Properties

Label 416.2.i.e
Level $416$
Weight $2$
Character orbit 416.i
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(289,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 2 \beta_1 + 1) q^{5} + 3 \beta_{2} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{3} - 2 \beta_1 + 1) q^{5} + 3 \beta_{2} q^{9} + (3 \beta_{2} + \beta_1 - 3) q^{13} + (2 \beta_{3} + \beta_{2} + 2 \beta_1) q^{17} + (2 \beta_{3} - 4 \beta_1 + 8) q^{25} + (2 \beta_{3} + 5 \beta_{2} - \beta_1 - 5) q^{29} + ( - 6 \beta_{3} + \beta_{2} + 3 \beta_1 - 1) q^{37} + (4 \beta_{3} - 5 \beta_{2} - 2 \beta_1 + 5) q^{41} + ( - 3 \beta_{3} + 3 \beta_{2} - 3 \beta_1) q^{45} + ( - 7 \beta_{2} + 7) q^{49} + (\beta_{3} - 2 \beta_1 - 7) q^{53} + (3 \beta_{3} - 5 \beta_{2} + 3 \beta_1) q^{61} + ( - 6 \beta_{3} - \beta_{2} + 4 \beta_1 - 7) q^{65} + ( - 4 \beta_{3} + 8 \beta_1 + 3) q^{73} + (9 \beta_{2} - 9) q^{81} + (\beta_{3} - 23 \beta_{2} + \beta_1) q^{85} + (10 \beta_{2} - 10) q^{89} - 18 \beta_{2} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{5} + 6 q^{9} - 6 q^{13} + 2 q^{17} + 32 q^{25} - 10 q^{29} - 2 q^{37} + 10 q^{41} + 6 q^{45} + 14 q^{49} - 28 q^{53} - 10 q^{61} - 30 q^{65} + 12 q^{73} - 18 q^{81} - 46 q^{85} - 20 q^{89} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 2\zeta_{12} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{12}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\zeta_{12}^{3} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( \beta_{3} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 0 0 −2.46410 0 0 0 1.50000 2.59808i 0
289.2 0 0 0 4.46410 0 0 0 1.50000 2.59808i 0
321.1 0 0 0 −2.46410 0 0 0 1.50000 + 2.59808i 0
321.2 0 0 0 4.46410 0 0 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
13.c even 3 1 inner
52.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.2.i.e 4
4.b odd 2 1 CM 416.2.i.e 4
8.b even 2 1 832.2.i.m 4
8.d odd 2 1 832.2.i.m 4
13.c even 3 1 inner 416.2.i.e 4
13.c even 3 1 5408.2.a.ba 2
13.e even 6 1 5408.2.a.s 2
52.i odd 6 1 5408.2.a.s 2
52.j odd 6 1 inner 416.2.i.e 4
52.j odd 6 1 5408.2.a.ba 2
104.n odd 6 1 832.2.i.m 4
104.r even 6 1 832.2.i.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.i.e 4 1.a even 1 1 trivial
416.2.i.e 4 4.b odd 2 1 CM
416.2.i.e 4 13.c even 3 1 inner
416.2.i.e 4 52.j odd 6 1 inner
832.2.i.m 4 8.b even 2 1
832.2.i.m 4 8.d odd 2 1
832.2.i.m 4 104.n odd 6 1
832.2.i.m 4 104.r even 6 1
5408.2.a.s 2 13.e even 6 1
5408.2.a.s 2 52.i odd 6 1
5408.2.a.ba 2 13.c even 3 1
5408.2.a.ba 2 52.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(416, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 2 T - 11)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 6 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$17$ \( T^{4} - 2 T^{3} + \cdots + 2209 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 10 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 2 T^{3} + \cdots + 11449 \) Copy content Toggle raw display
$41$ \( T^{4} - 10 T^{3} + \cdots + 529 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 14 T + 37)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + 10 T^{3} + \cdots + 6889 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} - 6 T - 183)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 10 T + 100)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 18 T + 324)^{2} \) Copy content Toggle raw display
show more
show less