720\) 0 0
\(721\) −13.0000 + 13.0000i −0.484145 + 0.484145i
\(722\) 0 0
\(723\) −14.0000 14.0000i −0.520666 0.520666i
\(724\) 0 0
\(725\) −40.7922 −1.51498
\(726\) 0 0
\(727\) −15.2971 −0.567336 −0.283668 0.958922i \(-0.591551\pi\)
−0.283668 + 0.958922i \(0.591551\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 3.00000 0.110959
\(732\) 0 0
\(733\) 33.1436 + 33.1436i 1.22419 + 1.22419i 0.966129 + 0.258058i \(0.0830827\pi\)
0.258058 + 0.966129i \(0.416917\pi\)
\(734\) 0 0
\(735\) −15.2971 + 15.2971i −0.564241 + 0.564241i
\(736\) 0 0
\(737\) 6.00000 0.221013
\(738\) 0 0
\(739\) 2.00000 + 2.00000i 0.0735712 + 0.0735712i 0.742935 0.669364i \(-0.233433\pi\)
−0.669364 + 0.742935i \(0.733433\pi\)
\(740\) 0 0
\(741\) 10.1980 0.374634
\(742\) 0 0
\(743\) −7.64853 7.64853i −0.280597 0.280597i 0.552750 0.833347i \(-0.313578\pi\)
−0.833347 + 0.552750i \(0.813578\pi\)
\(744\) 0 0
\(745\) 52.0000i 1.90513i
\(746\) 0 0
\(747\) 10.0000 10.0000i 0.365881 0.365881i
\(748\) 0 0
\(749\) −5.09902 + 5.09902i −0.186314 + 0.186314i
\(750\) 0 0
\(751\) −10.1980 −0.372132 −0.186066 0.982537i \(-0.559574\pi\)
−0.186066 + 0.982537i \(0.559574\pi\)
\(752\) 0 0
\(753\) 10.0000i 0.364420i
\(754\) 0 0
\(755\) −39.0000 −1.41936
\(756\) 0 0
\(757\) 35.6931i 1.29729i 0.761091 + 0.648645i \(0.224664\pi\)
−0.761091 + 0.648645i \(0.775336\pi\)
\(758\) 0 0
\(759\) −5.09902 5.09902i −0.185083 0.185083i
\(760\) 0 0
\(761\) −4.00000 4.00000i −0.145000 0.145000i 0.630880 0.775880i \(-0.282694\pi\)
−0.775880 + 0.630880i \(0.782694\pi\)
\(762\) 0 0
\(763\) −13.0000 −0.470632
\(764\) 0 0
\(765\) 15.2971 15.2971i 0.553066 0.553066i
\(766\) 0 0
\(767\) 40.7922i 1.47292i
\(768\) 0 0
\(769\) −8.00000 + 8.00000i −0.288487 + 0.288487i −0.836482 0.547995i \(-0.815391\pi\)
0.547995 + 0.836482i \(0.315391\pi\)
\(770\) 0 0
\(771\) 3.00000i 0.108042i
\(772\) 0 0
\(773\) 7.64853 + 7.64853i 0.275098 + 0.275098i 0.831149 0.556050i \(-0.187684\pi\)
−0.556050 + 0.831149i \(0.687684\pi\)
\(774\) 0 0
\(775\) 40.7922 40.7922i 1.46530 1.46530i
\(776\) 0 0
\(777\) 13.0000i 0.466372i
\(778\) 0 0
\(779\) 24.0000i 0.859889i
\(780\) 0 0
\(781\) 15.2971i 0.547372i
\(782\) 0 0
\(783\) 25.4951i 0.911120i
\(784\) 0 0
\(785\) 26.0000 26.0000i 0.927980 0.927980i
\(786\) 0 0
\(787\) 30.0000 + 30.0000i 1.06938 + 1.06938i 0.997406 + 0.0719783i \(0.0229312\pi\)
0.0719783 + 0.997406i \(0.477069\pi\)
\(788\) 0 0
\(789\) 20.3961i 0.726120i
\(790\) 0 0
\(791\) −10.1980 + 10.1980i −0.362601 + 0.362601i
\(792\) 0 0