Properties

Label 416.2.bz
Level $416$
Weight $2$
Character orbit 416.bz
Rep. character $\chi_{416}(69,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $432$
Newform subspaces $1$
Sturm bound $112$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bz (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 416 \)
Character field: \(\Q(\zeta_{24})\)
Newform subspaces: \( 1 \)
Sturm bound: \(112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(416, [\chi])\).

Total New Old
Modular forms 464 464 0
Cusp forms 432 432 0
Eisenstein series 32 32 0

Trace form

\( 432 q - 12 q^{2} - 4 q^{3} - 4 q^{4} - 12 q^{6} - 12 q^{7} - 4 q^{9} - 4 q^{10} - 12 q^{11} - 48 q^{12} - 8 q^{13} - 48 q^{14} - 4 q^{16} - 12 q^{19} + 36 q^{20} - 20 q^{22} - 4 q^{23} - 12 q^{24} - 16 q^{25}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(416, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
416.2.bz.a 416.bz 416.az $432$ $3.322$ None 416.2.bz.a \(-12\) \(-4\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{24}]$