Properties

Label 416.2.i.g.321.4
Level $416$
Weight $2$
Character 416.321
Analytic conductor $3.322$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(289,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.6927565824.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 23x^{4} + 10x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 321.4
Root \(-0.331077 - 0.573442i\) of defining polynomial
Character \(\chi\) \(=\) 416.321
Dual form 416.2.i.g.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.17915 - 2.04234i) q^{3} -2.56155 q^{5} +(-1.84130 - 3.18923i) q^{7} +(-1.28078 - 2.21837i) q^{9} +(-0.516994 + 0.895460i) q^{11} +(-2.84233 + 2.21837i) q^{13} +(-3.02045 + 5.23157i) q^{15} +(-3.06155 - 5.30277i) q^{17} +(2.50345 + 4.33611i) q^{19} -8.68466 q^{21} +(3.53744 - 6.12703i) q^{23} +1.56155 q^{25} +1.03399 q^{27} +(2.50000 - 4.33013i) q^{29} -3.39228 q^{31} +(1.21922 + 2.11176i) q^{33} +(4.71659 + 8.16937i) q^{35} +(-1.06155 + 1.83866i) q^{37} +(1.17915 + 8.42080i) q^{39} +(2.06155 - 3.57071i) q^{41} +(-4.19960 - 7.27391i) q^{43} +(3.28078 + 5.68247i) q^{45} +10.7575 q^{47} +(-3.28078 + 5.68247i) q^{49} -14.4401 q^{51} -2.56155 q^{53} +(1.32431 - 2.29377i) q^{55} +11.8078 q^{57} +(-5.23358 - 9.06483i) q^{59} +(5.62311 + 9.73950i) q^{61} +(-4.71659 + 8.16937i) q^{63} +(7.28078 - 5.68247i) q^{65} +(4.86175 - 8.42080i) q^{67} +(-8.34233 - 14.4493i) q^{69} +(-2.50345 - 4.33611i) q^{71} -4.31534 q^{73} +(1.84130 - 3.18923i) q^{75} +3.80776 q^{77} +11.5012 q^{79} +(5.06155 - 8.76687i) q^{81} -2.64861 q^{83} +(7.84233 + 13.5833i) q^{85} +(-5.89574 - 10.2117i) q^{87} +(-5.34233 + 9.25319i) q^{89} +(12.3085 + 4.98015i) q^{91} +(-4.00000 + 6.92820i) q^{93} +(-6.41273 - 11.1072i) q^{95} +(4.90388 + 8.49377i) q^{97} +2.64861 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{5} - 2 q^{9} + 2 q^{13} - 8 q^{17} - 20 q^{21} - 4 q^{25} + 20 q^{29} + 18 q^{33} + 8 q^{37} + 18 q^{45} - 18 q^{49} - 4 q^{53} + 12 q^{57} + 12 q^{61} + 50 q^{65} - 42 q^{69} - 84 q^{73} - 52 q^{77}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.17915 2.04234i 0.680781 1.17915i −0.293962 0.955817i \(-0.594974\pi\)
0.974743 0.223330i \(-0.0716928\pi\)
\(4\) 0 0
\(5\) −2.56155 −1.14556 −0.572781 0.819709i \(-0.694135\pi\)
−0.572781 + 0.819709i \(0.694135\pi\)
\(6\) 0 0
\(7\) −1.84130 3.18923i −0.695946 1.20541i −0.969861 0.243660i \(-0.921652\pi\)
0.273914 0.961754i \(-0.411681\pi\)
\(8\) 0 0
\(9\) −1.28078 2.21837i −0.426925 0.739457i
\(10\) 0 0
\(11\) −0.516994 + 0.895460i −0.155879 + 0.269991i −0.933379 0.358892i \(-0.883154\pi\)
0.777499 + 0.628884i \(0.216488\pi\)
\(12\) 0 0
\(13\) −2.84233 + 2.21837i −0.788320 + 0.615265i
\(14\) 0 0
\(15\) −3.02045 + 5.23157i −0.779876 + 1.35079i
\(16\) 0 0
\(17\) −3.06155 5.30277i −0.742536 1.28611i −0.951337 0.308151i \(-0.900290\pi\)
0.208802 0.977958i \(-0.433044\pi\)
\(18\) 0 0
\(19\) 2.50345 + 4.33611i 0.574332 + 0.994772i 0.996114 + 0.0880746i \(0.0280714\pi\)
−0.421782 + 0.906697i \(0.638595\pi\)
\(20\) 0 0
\(21\) −8.68466 −1.89515
\(22\) 0 0
\(23\) 3.53744 6.12703i 0.737608 1.27757i −0.215962 0.976402i \(-0.569289\pi\)
0.953570 0.301172i \(-0.0973779\pi\)
\(24\) 0 0
\(25\) 1.56155 0.312311
\(26\) 0 0
\(27\) 1.03399 0.198991
\(28\) 0 0
\(29\) 2.50000 4.33013i 0.464238 0.804084i −0.534928 0.844897i \(-0.679661\pi\)
0.999167 + 0.0408130i \(0.0129948\pi\)
\(30\) 0 0
\(31\) −3.39228 −0.609272 −0.304636 0.952469i \(-0.598535\pi\)
−0.304636 + 0.952469i \(0.598535\pi\)
\(32\) 0 0
\(33\) 1.21922 + 2.11176i 0.212240 + 0.367610i
\(34\) 0 0
\(35\) 4.71659 + 8.16937i 0.797249 + 1.38088i
\(36\) 0 0
\(37\) −1.06155 + 1.83866i −0.174518 + 0.302274i −0.939994 0.341190i \(-0.889170\pi\)
0.765476 + 0.643464i \(0.222503\pi\)
\(38\) 0 0
\(39\) 1.17915 + 8.42080i 0.188815 + 1.34841i
\(40\) 0 0
\(41\) 2.06155 3.57071i 0.321960 0.557652i −0.658932 0.752202i \(-0.728992\pi\)
0.980892 + 0.194551i \(0.0623249\pi\)
\(42\) 0 0
\(43\) −4.19960 7.27391i −0.640432 1.10926i −0.985336 0.170623i \(-0.945422\pi\)
0.344904 0.938638i \(-0.387911\pi\)
\(44\) 0 0
\(45\) 3.28078 + 5.68247i 0.489069 + 0.847093i
\(46\) 0 0
\(47\) 10.7575 1.56914 0.784570 0.620040i \(-0.212884\pi\)
0.784570 + 0.620040i \(0.212884\pi\)
\(48\) 0 0
\(49\) −3.28078 + 5.68247i −0.468682 + 0.811782i
\(50\) 0 0
\(51\) −14.4401 −2.02202
\(52\) 0 0
\(53\) −2.56155 −0.351856 −0.175928 0.984403i \(-0.556293\pi\)
−0.175928 + 0.984403i \(0.556293\pi\)
\(54\) 0 0
\(55\) 1.32431 2.29377i 0.178570 0.309291i
\(56\) 0 0
\(57\) 11.8078 1.56398
\(58\) 0 0
\(59\) −5.23358 9.06483i −0.681354 1.18014i −0.974568 0.224093i \(-0.928058\pi\)
0.293213 0.956047i \(-0.405275\pi\)
\(60\) 0 0
\(61\) 5.62311 + 9.73950i 0.719965 + 1.24702i 0.961013 + 0.276503i \(0.0891755\pi\)
−0.241048 + 0.970513i \(0.577491\pi\)
\(62\) 0 0
\(63\) −4.71659 + 8.16937i −0.594234 + 1.02924i
\(64\) 0 0
\(65\) 7.28078 5.68247i 0.903069 0.704824i
\(66\) 0 0
\(67\) 4.86175 8.42080i 0.593957 1.02876i −0.399736 0.916630i \(-0.630898\pi\)
0.993693 0.112134i \(-0.0357685\pi\)
\(68\) 0 0
\(69\) −8.34233 14.4493i −1.00430 1.73950i
\(70\) 0 0
\(71\) −2.50345 4.33611i −0.297105 0.514602i 0.678367 0.734723i \(-0.262688\pi\)
−0.975472 + 0.220122i \(0.929355\pi\)
\(72\) 0 0
\(73\) −4.31534 −0.505073 −0.252536 0.967587i \(-0.581265\pi\)
−0.252536 + 0.967587i \(0.581265\pi\)
\(74\) 0 0
\(75\) 1.84130 3.18923i 0.212615 0.368260i
\(76\) 0 0
\(77\) 3.80776 0.433935
\(78\) 0 0
\(79\) 11.5012 1.29398 0.646990 0.762498i \(-0.276027\pi\)
0.646990 + 0.762498i \(0.276027\pi\)
\(80\) 0 0
\(81\) 5.06155 8.76687i 0.562395 0.974096i
\(82\) 0 0
\(83\) −2.64861 −0.290723 −0.145362 0.989379i \(-0.546435\pi\)
−0.145362 + 0.989379i \(0.546435\pi\)
\(84\) 0 0
\(85\) 7.84233 + 13.5833i 0.850620 + 1.47332i
\(86\) 0 0
\(87\) −5.89574 10.2117i −0.632089 1.09481i
\(88\) 0 0
\(89\) −5.34233 + 9.25319i −0.566286 + 0.980836i 0.430643 + 0.902522i \(0.358287\pi\)
−0.996929 + 0.0783134i \(0.975047\pi\)
\(90\) 0 0
\(91\) 12.3085 + 4.98015i 1.29028 + 0.522061i
\(92\) 0 0
\(93\) −4.00000 + 6.92820i −0.414781 + 0.718421i
\(94\) 0 0
\(95\) −6.41273 11.1072i −0.657932 1.13957i
\(96\) 0 0
\(97\) 4.90388 + 8.49377i 0.497914 + 0.862412i 0.999997 0.00240728i \(-0.000766263\pi\)
−0.502083 + 0.864819i \(0.667433\pi\)
\(98\) 0 0
\(99\) 2.64861 0.266196
\(100\) 0 0
\(101\) 0.0615528 0.106613i 0.00612473 0.0106084i −0.862947 0.505295i \(-0.831384\pi\)
0.869072 + 0.494686i \(0.164717\pi\)
\(102\) 0 0
\(103\) 8.68951 0.856203 0.428101 0.903731i \(-0.359183\pi\)
0.428101 + 0.903731i \(0.359183\pi\)
\(104\) 0 0
\(105\) 22.2462 2.17101
\(106\) 0 0
\(107\) −4.86175 + 8.42080i −0.470003 + 0.814069i −0.999412 0.0342979i \(-0.989080\pi\)
0.529409 + 0.848367i \(0.322414\pi\)
\(108\) 0 0
\(109\) 1.12311 0.107574 0.0537870 0.998552i \(-0.482871\pi\)
0.0537870 + 0.998552i \(0.482871\pi\)
\(110\) 0 0
\(111\) 2.50345 + 4.33611i 0.237617 + 0.411565i
\(112\) 0 0
\(113\) −8.18466 14.1762i −0.769948 1.33359i −0.937591 0.347741i \(-0.886949\pi\)
0.167643 0.985848i \(-0.446385\pi\)
\(114\) 0 0
\(115\) −9.06134 + 15.6947i −0.844975 + 1.46354i
\(116\) 0 0
\(117\) 8.56155 + 3.46410i 0.791516 + 0.320256i
\(118\) 0 0
\(119\) −11.2745 + 19.5280i −1.03353 + 1.79013i
\(120\) 0 0
\(121\) 4.96543 + 8.60039i 0.451403 + 0.781853i
\(122\) 0 0
\(123\) −4.86175 8.42080i −0.438369 0.759278i
\(124\) 0 0
\(125\) 8.80776 0.787790
\(126\) 0 0
\(127\) −0.145160 + 0.251424i −0.0128808 + 0.0223103i −0.872394 0.488803i \(-0.837434\pi\)
0.859513 + 0.511114i \(0.170767\pi\)
\(128\) 0 0
\(129\) −19.8078 −1.74398
\(130\) 0 0
\(131\) 11.3381 0.990616 0.495308 0.868717i \(-0.335055\pi\)
0.495308 + 0.868717i \(0.335055\pi\)
\(132\) 0 0
\(133\) 9.21922 15.9682i 0.799408 1.38462i
\(134\) 0 0
\(135\) −2.64861 −0.227956
\(136\) 0 0
\(137\) 8.50000 + 14.7224i 0.726204 + 1.25782i 0.958477 + 0.285171i \(0.0920506\pi\)
−0.232273 + 0.972651i \(0.574616\pi\)
\(138\) 0 0
\(139\) 10.2405 + 17.7371i 0.868587 + 1.50444i 0.863441 + 0.504450i \(0.168305\pi\)
0.00514635 + 0.999987i \(0.498362\pi\)
\(140\) 0 0
\(141\) 12.6847 21.9705i 1.06824 1.85025i
\(142\) 0 0
\(143\) −0.516994 3.69207i −0.0432332 0.308747i
\(144\) 0 0
\(145\) −6.40388 + 11.0918i −0.531813 + 0.921128i
\(146\) 0 0
\(147\) 7.73704 + 13.4009i 0.638140 + 1.10529i
\(148\) 0 0
\(149\) 3.37689 + 5.84895i 0.276646 + 0.479165i 0.970549 0.240904i \(-0.0774437\pi\)
−0.693903 + 0.720068i \(0.744110\pi\)
\(150\) 0 0
\(151\) −20.7713 −1.69034 −0.845172 0.534494i \(-0.820502\pi\)
−0.845172 + 0.534494i \(0.820502\pi\)
\(152\) 0 0
\(153\) −7.84233 + 13.5833i −0.634015 + 1.09815i
\(154\) 0 0
\(155\) 8.68951 0.697958
\(156\) 0 0
\(157\) −0.315342 −0.0251670 −0.0125835 0.999921i \(-0.504006\pi\)
−0.0125835 + 0.999921i \(0.504006\pi\)
\(158\) 0 0
\(159\) −3.02045 + 5.23157i −0.239537 + 0.414890i
\(160\) 0 0
\(161\) −26.0540 −2.05334
\(162\) 0 0
\(163\) −10.2405 17.7371i −0.802097 1.38927i −0.918233 0.396040i \(-0.870384\pi\)
0.116136 0.993233i \(-0.462949\pi\)
\(164\) 0 0
\(165\) −3.12311 5.40938i −0.243133 0.421119i
\(166\) 0 0
\(167\) 5.23358 9.06483i 0.404987 0.701458i −0.589333 0.807890i \(-0.700609\pi\)
0.994320 + 0.106432i \(0.0339428\pi\)
\(168\) 0 0
\(169\) 3.15767 12.6107i 0.242898 0.970052i
\(170\) 0 0
\(171\) 6.41273 11.1072i 0.490394 0.849387i
\(172\) 0 0
\(173\) −4.21922 7.30791i −0.320782 0.555610i 0.659868 0.751382i \(-0.270612\pi\)
−0.980650 + 0.195772i \(0.937279\pi\)
\(174\) 0 0
\(175\) −2.87529 4.98015i −0.217351 0.376464i
\(176\) 0 0
\(177\) −24.6847 −1.85541
\(178\) 0 0
\(179\) 2.87529 4.98015i 0.214909 0.372234i −0.738335 0.674434i \(-0.764388\pi\)
0.953244 + 0.302200i \(0.0977211\pi\)
\(180\) 0 0
\(181\) −20.8078 −1.54663 −0.773314 0.634023i \(-0.781403\pi\)
−0.773314 + 0.634023i \(0.781403\pi\)
\(182\) 0 0
\(183\) 26.5219 1.96055
\(184\) 0 0
\(185\) 2.71922 4.70983i 0.199921 0.346274i
\(186\) 0 0
\(187\) 6.33122 0.462984
\(188\) 0 0
\(189\) −1.90388 3.29762i −0.138487 0.239867i
\(190\) 0 0
\(191\) −6.18606 10.7146i −0.447607 0.775279i 0.550622 0.834754i \(-0.314390\pi\)
−0.998230 + 0.0594759i \(0.981057\pi\)
\(192\) 0 0
\(193\) 0.938447 1.62544i 0.0675509 0.117002i −0.830272 0.557359i \(-0.811815\pi\)
0.897823 + 0.440357i \(0.145148\pi\)
\(194\) 0 0
\(195\) −3.02045 21.5703i −0.216299 1.54468i
\(196\) 0 0
\(197\) 2.90388 5.02967i 0.206893 0.358349i −0.743841 0.668356i \(-0.766998\pi\)
0.950734 + 0.310007i \(0.100331\pi\)
\(198\) 0 0
\(199\) 3.53744 + 6.12703i 0.250763 + 0.434334i 0.963736 0.266858i \(-0.0859853\pi\)
−0.712973 + 0.701191i \(0.752652\pi\)
\(200\) 0 0
\(201\) −11.4654 19.8587i −0.808709 1.40073i
\(202\) 0 0
\(203\) −18.4130 −1.29234
\(204\) 0 0
\(205\) −5.28078 + 9.14657i −0.368825 + 0.638824i
\(206\) 0 0
\(207\) −18.1227 −1.25961
\(208\) 0 0
\(209\) −5.17708 −0.358106
\(210\) 0 0
\(211\) 1.17915 2.04234i 0.0811758 0.140601i −0.822579 0.568650i \(-0.807466\pi\)
0.903755 + 0.428050i \(0.140799\pi\)
\(212\) 0 0
\(213\) −11.8078 −0.809055
\(214\) 0 0
\(215\) 10.7575 + 18.6325i 0.733654 + 1.27073i
\(216\) 0 0
\(217\) 6.24621 + 10.8188i 0.424020 + 0.734425i
\(218\) 0 0
\(219\) −5.08842 + 8.81341i −0.343844 + 0.595555i
\(220\) 0 0
\(221\) 20.4654 + 8.28055i 1.37665 + 0.557010i
\(222\) 0 0
\(223\) 6.18606 10.7146i 0.414249 0.717500i −0.581100 0.813832i \(-0.697378\pi\)
0.995349 + 0.0963317i \(0.0307110\pi\)
\(224\) 0 0
\(225\) −2.00000 3.46410i −0.133333 0.230940i
\(226\) 0 0
\(227\) 3.24712 + 5.62418i 0.215519 + 0.373290i 0.953433 0.301605i \(-0.0975223\pi\)
−0.737914 + 0.674895i \(0.764189\pi\)
\(228\) 0 0
\(229\) −19.3693 −1.27996 −0.639980 0.768391i \(-0.721057\pi\)
−0.639980 + 0.768391i \(0.721057\pi\)
\(230\) 0 0
\(231\) 4.48991 7.77676i 0.295415 0.511673i
\(232\) 0 0
\(233\) −15.3693 −1.00688 −0.503439 0.864031i \(-0.667932\pi\)
−0.503439 + 0.864031i \(0.667932\pi\)
\(234\) 0 0
\(235\) −27.5559 −1.79755
\(236\) 0 0
\(237\) 13.5616 23.4893i 0.880918 1.52579i
\(238\) 0 0
\(239\) −6.78456 −0.438857 −0.219428 0.975629i \(-0.570419\pi\)
−0.219428 + 0.975629i \(0.570419\pi\)
\(240\) 0 0
\(241\) 8.93845 + 15.4818i 0.575776 + 0.997273i 0.995957 + 0.0898329i \(0.0286333\pi\)
−0.420181 + 0.907440i \(0.638033\pi\)
\(242\) 0 0
\(243\) −10.3857 17.9885i −0.666240 1.15396i
\(244\) 0 0
\(245\) 8.40388 14.5560i 0.536904 0.929946i
\(246\) 0 0
\(247\) −16.7347 6.77106i −1.06481 0.430833i
\(248\) 0 0
\(249\) −3.12311 + 5.40938i −0.197919 + 0.342805i
\(250\) 0 0
\(251\) 0.145160 + 0.251424i 0.00916240 + 0.0158697i 0.870570 0.492044i \(-0.163750\pi\)
−0.861408 + 0.507914i \(0.830417\pi\)
\(252\) 0 0
\(253\) 3.65767 + 6.33527i 0.229956 + 0.398295i
\(254\) 0 0
\(255\) 36.9890 2.31634
\(256\) 0 0
\(257\) 2.06155 3.57071i 0.128596 0.222735i −0.794537 0.607216i \(-0.792286\pi\)
0.923133 + 0.384481i \(0.125620\pi\)
\(258\) 0 0
\(259\) 7.81855 0.485821
\(260\) 0 0
\(261\) −12.8078 −0.792781
\(262\) 0 0
\(263\) −3.45593 + 5.98584i −0.213102 + 0.369103i −0.952684 0.303964i \(-0.901690\pi\)
0.739582 + 0.673066i \(0.235023\pi\)
\(264\) 0 0
\(265\) 6.56155 0.403073
\(266\) 0 0
\(267\) 12.5988 + 21.8217i 0.771033 + 1.33547i
\(268\) 0 0
\(269\) 9.34233 + 16.1814i 0.569612 + 0.986597i 0.996604 + 0.0823414i \(0.0262398\pi\)
−0.426992 + 0.904255i \(0.640427\pi\)
\(270\) 0 0
\(271\) 5.23358 9.06483i 0.317918 0.550649i −0.662136 0.749384i \(-0.730350\pi\)
0.980053 + 0.198735i \(0.0636832\pi\)
\(272\) 0 0
\(273\) 24.6847 19.2658i 1.49398 1.16602i
\(274\) 0 0
\(275\) −0.807313 + 1.39831i −0.0486828 + 0.0843211i
\(276\) 0 0
\(277\) −0.815342 1.41221i −0.0489891 0.0848517i 0.840491 0.541825i \(-0.182267\pi\)
−0.889480 + 0.456974i \(0.848933\pi\)
\(278\) 0 0
\(279\) 4.34475 + 7.52534i 0.260114 + 0.450530i
\(280\) 0 0
\(281\) −12.3153 −0.734672 −0.367336 0.930088i \(-0.619730\pi\)
−0.367336 + 0.930088i \(0.619730\pi\)
\(282\) 0 0
\(283\) −12.5988 + 21.8217i −0.748920 + 1.29717i 0.199421 + 0.979914i \(0.436094\pi\)
−0.948341 + 0.317254i \(0.897239\pi\)
\(284\) 0 0
\(285\) −30.2462 −1.79163
\(286\) 0 0
\(287\) −15.1838 −0.896269
\(288\) 0 0
\(289\) −10.2462 + 17.7470i −0.602718 + 1.04394i
\(290\) 0 0
\(291\) 23.1296 1.35588
\(292\) 0 0
\(293\) 0.500000 + 0.866025i 0.0292103 + 0.0505937i 0.880261 0.474490i \(-0.157367\pi\)
−0.851051 + 0.525084i \(0.824034\pi\)
\(294\) 0 0
\(295\) 13.4061 + 23.2200i 0.780533 + 1.35192i
\(296\) 0 0
\(297\) −0.534565 + 0.925894i −0.0310186 + 0.0537258i
\(298\) 0 0
\(299\) 3.53744 + 25.2624i 0.204576 + 1.46096i
\(300\) 0 0
\(301\) −15.4654 + 26.7869i −0.891413 + 1.54397i
\(302\) 0 0
\(303\) −0.145160 0.251424i −0.00833920 0.0144439i
\(304\) 0 0
\(305\) −14.4039 24.9483i −0.824764 1.42853i
\(306\) 0 0
\(307\) −19.6100 −1.11920 −0.559602 0.828762i \(-0.689046\pi\)
−0.559602 + 0.828762i \(0.689046\pi\)
\(308\) 0 0
\(309\) 10.2462 17.7470i 0.582887 1.00959i
\(310\) 0 0
\(311\) 10.1768 0.577076 0.288538 0.957468i \(-0.406831\pi\)
0.288538 + 0.957468i \(0.406831\pi\)
\(312\) 0 0
\(313\) 13.1231 0.741762 0.370881 0.928680i \(-0.379056\pi\)
0.370881 + 0.928680i \(0.379056\pi\)
\(314\) 0 0
\(315\) 12.0818 20.9263i 0.680732 1.17906i
\(316\) 0 0
\(317\) 2.80776 0.157700 0.0788499 0.996887i \(-0.474875\pi\)
0.0788499 + 0.996887i \(0.474875\pi\)
\(318\) 0 0
\(319\) 2.58497 + 4.47730i 0.144730 + 0.250681i
\(320\) 0 0
\(321\) 11.4654 + 19.8587i 0.639938 + 1.10841i
\(322\) 0 0
\(323\) 15.3289 26.5505i 0.852924 1.47731i
\(324\) 0 0
\(325\) −4.43845 + 3.46410i −0.246201 + 0.192154i
\(326\) 0 0
\(327\) 1.32431 2.29377i 0.0732343 0.126846i
\(328\) 0 0
\(329\) −19.8078 34.3081i −1.09204 1.89146i
\(330\) 0 0
\(331\) −7.59188 13.1495i −0.417287 0.722763i 0.578378 0.815769i \(-0.303686\pi\)
−0.995666 + 0.0930059i \(0.970352\pi\)
\(332\) 0 0
\(333\) 5.43845 0.298025
\(334\) 0 0
\(335\) −12.4536 + 21.5703i −0.680414 + 1.17851i
\(336\) 0 0
\(337\) 34.4233 1.87516 0.937578 0.347775i \(-0.113063\pi\)
0.937578 + 0.347775i \(0.113063\pi\)
\(338\) 0 0
\(339\) −38.6037 −2.09666
\(340\) 0 0
\(341\) 1.75379 3.03765i 0.0949730 0.164498i
\(342\) 0 0
\(343\) −1.61463 −0.0871816
\(344\) 0 0
\(345\) 21.3693 + 37.0127i 1.15049 + 1.99270i
\(346\) 0 0
\(347\) −2.50345 4.33611i −0.134392 0.232775i 0.790973 0.611851i \(-0.209575\pi\)
−0.925365 + 0.379077i \(0.876242\pi\)
\(348\) 0 0
\(349\) 14.2192 24.6284i 0.761138 1.31833i −0.181127 0.983460i \(-0.557975\pi\)
0.942265 0.334869i \(-0.108692\pi\)
\(350\) 0 0
\(351\) −2.93893 + 2.29377i −0.156869 + 0.122432i
\(352\) 0 0
\(353\) 6.74621 11.6848i 0.359065 0.621918i −0.628740 0.777615i \(-0.716429\pi\)
0.987805 + 0.155697i \(0.0497624\pi\)
\(354\) 0 0
\(355\) 6.41273 + 11.1072i 0.340352 + 0.589508i
\(356\) 0 0
\(357\) 26.5885 + 46.0527i 1.40721 + 2.43737i
\(358\) 0 0
\(359\) −1.48734 −0.0784986 −0.0392493 0.999229i \(-0.512497\pi\)
−0.0392493 + 0.999229i \(0.512497\pi\)
\(360\) 0 0
\(361\) −3.03457 + 5.25602i −0.159714 + 0.276633i
\(362\) 0 0
\(363\) 23.4199 1.22923
\(364\) 0 0
\(365\) 11.0540 0.578592
\(366\) 0 0
\(367\) −3.24712 + 5.62418i −0.169498 + 0.293580i −0.938244 0.345975i \(-0.887548\pi\)
0.768745 + 0.639555i \(0.220881\pi\)
\(368\) 0 0
\(369\) −10.5616 −0.549812
\(370\) 0 0
\(371\) 4.71659 + 8.16937i 0.244873 + 0.424133i
\(372\) 0 0
\(373\) −12.1847 21.1044i −0.630898 1.09275i −0.987369 0.158440i \(-0.949353\pi\)
0.356471 0.934306i \(-0.383980\pi\)
\(374\) 0 0
\(375\) 10.3857 17.9885i 0.536313 0.928921i
\(376\) 0 0
\(377\) 2.50000 + 17.8536i 0.128757 + 0.919506i
\(378\) 0 0
\(379\) 1.17915 2.04234i 0.0605687 0.104908i −0.834151 0.551536i \(-0.814042\pi\)
0.894720 + 0.446628i \(0.147375\pi\)
\(380\) 0 0
\(381\) 0.342329 + 0.592932i 0.0175381 + 0.0303768i
\(382\) 0 0
\(383\) 6.84821 + 11.8614i 0.349927 + 0.606092i 0.986236 0.165343i \(-0.0528730\pi\)
−0.636309 + 0.771434i \(0.719540\pi\)
\(384\) 0 0
\(385\) −9.75379 −0.497099
\(386\) 0 0
\(387\) −10.7575 + 18.6325i −0.546834 + 0.947144i
\(388\) 0 0
\(389\) 6.80776 0.345167 0.172584 0.984995i \(-0.444788\pi\)
0.172584 + 0.984995i \(0.444788\pi\)
\(390\) 0 0
\(391\) −43.3203 −2.19080
\(392\) 0 0
\(393\) 13.3693 23.1563i 0.674393 1.16808i
\(394\) 0 0
\(395\) −29.4608 −1.48233
\(396\) 0 0
\(397\) 9.34233 + 16.1814i 0.468878 + 0.812121i 0.999367 0.0355711i \(-0.0113250\pi\)
−0.530489 + 0.847692i \(0.677992\pi\)
\(398\) 0 0
\(399\) −21.7416 37.6576i −1.08844 1.88524i
\(400\) 0 0
\(401\) 7.18466 12.4442i 0.358785 0.621433i −0.628973 0.777427i \(-0.716525\pi\)
0.987758 + 0.155993i \(0.0498579\pi\)
\(402\) 0 0
\(403\) 9.64198 7.52534i 0.480301 0.374864i
\(404\) 0 0
\(405\) −12.9654 + 22.4568i −0.644258 + 1.11589i
\(406\) 0 0
\(407\) −1.09763 1.90116i −0.0544076 0.0942368i
\(408\) 0 0
\(409\) 2.06155 + 3.57071i 0.101937 + 0.176560i 0.912483 0.409115i \(-0.134163\pi\)
−0.810546 + 0.585676i \(0.800829\pi\)
\(410\) 0 0
\(411\) 40.0910 1.97754
\(412\) 0 0
\(413\) −19.2732 + 33.3822i −0.948372 + 1.64263i
\(414\) 0 0
\(415\) 6.78456 0.333041
\(416\) 0 0
\(417\) 48.3002 2.36527
\(418\) 0 0
\(419\) 13.5513 23.4715i 0.662022 1.14666i −0.318061 0.948070i \(-0.603032\pi\)
0.980083 0.198586i \(-0.0636349\pi\)
\(420\) 0 0
\(421\) 15.6847 0.764423 0.382212 0.924075i \(-0.375162\pi\)
0.382212 + 0.924075i \(0.375162\pi\)
\(422\) 0 0
\(423\) −13.7779 23.8641i −0.669906 1.16031i
\(424\) 0 0
\(425\) −4.78078 8.28055i −0.231902 0.401666i
\(426\) 0 0
\(427\) 20.7077 35.8667i 1.00211 1.73571i
\(428\) 0 0
\(429\) −8.15009 3.29762i −0.393490 0.159211i
\(430\) 0 0
\(431\) 10.9842 19.0251i 0.529088 0.916408i −0.470336 0.882487i \(-0.655867\pi\)
0.999425 0.0339206i \(-0.0107993\pi\)
\(432\) 0 0
\(433\) 19.1847 + 33.2288i 0.921956 + 1.59687i 0.796385 + 0.604790i \(0.206743\pi\)
0.125571 + 0.992085i \(0.459924\pi\)
\(434\) 0 0
\(435\) 15.1022 + 26.1578i 0.724097 + 1.25417i
\(436\) 0 0
\(437\) 35.4233 1.69453
\(438\) 0 0
\(439\) 7.59188 13.1495i 0.362341 0.627592i −0.626005 0.779819i \(-0.715311\pi\)
0.988346 + 0.152227i \(0.0486444\pi\)
\(440\) 0 0
\(441\) 16.8078 0.800370
\(442\) 0 0
\(443\) 2.64861 0.125839 0.0629197 0.998019i \(-0.479959\pi\)
0.0629197 + 0.998019i \(0.479959\pi\)
\(444\) 0 0
\(445\) 13.6847 23.7025i 0.648715 1.12361i
\(446\) 0 0
\(447\) 15.9274 0.753341
\(448\) 0 0
\(449\) 4.21922 + 7.30791i 0.199117 + 0.344882i 0.948243 0.317547i \(-0.102859\pi\)
−0.749125 + 0.662429i \(0.769526\pi\)
\(450\) 0 0
\(451\) 2.13162 + 3.69207i 0.100374 + 0.173853i
\(452\) 0 0
\(453\) −24.4924 + 42.4221i −1.15075 + 1.99317i
\(454\) 0 0
\(455\) −31.5288 12.7569i −1.47809 0.598053i
\(456\) 0 0
\(457\) 18.7462 32.4694i 0.876911 1.51885i 0.0221975 0.999754i \(-0.492934\pi\)
0.854713 0.519100i \(-0.173733\pi\)
\(458\) 0 0
\(459\) −3.16561 5.48299i −0.147758 0.255924i
\(460\) 0 0
\(461\) −3.06155 5.30277i −0.142591 0.246974i 0.785881 0.618378i \(-0.212210\pi\)
−0.928471 + 0.371404i \(0.878877\pi\)
\(462\) 0 0
\(463\) −6.78456 −0.315305 −0.157653 0.987495i \(-0.550393\pi\)
−0.157653 + 0.987495i \(0.550393\pi\)
\(464\) 0 0
\(465\) 10.2462 17.7470i 0.475157 0.822995i
\(466\) 0 0
\(467\) −11.5012 −0.532210 −0.266105 0.963944i \(-0.585737\pi\)
−0.266105 + 0.963944i \(0.585737\pi\)
\(468\) 0 0
\(469\) −35.8078 −1.65345
\(470\) 0 0
\(471\) −0.371834 + 0.644036i −0.0171332 + 0.0296756i
\(472\) 0 0
\(473\) 8.68466 0.399321
\(474\) 0 0
\(475\) 3.90928 + 6.77106i 0.179370 + 0.310678i
\(476\) 0 0
\(477\) 3.28078 + 5.68247i 0.150216 + 0.260182i
\(478\) 0 0
\(479\) 5.89574 10.2117i 0.269383 0.466585i −0.699320 0.714809i \(-0.746514\pi\)
0.968703 + 0.248224i \(0.0798469\pi\)
\(480\) 0 0
\(481\) −1.06155 7.58100i −0.0484026 0.345664i
\(482\) 0 0
\(483\) −30.7215 + 53.2112i −1.39788 + 2.42119i
\(484\) 0 0
\(485\) −12.5616 21.7572i −0.570391 0.987946i
\(486\) 0 0
\(487\) 18.0590 + 31.2792i 0.818333 + 1.41739i 0.906909 + 0.421326i \(0.138435\pi\)
−0.0885761 + 0.996069i \(0.528232\pi\)
\(488\) 0 0
\(489\) −48.3002 −2.18421
\(490\) 0 0
\(491\) 2.42194 4.19492i 0.109301 0.189314i −0.806187 0.591661i \(-0.798472\pi\)
0.915487 + 0.402347i \(0.131806\pi\)
\(492\) 0 0
\(493\) −30.6155 −1.37885
\(494\) 0 0
\(495\) −6.78456 −0.304943
\(496\) 0 0
\(497\) −9.21922 + 15.9682i −0.413539 + 0.716270i
\(498\) 0 0
\(499\) 31.6918 1.41872 0.709360 0.704846i \(-0.248984\pi\)
0.709360 + 0.704846i \(0.248984\pi\)
\(500\) 0 0
\(501\) −12.3423 21.3775i −0.551415 0.955078i
\(502\) 0 0
\(503\) 16.2814 + 28.2002i 0.725951 + 1.25738i 0.958581 + 0.284819i \(0.0919335\pi\)
−0.232630 + 0.972565i \(0.574733\pi\)
\(504\) 0 0
\(505\) −0.157671 + 0.273094i −0.00701626 + 0.0121525i
\(506\) 0 0
\(507\) −22.0320 21.3189i −0.978474 0.946805i
\(508\) 0 0
\(509\) 5.18466 8.98009i 0.229806 0.398036i −0.727945 0.685636i \(-0.759524\pi\)
0.957750 + 0.287600i \(0.0928575\pi\)
\(510\) 0 0
\(511\) 7.94584 + 13.7626i 0.351503 + 0.608822i
\(512\) 0 0
\(513\) 2.58854 + 4.48348i 0.114287 + 0.197951i
\(514\) 0 0
\(515\) −22.2586 −0.980833
\(516\) 0 0
\(517\) −5.56155 + 9.63289i −0.244597 + 0.423654i
\(518\) 0 0
\(519\) −19.9003 −0.873528
\(520\) 0 0
\(521\) 33.4384 1.46496 0.732482 0.680786i \(-0.238362\pi\)
0.732482 + 0.680786i \(0.238362\pi\)
\(522\) 0 0
\(523\) −14.9571 + 25.9064i −0.654027 + 1.13281i 0.328109 + 0.944640i \(0.393589\pi\)
−0.982137 + 0.188169i \(0.939745\pi\)
\(524\) 0 0
\(525\) −13.5616 −0.591875
\(526\) 0 0
\(527\) 10.3857 + 17.9885i 0.452406 + 0.783590i
\(528\) 0 0
\(529\) −13.5270 23.4294i −0.588130 1.01867i
\(530\) 0 0
\(531\) −13.4061 + 23.2200i −0.581775 + 1.00766i
\(532\) 0 0
\(533\) 2.06155 + 14.7224i 0.0892958 + 0.637699i
\(534\) 0 0
\(535\) 12.4536 21.5703i 0.538417 0.932566i
\(536\) 0 0
\(537\) −6.78078 11.7446i −0.292612 0.506819i
\(538\) 0 0
\(539\) −3.39228 5.87560i −0.146116 0.253080i
\(540\) 0 0
\(541\) −10.1771 −0.437547 −0.218773 0.975776i \(-0.570206\pi\)
−0.218773 + 0.975776i \(0.570206\pi\)
\(542\) 0 0
\(543\) −24.5354 + 42.4966i −1.05292 + 1.82370i
\(544\) 0 0
\(545\) −2.87689 −0.123233
\(546\) 0 0
\(547\) 19.6100 0.838464 0.419232 0.907879i \(-0.362299\pi\)
0.419232 + 0.907879i \(0.362299\pi\)
\(548\) 0 0
\(549\) 14.4039 24.9483i 0.614743 1.06477i
\(550\) 0 0
\(551\) 25.0345 1.06651
\(552\) 0 0
\(553\) −21.1771 36.6798i −0.900541 1.55978i
\(554\) 0 0
\(555\) −6.41273 11.1072i −0.272205 0.471473i
\(556\) 0 0
\(557\) −17.9924 + 31.1638i −0.762363 + 1.32045i 0.179266 + 0.983801i \(0.442628\pi\)
−0.941629 + 0.336651i \(0.890706\pi\)
\(558\) 0 0
\(559\) 28.0729 + 11.3586i 1.18736 + 0.480418i
\(560\) 0 0
\(561\) 7.46543 12.9305i 0.315191 0.545927i
\(562\) 0 0
\(563\) 10.2405 + 17.7371i 0.431585 + 0.747528i 0.997010 0.0772723i \(-0.0246211\pi\)
−0.565425 + 0.824800i \(0.691288\pi\)
\(564\) 0 0
\(565\) 20.9654 + 36.3132i 0.882022 + 1.52771i
\(566\) 0 0
\(567\) −37.2794 −1.56559
\(568\) 0 0
\(569\) −17.8348 + 30.8907i −0.747672 + 1.29501i 0.201264 + 0.979537i \(0.435495\pi\)
−0.948936 + 0.315468i \(0.897838\pi\)
\(570\) 0 0
\(571\) −13.2431 −0.554205 −0.277103 0.960840i \(-0.589374\pi\)
−0.277103 + 0.960840i \(0.589374\pi\)
\(572\) 0 0
\(573\) −29.1771 −1.21889
\(574\) 0 0
\(575\) 5.52390 9.56768i 0.230363 0.399000i
\(576\) 0 0
\(577\) 13.9309 0.579950 0.289975 0.957034i \(-0.406353\pi\)
0.289975 + 0.957034i \(0.406353\pi\)
\(578\) 0 0
\(579\) −2.21313 3.83326i −0.0919747 0.159305i
\(580\) 0 0
\(581\) 4.87689 + 8.44703i 0.202328 + 0.350442i
\(582\) 0 0
\(583\) 1.32431 2.29377i 0.0548472 0.0949981i
\(584\) 0 0
\(585\) −21.9309 8.87348i −0.906730 0.366873i
\(586\) 0 0
\(587\) 21.2883 36.8724i 0.878662 1.52189i 0.0258520 0.999666i \(-0.491770\pi\)
0.852810 0.522221i \(-0.174897\pi\)
\(588\) 0 0
\(589\) −8.49242 14.7093i −0.349924 0.606086i
\(590\) 0 0
\(591\) −6.84821 11.8614i −0.281698 0.487915i
\(592\) 0 0
\(593\) −11.0540 −0.453932 −0.226966 0.973903i \(-0.572881\pi\)
−0.226966 + 0.973903i \(0.572881\pi\)
\(594\) 0 0
\(595\) 28.8802 50.0219i 1.18397 2.05070i
\(596\) 0 0
\(597\) 16.6847 0.682858
\(598\) 0 0
\(599\) −1.32431 −0.0541097 −0.0270549 0.999634i \(-0.508613\pi\)
−0.0270549 + 0.999634i \(0.508613\pi\)
\(600\) 0 0
\(601\) −3.06155 + 5.30277i −0.124883 + 0.216304i −0.921687 0.387934i \(-0.873189\pi\)
0.796804 + 0.604238i \(0.206522\pi\)
\(602\) 0 0
\(603\) −24.9073 −1.01430
\(604\) 0 0
\(605\) −12.7192 22.0303i −0.517110 0.895661i
\(606\) 0 0
\(607\) 13.7143 + 23.7538i 0.556646 + 0.964139i 0.997773 + 0.0666944i \(0.0212453\pi\)
−0.441128 + 0.897444i \(0.645421\pi\)
\(608\) 0 0
\(609\) −21.7116 + 37.6057i −0.879800 + 1.52386i
\(610\) 0 0
\(611\) −30.5763 + 23.8641i −1.23699 + 0.965437i
\(612\) 0 0
\(613\) 13.1847 22.8365i 0.532523 0.922357i −0.466755 0.884386i \(-0.654577\pi\)
0.999279 0.0379711i \(-0.0120895\pi\)
\(614\) 0 0
\(615\) 12.4536 + 21.5703i 0.502179 + 0.869799i
\(616\) 0 0
\(617\) −4.62311 8.00745i −0.186119 0.322368i 0.757834 0.652448i \(-0.226258\pi\)
−0.943953 + 0.330080i \(0.892924\pi\)
\(618\) 0 0
\(619\) −2.64861 −0.106457 −0.0532284 0.998582i \(-0.516951\pi\)
−0.0532284 + 0.998582i \(0.516951\pi\)
\(620\) 0 0
\(621\) 3.65767 6.33527i 0.146777 0.254226i
\(622\) 0 0
\(623\) 39.3473 1.57642
\(624\) 0 0
\(625\) −30.3693 −1.21477
\(626\) 0 0
\(627\) −6.10454 + 10.5734i −0.243792 + 0.422260i
\(628\) 0 0
\(629\) 13.0000 0.518344
\(630\) 0 0
\(631\) 10.5308 + 18.2399i 0.419225 + 0.726119i 0.995862 0.0908818i \(-0.0289685\pi\)
−0.576637 + 0.817001i \(0.695635\pi\)
\(632\) 0 0
\(633\) −2.78078 4.81645i −0.110526 0.191437i
\(634\) 0 0
\(635\) 0.371834 0.644036i 0.0147558 0.0255578i
\(636\) 0 0
\(637\) −3.28078 23.4294i −0.129989 0.928308i
\(638\) 0 0
\(639\) −6.41273 + 11.1072i −0.253684 + 0.439393i
\(640\) 0 0
\(641\) −5.30776 9.19332i −0.209644 0.363114i 0.741958 0.670446i \(-0.233897\pi\)
−0.951602 + 0.307332i \(0.900564\pi\)
\(642\) 0 0
\(643\) −16.2814 28.2002i −0.642075 1.11211i −0.984969 0.172733i \(-0.944740\pi\)
0.342894 0.939374i \(-0.388593\pi\)
\(644\) 0 0
\(645\) 50.7386 1.99783
\(646\) 0 0
\(647\) 24.7621 42.8892i 0.973498 1.68615i 0.288694 0.957421i \(-0.406779\pi\)
0.684804 0.728727i \(-0.259888\pi\)
\(648\) 0 0
\(649\) 10.8229 0.424837
\(650\) 0 0
\(651\) 29.4608 1.15466
\(652\) 0 0
\(653\) −1.78078 + 3.08440i −0.0696872 + 0.120702i −0.898764 0.438434i \(-0.855533\pi\)
0.829076 + 0.559135i \(0.188867\pi\)
\(654\) 0 0
\(655\) −29.0432 −1.13481
\(656\) 0 0
\(657\) 5.52699 + 9.57302i 0.215628 + 0.373479i
\(658\) 0 0
\(659\) −18.9300 32.7877i −0.737408 1.27723i −0.953659 0.300890i \(-0.902716\pi\)
0.216251 0.976338i \(-0.430617\pi\)
\(660\) 0 0
\(661\) 12.0616 20.8912i 0.469140 0.812574i −0.530238 0.847849i \(-0.677897\pi\)
0.999378 + 0.0352747i \(0.0112306\pi\)
\(662\) 0 0
\(663\) 41.0435 32.0335i 1.59400 1.24408i
\(664\) 0 0
\(665\) −23.6155 + 40.9033i −0.915771 + 1.58616i
\(666\) 0 0
\(667\) −17.6872 30.6351i −0.684851 1.18620i
\(668\) 0 0
\(669\) −14.5885 25.2681i −0.564026 0.976921i
\(670\) 0 0
\(671\) −11.6284 −0.448911
\(672\) 0 0
\(673\) 11.8693 20.5583i 0.457529 0.792463i −0.541301 0.840829i \(-0.682068\pi\)
0.998830 + 0.0483661i \(0.0154014\pi\)
\(674\) 0 0
\(675\) 1.61463 0.0621470
\(676\) 0 0
\(677\) −14.8769 −0.571765 −0.285883 0.958265i \(-0.592287\pi\)
−0.285883 + 0.958265i \(0.592287\pi\)
\(678\) 0 0
\(679\) 18.0590 31.2792i 0.693042 1.20038i
\(680\) 0 0
\(681\) 15.3153 0.586885
\(682\) 0 0
\(683\) 3.24712 + 5.62418i 0.124248 + 0.215203i 0.921439 0.388524i \(-0.127015\pi\)
−0.797191 + 0.603727i \(0.793682\pi\)
\(684\) 0 0
\(685\) −21.7732 37.7123i −0.831911 1.44091i
\(686\) 0 0
\(687\) −22.8393 + 39.5588i −0.871373 + 1.50926i
\(688\) 0 0
\(689\) 7.28078 5.68247i 0.277375 0.216485i
\(690\) 0 0
\(691\) −4.65294 + 8.05914i −0.177006 + 0.306584i −0.940854 0.338813i \(-0.889975\pi\)
0.763847 + 0.645397i \(0.223308\pi\)
\(692\) 0 0
\(693\) −4.87689 8.44703i −0.185258 0.320876i
\(694\) 0 0
\(695\) −26.2316 45.4344i −0.995020 1.72342i
\(696\) 0 0
\(697\) −25.2462 −0.956268
\(698\) 0 0
\(699\) −18.1227 + 31.3894i −0.685463 + 1.18726i
\(700\) 0 0
\(701\) −14.8769 −0.561893 −0.280946 0.959723i \(-0.590648\pi\)
−0.280946 + 0.959723i \(0.590648\pi\)
\(702\) 0 0
\(703\) −10.6302 −0.400925
\(704\) 0 0
\(705\) −32.4924 + 56.2785i −1.22374 + 2.11957i
\(706\) 0 0
\(707\) −0.453349 −0.0170499
\(708\) 0 0
\(709\) 10.0616 + 17.4271i 0.377870 + 0.654489i 0.990752 0.135685i \(-0.0433234\pi\)
−0.612883 + 0.790174i \(0.709990\pi\)
\(710\) 0 0
\(711\) −14.7304 25.5138i −0.552433 0.956843i
\(712\) 0 0
\(713\) −12.0000 + 20.7846i −0.449404 + 0.778390i
\(714\) 0 0
\(715\) 1.32431 + 9.45744i 0.0495263 + 0.353688i
\(716\) 0 0
\(717\) −8.00000 + 13.8564i −0.298765 + 0.517477i
\(718\) 0 0
\(719\) −7.13853 12.3643i −0.266222 0.461110i 0.701661 0.712511i \(-0.252442\pi\)
−0.967883 + 0.251401i \(0.919109\pi\)
\(720\) 0 0
\(721\) −16.0000 27.7128i −0.595871 1.03208i
\(722\) 0 0
\(723\) 42.1590 1.56791
\(724\) 0 0
\(725\) 3.90388 6.76172i 0.144987 0.251124i
\(726\) 0 0
\(727\) −25.6509 −0.951340 −0.475670 0.879624i \(-0.657794\pi\)
−0.475670 + 0.879624i \(0.657794\pi\)
\(728\) 0 0
\(729\) −18.6155 −0.689464
\(730\) 0 0
\(731\) −25.7146 + 44.5389i −0.951088 + 1.64733i
\(732\) 0 0
\(733\) −11.9309 −0.440677 −0.220338 0.975424i \(-0.570716\pi\)
−0.220338 + 0.975424i \(0.570716\pi\)
\(734\) 0 0
\(735\) −19.8188 34.3272i −0.731029 1.26618i
\(736\) 0 0
\(737\) 5.02699 + 8.70700i 0.185171 + 0.320726i
\(738\) 0 0
\(739\) −3.61896 + 6.26822i −0.133125 + 0.230580i −0.924880 0.380260i \(-0.875835\pi\)
0.791754 + 0.610840i \(0.209168\pi\)
\(740\) 0 0
\(741\) −33.5616 + 26.1940i −1.23291 + 0.962260i
\(742\) 0 0
\(743\) −13.9231 + 24.1155i −0.510789 + 0.884712i 0.489133 + 0.872209i \(0.337313\pi\)
−0.999922 + 0.0125029i \(0.996020\pi\)
\(744\) 0 0
\(745\) −8.65009 14.9824i −0.316915 0.548913i
\(746\) 0 0
\(747\) 3.39228 + 5.87560i 0.124117 + 0.214977i
\(748\) 0 0
\(749\) 35.8078 1.30839
\(750\) 0 0
\(751\) −10.9842 + 19.0251i −0.400818 + 0.694237i −0.993825 0.110961i \(-0.964607\pi\)
0.593007 + 0.805197i \(0.297941\pi\)
\(752\) 0 0
\(753\) 0.684658 0.0249503
\(754\) 0 0
\(755\) 53.2068 1.93639
\(756\) 0 0
\(757\) 6.71165 11.6249i 0.243939 0.422515i −0.717894 0.696153i \(-0.754894\pi\)
0.961833 + 0.273638i \(0.0882270\pi\)
\(758\) 0 0
\(759\) 17.2517 0.626198
\(760\) 0 0
\(761\) −1.53457 2.65794i −0.0556279 0.0963504i 0.836870 0.547401i \(-0.184383\pi\)
−0.892498 + 0.451051i \(0.851049\pi\)
\(762\) 0 0
\(763\) −2.06798 3.58184i −0.0748657 0.129671i
\(764\) 0 0
\(765\) 20.0885 34.7944i 0.726303 1.25799i
\(766\) 0 0
\(767\) 34.9847 + 14.1552i 1.26322 + 0.511115i
\(768\) 0 0
\(769\) −2.02699 + 3.51085i −0.0730950 + 0.126604i −0.900256 0.435360i \(-0.856621\pi\)
0.827161 + 0.561965i \(0.189954\pi\)
\(770\) 0 0
\(771\) −4.86175 8.42080i −0.175092 0.303268i
\(772\) 0 0
\(773\) 9.34233 + 16.1814i 0.336020 + 0.582004i 0.983680 0.179925i \(-0.0575856\pi\)
−0.647660 + 0.761929i \(0.724252\pi\)
\(774\) 0 0
\(775\) −5.29723 −0.190282
\(776\) 0 0
\(777\) 9.21922 15.9682i 0.330738 0.572855i
\(778\) 0 0
\(779\) 20.6440 0.739648
\(780\) 0 0
\(781\) 5.17708 0.185251
\(782\) 0 0
\(783\) 2.58497 4.47730i 0.0923793 0.160006i
\(784\) 0 0
\(785\) 0.807764 0.0288303
\(786\) 0 0
\(787\) 8.83467 + 15.3021i 0.314922 + 0.545461i 0.979421 0.201828i \(-0.0646883\pi\)
−0.664499 + 0.747289i \(0.731355\pi\)
\(788\) 0 0
\(789\) 8.15009 + 14.1164i 0.290151 + 0.502556i
\(790\) 0 0
\(791\) −30.1408 + 52.2055i −1.07168 + 1.85621i
\(792\) 0 0
\(793\) −37.5885 15.2088i −1.33481 0.540079i
\(794\) 0 0
\(795\) 7.73704 13.4009i 0.274404 0.475282i
\(796\) 0 0
\(797\) 26.0270 + 45.0801i 0.921923 + 1.59682i 0.796436 + 0.604723i \(0.206716\pi\)
0.125487 + 0.992095i \(0.459951\pi\)
\(798\) 0 0
\(799\) −32.9346 57.0444i −1.16514 2.01809i
\(800\) 0 0
\(801\) 27.3693 0.967047
\(802\) 0 0
\(803\) 2.23100 3.86421i 0.0787304 0.136365i
\(804\) 0 0
\(805\) 66.7386 2.35223
\(806\) 0 0
\(807\) 44.0639 1.55112
\(808\) 0 0
\(809\) −16.1847 + 28.0327i −0.569022 + 0.985576i 0.427641 + 0.903949i \(0.359345\pi\)
−0.996663 + 0.0816267i \(0.973988\pi\)
\(810\) 0 0
\(811\) −14.8934 −0.522979 −0.261490 0.965206i \(-0.584214\pi\)
−0.261490 + 0.965206i \(0.584214\pi\)
\(812\) 0 0
\(813\) −12.3423 21.3775i −0.432864 0.749743i
\(814\) 0 0
\(815\) 26.2316 + 45.4344i 0.918851 + 1.59150i
\(816\) 0 0
\(817\) 21.0270 36.4198i 0.735641 1.27417i
\(818\) 0 0
\(819\) −4.71659 33.6832i −0.164811 1.17699i
\(820\) 0 0
\(821\) 10.9039 18.8861i 0.380548 0.659129i −0.610593 0.791945i \(-0.709069\pi\)
0.991141 + 0.132816i \(0.0424020\pi\)
\(822\) 0 0
\(823\) −1.55098 2.68638i −0.0540638 0.0936413i 0.837727 0.546089i \(-0.183884\pi\)
−0.891791 + 0.452448i \(0.850551\pi\)
\(824\) 0 0
\(825\) 1.90388 + 3.29762i 0.0662847 + 0.114808i
\(826\) 0 0
\(827\) 38.8940 1.35248 0.676238 0.736683i \(-0.263609\pi\)
0.676238 + 0.736683i \(0.263609\pi\)
\(828\) 0 0
\(829\) 22.9924 39.8240i 0.798560 1.38315i −0.121994 0.992531i \(-0.538929\pi\)
0.920554 0.390615i \(-0.127738\pi\)
\(830\) 0 0
\(831\) −3.84563 −0.133403
\(832\) 0 0
\(833\) 40.1771 1.39205
\(834\) 0 0
\(835\) −13.4061 + 23.2200i −0.463937 + 0.803563i
\(836\) 0 0
\(837\) −3.50758 −0.121240
\(838\) 0 0
\(839\) −21.3698 37.0136i −0.737768 1.27785i −0.953498 0.301398i \(-0.902547\pi\)
0.215731 0.976453i \(-0.430787\pi\)
\(840\) 0 0
\(841\) 2.00000 + 3.46410i 0.0689655 + 0.119452i
\(842\) 0 0
\(843\) −14.5216 + 25.1522i −0.500151 + 0.866286i
\(844\) 0 0
\(845\) −8.08854 + 32.3029i −0.278254 + 1.11125i
\(846\) 0 0
\(847\) 18.2857 31.6718i 0.628305 1.08826i
\(848\) 0 0
\(849\) 29.7116 + 51.4621i 1.01970 + 1.76617i
\(850\) 0 0
\(851\) 7.51036 + 13.0083i 0.257452 + 0.445920i
\(852\) 0 0
\(853\) −23.0540 −0.789353 −0.394677 0.918820i \(-0.629143\pi\)
−0.394677 + 0.918820i \(0.629143\pi\)
\(854\) 0 0
\(855\) −16.4265 + 28.4516i −0.561776 + 0.973025i
\(856\) 0 0
\(857\) 17.4384 0.595686 0.297843 0.954615i \(-0.403733\pi\)
0.297843 + 0.954615i \(0.403733\pi\)
\(858\) 0 0
\(859\) 23.4199 0.799077 0.399539 0.916716i \(-0.369170\pi\)
0.399539 + 0.916716i \(0.369170\pi\)
\(860\) 0 0
\(861\) −17.9039 + 31.0104i −0.610163 + 1.05683i
\(862\) 0 0
\(863\) −10.5945 −0.360639 −0.180320 0.983608i \(-0.557713\pi\)
−0.180320 + 0.983608i \(0.557713\pi\)
\(864\) 0 0
\(865\) 10.8078 + 18.7196i 0.367475 + 0.636485i
\(866\) 0 0
\(867\) 24.1636 + 41.8526i 0.820638 + 1.42139i
\(868\) 0 0
\(869\) −5.94602 + 10.2988i −0.201705 + 0.349363i
\(870\) 0 0
\(871\) 4.86175 + 34.7198i 0.164734 + 1.17644i
\(872\) 0 0
\(873\) 12.5616 21.7572i 0.425144 0.736371i
\(874\) 0 0
\(875\) −16.2177 28.0900i −0.548260 0.949614i
\(876\) 0 0
\(877\) −4.62311 8.00745i −0.156111 0.270393i 0.777352 0.629066i \(-0.216562\pi\)
−0.933463 + 0.358673i \(0.883229\pi\)
\(878\) 0 0
\(879\) 2.35829 0.0795433
\(880\) 0 0
\(881\) −14.4309 + 24.9950i −0.486188 + 0.842103i −0.999874 0.0158756i \(-0.994946\pi\)
0.513686 + 0.857978i \(0.328280\pi\)
\(882\) 0 0
\(883\) 16.6354 0.559824 0.279912 0.960026i \(-0.409695\pi\)
0.279912 + 0.960026i \(0.409695\pi\)
\(884\) 0 0
\(885\) 63.2311 2.12549
\(886\) 0 0
\(887\) −18.0590 + 31.2792i −0.606363 + 1.05025i 0.385471 + 0.922720i \(0.374039\pi\)
−0.991834 + 0.127532i \(0.959294\pi\)
\(888\) 0 0
\(889\) 1.06913 0.0358575
\(890\) 0 0
\(891\) 5.23358 + 9.06483i 0.175332 + 0.303683i
\(892\) 0 0
\(893\) 26.9309 + 46.6456i 0.901207 + 1.56094i
\(894\) 0 0
\(895\) −7.36520 + 12.7569i −0.246192 + 0.426416i
\(896\) 0 0
\(897\) 55.7656 + 22.5634i 1.86196 + 0.753370i
\(898\) 0 0
\(899\) −8.48071 + 14.6890i −0.282847 + 0.489906i
\(900\) 0 0
\(901\) 7.84233 + 13.5833i 0.261266 + 0.452526i
\(902\) 0 0
\(903\) 36.4720 + 63.1714i 1.21371 + 2.10221i
\(904\) 0 0
\(905\) 53.3002 1.77176
\(906\) 0 0
\(907\) 12.3085 21.3189i 0.408696 0.707882i −0.586048 0.810276i \(-0.699317\pi\)
0.994744 + 0.102394i \(0.0326503\pi\)
\(908\) 0 0
\(909\) −0.315342 −0.0104592
\(910\) 0 0
\(911\) −15.8917 −0.526515 −0.263257 0.964726i \(-0.584797\pi\)
−0.263257 + 0.964726i \(0.584797\pi\)
\(912\) 0 0
\(913\) 1.36932 2.37173i 0.0453178 0.0784927i
\(914\) 0 0
\(915\) −67.9372 −2.24593
\(916\) 0 0
\(917\) −20.8769 36.1598i −0.689416 1.19410i
\(918\) 0 0
\(919\) 3.99079 + 6.91225i 0.131644 + 0.228014i 0.924310 0.381641i \(-0.124641\pi\)
−0.792666 + 0.609656i \(0.791308\pi\)
\(920\) 0 0
\(921\) −23.1231 + 40.0504i −0.761932 + 1.31971i
\(922\) 0 0
\(923\) 16.7347 + 6.77106i 0.550831 + 0.222872i
\(924\) 0 0
\(925\) −1.65767 + 2.87117i −0.0545039 + 0.0944035i
\(926\) 0 0
\(927\) −11.1293 19.2765i −0.365535 0.633125i
\(928\) 0 0
\(929\) −15.0616 26.0874i −0.494154 0.855899i 0.505824 0.862637i \(-0.331189\pi\)
−0.999977 + 0.00673783i \(0.997855\pi\)
\(930\) 0 0
\(931\) −32.8531 −1.07672
\(932\) 0 0
\(933\) 12.0000 20.7846i 0.392862 0.680458i
\(934\) 0 0
\(935\) −16.2177 −0.530377
\(936\) 0 0
\(937\) −48.8078 −1.59448 −0.797240 0.603662i \(-0.793708\pi\)
−0.797240 + 0.603662i \(0.793708\pi\)
\(938\) 0 0
\(939\) 15.4741 26.8019i 0.504977 0.874646i
\(940\) 0 0
\(941\) −2.00000 −0.0651981 −0.0325991 0.999469i \(-0.510378\pi\)
−0.0325991 + 0.999469i \(0.510378\pi\)
\(942\) 0 0
\(943\) −14.5852 25.2624i −0.474961 0.822657i
\(944\) 0 0
\(945\) 4.87689 + 8.44703i 0.158645 + 0.274782i
\(946\) 0 0
\(947\) 15.9096 27.5562i 0.516991 0.895455i −0.482814 0.875723i \(-0.660385\pi\)
0.999805 0.0197319i \(-0.00628127\pi\)
\(948\) 0 0
\(949\) 12.2656 9.57302i 0.398159 0.310753i
\(950\) 0 0
\(951\) 3.31077 5.73442i 0.107359 0.185951i
\(952\) 0 0
\(953\) 17.3963 + 30.1313i 0.563522 + 0.976048i 0.997186 + 0.0749733i \(0.0238872\pi\)
−0.433664 + 0.901075i \(0.642780\pi\)
\(954\) 0 0
\(955\) 15.8459 + 27.4459i 0.512762 + 0.888129i
\(956\) 0 0
\(957\) 12.1922 0.394119
\(958\) 0 0
\(959\) 31.3021 54.2168i 1.01080 1.75075i
\(960\) 0 0
\(961\) −19.4924 −0.628788
\(962\) 0 0
\(963\) 24.9073 0.802625
\(964\) 0 0
\(965\) −2.40388 + 4.16365i −0.0773837 + 0.134033i
\(966\) 0 0
\(967\) −8.68951 −0.279436 −0.139718 0.990191i \(-0.544620\pi\)
−0.139718 + 0.990191i \(0.544620\pi\)
\(968\) 0 0
\(969\) −36.1501 62.6138i −1.16131 2.01144i
\(970\) 0 0
\(971\) −9.28802 16.0873i −0.298067 0.516267i 0.677627 0.735406i \(-0.263008\pi\)
−0.975694 + 0.219139i \(0.929675\pi\)
\(972\) 0 0
\(973\) 37.7116 65.3185i 1.20898 2.09401i
\(974\) 0 0
\(975\) 1.84130 + 13.1495i 0.0589688 + 0.421122i
\(976\) 0 0
\(977\) 7.86932 13.6301i 0.251762 0.436064i −0.712249 0.701927i \(-0.752323\pi\)
0.964011 + 0.265863i \(0.0856567\pi\)
\(978\) 0 0
\(979\) −5.52390 9.56768i −0.176545 0.305784i
\(980\) 0 0
\(981\) −1.43845 2.49146i −0.0459261 0.0795463i
\(982\) 0 0
\(983\) −30.5305 −0.973773 −0.486886 0.873465i \(-0.661867\pi\)
−0.486886 + 0.873465i \(0.661867\pi\)
\(984\) 0 0
\(985\) −7.43845 + 12.8838i −0.237009 + 0.410511i
\(986\) 0 0
\(987\) −93.4251 −2.97375
\(988\) 0 0
\(989\) −59.4233 −1.88955
\(990\) 0 0
\(991\) 8.54435 14.7992i 0.271420 0.470114i −0.697806 0.716287i \(-0.745840\pi\)
0.969226 + 0.246174i \(0.0791734\pi\)
\(992\) 0 0
\(993\) −35.8078 −1.13633
\(994\) 0 0
\(995\) −9.06134 15.6947i −0.287264 0.497556i
\(996\) 0 0
\(997\) 14.1155 + 24.4488i 0.447043 + 0.774302i 0.998192 0.0601053i \(-0.0191437\pi\)
−0.551149 + 0.834407i \(0.685810\pi\)
\(998\) 0 0
\(999\) −1.09763 + 1.90116i −0.0347276 + 0.0601499i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.i.g.321.4 yes 8
4.3 odd 2 inner 416.2.i.g.321.1 yes 8
8.3 odd 2 832.2.i.q.321.4 8
8.5 even 2 832.2.i.q.321.1 8
13.3 even 3 inner 416.2.i.g.289.4 yes 8
13.4 even 6 5408.2.a.bi.1.1 4
13.9 even 3 5408.2.a.bh.1.1 4
52.3 odd 6 inner 416.2.i.g.289.1 8
52.35 odd 6 5408.2.a.bh.1.4 4
52.43 odd 6 5408.2.a.bi.1.4 4
104.3 odd 6 832.2.i.q.705.4 8
104.29 even 6 832.2.i.q.705.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.i.g.289.1 8 52.3 odd 6 inner
416.2.i.g.289.4 yes 8 13.3 even 3 inner
416.2.i.g.321.1 yes 8 4.3 odd 2 inner
416.2.i.g.321.4 yes 8 1.1 even 1 trivial
832.2.i.q.321.1 8 8.5 even 2
832.2.i.q.321.4 8 8.3 odd 2
832.2.i.q.705.1 8 104.29 even 6
832.2.i.q.705.4 8 104.3 odd 6
5408.2.a.bh.1.1 4 13.9 even 3
5408.2.a.bh.1.4 4 52.35 odd 6
5408.2.a.bi.1.1 4 13.4 even 6
5408.2.a.bi.1.4 4 52.43 odd 6