Properties

Label 416.2.i.e.321.2
Level $416$
Weight $2$
Character 416.321
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(289,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

Embedding invariants

Embedding label 321.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 416.321
Dual form 416.2.i.e.289.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.46410 q^{5} +(1.50000 + 2.59808i) q^{9} +(-3.23205 + 1.59808i) q^{13} +(-2.96410 - 5.13397i) q^{17} +14.9282 q^{25} +(-0.767949 + 1.33013i) q^{29} +(-5.69615 + 9.86603i) q^{37} +(5.96410 - 10.3301i) q^{41} +(6.69615 + 11.5981i) q^{45} +(3.50000 - 6.06218i) q^{49} -3.53590 q^{53} +(-7.69615 - 13.3301i) q^{61} +(-14.4282 + 7.13397i) q^{65} -10.8564 q^{73} +(-4.50000 + 7.79423i) q^{81} +(-13.2321 - 22.9186i) q^{85} +(-5.00000 + 8.66025i) q^{89} +(-9.00000 - 15.5885i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 6 q^{9} - 6 q^{13} + 2 q^{17} + 32 q^{25} - 10 q^{29} - 2 q^{37} + 10 q^{41} + 6 q^{45} + 14 q^{49} - 28 q^{53} - 10 q^{61} - 30 q^{65} + 12 q^{73} - 18 q^{81} - 46 q^{85} - 20 q^{89} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 0 0
\(5\) 4.46410 1.99641 0.998203 0.0599153i \(-0.0190830\pi\)
0.998203 + 0.0599153i \(0.0190830\pi\)
\(6\) 0 0
\(7\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) −3.23205 + 1.59808i −0.896410 + 0.443227i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.96410 5.13397i −0.718900 1.24517i −0.961436 0.275029i \(-0.911312\pi\)
0.242536 0.970143i \(-0.422021\pi\)
\(18\) 0 0
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) 14.9282 2.98564
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.767949 + 1.33013i −0.142605 + 0.246998i −0.928477 0.371391i \(-0.878881\pi\)
0.785872 + 0.618389i \(0.212214\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.69615 + 9.86603i −0.936442 + 1.62196i −0.164399 + 0.986394i \(0.552568\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.96410 10.3301i 0.931436 1.61329i 0.150567 0.988600i \(-0.451890\pi\)
0.780869 0.624695i \(-0.214777\pi\)
\(42\) 0 0
\(43\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) 6.69615 + 11.5981i 0.998203 + 1.72894i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 3.50000 6.06218i 0.500000 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.53590 −0.485693 −0.242846 0.970065i \(-0.578081\pi\)
−0.242846 + 0.970065i \(0.578081\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) −7.69615 13.3301i −0.985391 1.70675i −0.640184 0.768221i \(-0.721142\pi\)
−0.345207 0.938527i \(-0.612191\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −14.4282 + 7.13397i −1.78960 + 0.884861i
\(66\) 0 0
\(67\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(72\) 0 0
\(73\) −10.8564 −1.27065 −0.635323 0.772246i \(-0.719133\pi\)
−0.635323 + 0.772246i \(0.719133\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −13.2321 22.9186i −1.43522 2.48587i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.00000 + 8.66025i −0.529999 + 0.917985i 0.469389 + 0.882992i \(0.344474\pi\)
−0.999388 + 0.0349934i \(0.988859\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.00000 15.5885i −0.913812 1.58277i −0.808632 0.588315i \(-0.799792\pi\)
−0.105180 0.994453i \(-0.533542\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.16025 + 15.8660i −0.911479 + 1.57873i −0.0995037 + 0.995037i \(0.531726\pi\)
−0.811976 + 0.583691i \(0.801608\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.42820 + 5.93782i 0.322498 + 0.558583i 0.981003 0.193993i \(-0.0621440\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −9.00000 6.00000i −0.832050 0.554700i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 44.3205 3.96415
\(126\) 0 0
\(127\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.03590 3.52628i −0.173939 0.301270i 0.765855 0.643013i \(-0.222316\pi\)
−0.939793 + 0.341743i \(0.888983\pi\)
\(138\) 0 0
\(139\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −3.42820 + 5.93782i −0.284697 + 0.493109i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.16025 8.93782i −0.422744 0.732215i 0.573462 0.819232i \(-0.305600\pi\)
−0.996207 + 0.0870170i \(0.972267\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 8.89230 15.4019i 0.718900 1.24517i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −21.3923 −1.70729 −0.853646 0.520854i \(-0.825614\pi\)
−0.853646 + 0.520854i \(0.825614\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 0 0
\(169\) 7.89230 10.3301i 0.607100 0.794625i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 13.0000 + 22.5167i 0.988372 + 1.71191i 0.625871 + 0.779926i \(0.284744\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) −8.32051 −0.618458 −0.309229 0.950988i \(-0.600071\pi\)
−0.309229 + 0.950988i \(0.600071\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −25.4282 + 44.0429i −1.86952 + 3.23810i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0 0
\(193\) 6.89230 11.9378i 0.496119 0.859303i −0.503871 0.863779i \(-0.668091\pi\)
0.999990 + 0.00447566i \(0.00142465\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.00000 1.73205i 0.0712470 0.123404i −0.828201 0.560431i \(-0.810635\pi\)
0.899448 + 0.437028i \(0.143969\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 26.6244 46.1147i 1.85953 3.22079i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 17.7846 + 11.8564i 1.19632 + 0.797548i
\(222\) 0 0
\(223\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(224\) 0 0
\(225\) 22.3923 + 38.7846i 1.49282 + 2.58564i
\(226\) 0 0
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 0 0
\(229\) 30.0000 1.98246 0.991228 0.132164i \(-0.0421925\pi\)
0.991228 + 0.132164i \(0.0421925\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 26.0000 1.70332 0.851658 0.524097i \(-0.175597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −10.9641 18.9904i −0.706260 1.22328i −0.966235 0.257663i \(-0.917048\pi\)
0.259975 0.965615i \(-0.416286\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.6244 27.0622i 0.998203 1.72894i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.3564 + 23.1340i −0.833150 + 1.44306i 0.0623783 + 0.998053i \(0.480131\pi\)
−0.895528 + 0.445005i \(0.853202\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −4.60770 −0.285209
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) −15.7846 −0.969641
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.0000 + 22.5167i 0.792624 + 1.37287i 0.924337 + 0.381577i \(0.124619\pi\)
−0.131713 + 0.991288i \(0.542048\pi\)
\(270\) 0 0
\(271\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.62436 + 13.2058i 0.458103 + 0.793458i 0.998861 0.0477206i \(-0.0151957\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.7128 1.35493 0.677466 0.735554i \(-0.263078\pi\)
0.677466 + 0.735554i \(0.263078\pi\)
\(282\) 0 0
\(283\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.07180 + 15.7128i −0.533635 + 0.924283i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.76795 11.7224i −0.395388 0.684832i 0.597763 0.801673i \(-0.296056\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −34.3564 59.5070i −1.96724 3.40736i
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −35.2487 −1.97976 −0.989882 0.141890i \(-0.954682\pi\)
−0.989882 + 0.141890i \(0.954682\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −48.2487 + 23.8564i −2.67636 + 1.32332i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 0 0
\(333\) −34.1769 −1.87288
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −36.7128 −1.99987 −0.999937 0.0112091i \(-0.996432\pi\)
−0.999937 + 0.0112091i \(0.996432\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 5.00000 8.66025i 0.267644 0.463573i −0.700609 0.713545i \(-0.747088\pi\)
0.968253 + 0.249973i \(0.0804216\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.4282 26.7224i 0.821160 1.42229i −0.0836583 0.996495i \(-0.526660\pi\)
0.904819 0.425797i \(-0.140006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 9.50000 16.4545i 0.500000 0.866025i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −48.4641 −2.53673
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 0 0
\(369\) 35.7846 1.86287
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 19.0885 + 33.0622i 0.988363 + 1.71189i 0.625917 + 0.779890i \(0.284725\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.356406 5.52628i 0.0183559 0.284618i
\(378\) 0 0
\(379\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 34.3205 1.74012 0.870059 0.492947i \(-0.164080\pi\)
0.870059 + 0.492947i \(0.164080\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −19.0000 32.9090i −0.953583 1.65165i −0.737579 0.675261i \(-0.764031\pi\)
−0.216004 0.976392i \(-0.569302\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −16.8205 + 29.1340i −0.839976 + 1.45488i 0.0499376 + 0.998752i \(0.484098\pi\)
−0.889914 + 0.456129i \(0.849236\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −20.0885 + 34.7942i −0.998203 + 1.72894i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 15.8205 + 27.4019i 0.782274 + 1.35494i 0.930614 + 0.366002i \(0.119274\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(420\) 0 0
\(421\) 9.24871 0.450755 0.225377 0.974272i \(-0.427639\pi\)
0.225377 + 0.974272i \(0.427639\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −44.2487 76.6410i −2.14638 3.71764i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) 0 0
\(433\) −1.89230 3.27757i −0.0909384 0.157510i 0.816968 0.576683i \(-0.195653\pi\)
−0.907906 + 0.419173i \(0.862320\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −22.3205 + 38.6603i −1.05809 + 1.83267i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.00000 + 12.1244i 0.330350 + 0.572184i 0.982581 0.185837i \(-0.0594997\pi\)
−0.652230 + 0.758021i \(0.726166\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7.03590 12.1865i 0.329125 0.570062i −0.653213 0.757174i \(-0.726579\pi\)
0.982339 + 0.187112i \(0.0599128\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18.1603 + 31.4545i 0.845807 + 1.46498i 0.884918 + 0.465746i \(0.154214\pi\)
−0.0391109 + 0.999235i \(0.512453\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.30385 9.18653i −0.242846 0.420622i
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) 2.64359 40.9904i 0.120537 1.86900i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −40.1769 69.5885i −1.82434 3.15985i
\(486\) 0 0
\(487\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 9.10512 0.410074
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(504\) 0 0
\(505\) −40.8923 + 70.8275i −1.81968 + 3.15178i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.5526 28.6699i 0.733679 1.27077i −0.221621 0.975133i \(-0.571135\pi\)
0.955300 0.295637i \(-0.0955319\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −23.6410 −1.03573 −0.517866 0.855462i \(-0.673273\pi\)
−0.517866 + 0.855462i \(0.673273\pi\)
\(522\) 0 0
\(523\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.76795 + 42.9186i −0.119893 + 1.85901i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 3.67949 0.158194 0.0790969 0.996867i \(-0.474796\pi\)
0.0790969 + 0.996867i \(0.474796\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 26.7846 1.14733
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 23.0885 39.9904i 0.985391 1.70675i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.62436 + 4.54552i −0.111198 + 0.192600i −0.916253 0.400599i \(-0.868802\pi\)
0.805056 + 0.593199i \(0.202135\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 15.3038 + 26.5070i 0.643838 + 1.11516i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13.0000 + 22.5167i −0.544988 + 0.943948i 0.453619 + 0.891196i \(0.350133\pi\)
−0.998608 + 0.0527519i \(0.983201\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 40.5692 1.68892 0.844459 0.535620i \(-0.179922\pi\)
0.844459 + 0.535620i \(0.179922\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −40.1769 26.7846i −1.66111 1.10741i
\(586\) 0 0
\(587\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 36.8564 1.51351 0.756756 0.653698i \(-0.226783\pi\)
0.756756 + 0.653698i \(0.226783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 23.2846 40.3301i 0.949799 1.64510i 0.203954 0.978980i \(-0.434621\pi\)
0.745845 0.666120i \(-0.232046\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.5526 + 42.5263i 0.998203 + 1.72894i
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 7.08846 12.2776i 0.286300 0.495886i −0.686624 0.727013i \(-0.740908\pi\)
0.972924 + 0.231127i \(0.0742412\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.35641 + 7.54552i 0.175382 + 0.303771i 0.940294 0.340365i \(-0.110551\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 123.210 4.92841
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 67.5359 2.69283
\(630\) 0 0
\(631\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.62436 + 25.1865i −0.0643593 + 0.997927i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.9641 + 27.6506i 0.630544 + 1.09213i 0.987441 + 0.157991i \(0.0505015\pi\)
−0.356897 + 0.934144i \(0.616165\pi\)
\(642\) 0 0
\(643\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.0000 22.5167i 0.508729 0.881145i −0.491220 0.871036i \(-0.663449\pi\)
0.999949 0.0101092i \(-0.00321793\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −16.2846 28.2058i −0.635323 1.10041i
\(658\) 0 0
\(659\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) −7.30385 + 12.6506i −0.284087 + 0.492053i −0.972387 0.233373i \(-0.925024\pi\)
0.688301 + 0.725426i \(0.258357\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −21.8923 + 37.9186i −0.843886 + 1.46165i 0.0426985 + 0.999088i \(0.486405\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.00000 −0.0768662 −0.0384331 0.999261i \(-0.512237\pi\)
−0.0384331 + 0.999261i \(0.512237\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 0 0
\(685\) −9.08846 15.7417i −0.347252 0.601458i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 11.4282 5.65064i 0.435380 0.215272i
\(690\) 0 0
\(691\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −70.7128 −2.67844
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −10.0000 −0.377695 −0.188847 0.982006i \(-0.560475\pi\)
−0.188847 + 0.982006i \(0.560475\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −11.5526 20.0096i −0.433865 0.751477i 0.563337 0.826227i \(-0.309517\pi\)
−0.997202 + 0.0747503i \(0.976184\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −11.4641 + 19.8564i −0.425766 + 0.737448i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −30.4641 −1.12522 −0.562609 0.826723i \(-0.690202\pi\)
−0.562609 + 0.826723i \(0.690202\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(744\) 0 0
\(745\) −23.0359 39.8993i −0.843970 1.46180i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 9.00000 15.5885i 0.327111 0.566572i −0.654827 0.755779i \(-0.727258\pi\)
0.981937 + 0.189207i \(0.0605917\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 19.0000 + 32.9090i 0.688749 + 1.19295i 0.972243 + 0.233975i \(0.0751733\pi\)
−0.283493 + 0.958974i \(0.591493\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 39.6962 68.7558i 1.43522 2.48587i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −25.0000 + 43.3013i −0.901523 + 1.56148i −0.0760054 + 0.997107i \(0.524217\pi\)
−0.825518 + 0.564376i \(0.809117\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.0000 + 29.4449i 0.611448 + 1.05906i 0.990997 + 0.133887i \(0.0427458\pi\)
−0.379549 + 0.925172i \(0.623921\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −95.4974 −3.40845
\(786\) 0 0
\(787\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 46.1769 + 30.7846i 1.63979 + 1.09319i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.0000 19.0526i −0.389640 0.674876i 0.602761 0.797922i \(-0.294067\pi\)
−0.992401 + 0.123045i \(0.960734\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −30.0000 −1.06000
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −21.7487 + 37.6699i −0.764644 + 1.32440i 0.175791 + 0.984428i \(0.443752\pi\)
−0.940435 + 0.339975i \(0.889582\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.0000 43.3013i 0.872506 1.51122i 0.0131101 0.999914i \(-0.495827\pi\)
0.859396 0.511311i \(-0.170840\pi\)
\(822\) 0 0
\(823\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 22.1603 38.3827i 0.769657 1.33309i −0.168091 0.985771i \(-0.553760\pi\)
0.937749 0.347314i \(-0.112906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −41.4974 −1.43780
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 0 0
\(841\) 13.3205 + 23.0718i 0.459328 + 0.795579i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 35.2321 46.1147i 1.21202 1.58640i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 8.17691 0.279972 0.139986 0.990153i \(-0.455294\pi\)
0.139986 + 0.990153i \(0.455294\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −35.9282 −1.22728 −0.613642 0.789584i \(-0.710296\pi\)
−0.613642 + 0.789584i \(0.710296\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 58.0333 + 100.517i 1.97319 + 3.41767i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 27.0000 46.7654i 0.913812 1.58277i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −19.6962 34.1147i −0.665092 1.15197i −0.979260 0.202606i \(-0.935059\pi\)
0.314169 0.949367i \(-0.398274\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.3564 45.6506i 0.887970 1.53801i 0.0456985 0.998955i \(-0.485449\pi\)
0.842271 0.539054i \(-0.181218\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 10.4808 + 18.1532i 0.349165 + 0.604771i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −37.1436 −1.23469
\(906\) 0 0
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) 0 0
\(909\) −54.9615 −1.82296
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −85.0333 + 147.282i −2.79588 + 4.84260i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.8205 49.9186i −0.945570 1.63778i −0.754606 0.656179i \(-0.772172\pi\)
−0.190965 0.981597i \(-0.561162\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −22.5692 −0.737304 −0.368652 0.929567i \(-0.620181\pi\)
−0.368652 + 0.929567i \(0.620181\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −58.0000 −1.89075 −0.945373 0.325991i \(-0.894302\pi\)
−0.945373 + 0.325991i \(0.894302\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(948\) 0 0
\(949\) 35.0885 17.3494i 1.13902 0.563184i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −13.0000 22.5167i −0.421111 0.729386i 0.574937 0.818198i \(-0.305026\pi\)
−0.996048 + 0.0888114i \(0.971693\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30.7679 53.2917i 0.990455 1.71552i
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.9641 + 32.8468i −0.606715 + 1.05086i 0.385063 + 0.922890i \(0.374180\pi\)
−0.991778 + 0.127971i \(0.959153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 9.00000 + 15.5885i 0.287348 + 0.497701i
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 4.46410 7.73205i 0.142238 0.246364i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 20.6962 + 35.8468i 0.655454 + 1.13528i 0.981780 + 0.190022i \(0.0608559\pi\)
−0.326326 + 0.945257i \(0.605811\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.i.e.321.2 yes 4
4.3 odd 2 CM 416.2.i.e.321.2 yes 4
8.3 odd 2 832.2.i.m.321.1 4
8.5 even 2 832.2.i.m.321.1 4
13.3 even 3 inner 416.2.i.e.289.2 4
13.4 even 6 5408.2.a.s.1.1 2
13.9 even 3 5408.2.a.ba.1.2 2
52.3 odd 6 inner 416.2.i.e.289.2 4
52.35 odd 6 5408.2.a.ba.1.2 2
52.43 odd 6 5408.2.a.s.1.1 2
104.3 odd 6 832.2.i.m.705.1 4
104.29 even 6 832.2.i.m.705.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.i.e.289.2 4 13.3 even 3 inner
416.2.i.e.289.2 4 52.3 odd 6 inner
416.2.i.e.321.2 yes 4 1.1 even 1 trivial
416.2.i.e.321.2 yes 4 4.3 odd 2 CM
832.2.i.m.321.1 4 8.3 odd 2
832.2.i.m.321.1 4 8.5 even 2
832.2.i.m.705.1 4 104.3 odd 6
832.2.i.m.705.1 4 104.29 even 6
5408.2.a.s.1.1 2 13.4 even 6
5408.2.a.s.1.1 2 52.43 odd 6
5408.2.a.ba.1.2 2 13.9 even 3
5408.2.a.ba.1.2 2 52.35 odd 6