Properties

Label 416.2.bk.a.271.4
Level $416$
Weight $2$
Character 416.271
Analytic conductor $3.322$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(15,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.15"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bk (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 271.4
Character \(\chi\) \(=\) 416.271
Dual form 416.2.bk.a.175.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05427 - 1.82605i) q^{3} +(2.29020 - 2.29020i) q^{5} +(1.21025 - 0.324286i) q^{7} +(-0.722984 + 1.25224i) q^{9} +(3.76618 + 1.00915i) q^{11} +(-3.23415 - 1.59382i) q^{13} +(-6.59652 - 1.76753i) q^{15} +(3.99899 + 2.30882i) q^{17} +(-2.52138 + 0.675601i) q^{19} +(-1.86810 - 1.86810i) q^{21} +(-1.62930 - 2.82203i) q^{23} -5.49003i q^{25} -3.27675 q^{27} +(-7.35890 + 4.24866i) q^{29} +(2.29122 - 2.29122i) q^{31} +(-2.12783 - 7.94117i) q^{33} +(2.02904 - 3.51440i) q^{35} +(1.94326 - 7.25236i) q^{37} +(0.499278 + 7.58606i) q^{39} +(-0.391230 + 1.46009i) q^{41} +(9.48630 + 5.47692i) q^{43} +(1.21211 + 4.52367i) q^{45} +(-3.31585 - 3.31585i) q^{47} +(-4.70263 + 2.71507i) q^{49} -9.73651i q^{51} +2.94222i q^{53} +(10.9365 - 6.31416i) q^{55} +(3.89190 + 3.89190i) q^{57} +(-0.115929 - 0.432654i) q^{59} +(9.70024 + 5.60044i) q^{61} +(-0.468907 + 1.74998i) q^{63} +(-11.0570 + 3.75669i) q^{65} +(-2.48521 + 9.27491i) q^{67} +(-3.43545 + 5.95037i) q^{69} +(-0.740035 - 2.76185i) q^{71} +(0.0928135 - 0.0928135i) q^{73} +(-10.0251 + 5.78799i) q^{75} +4.88528 q^{77} +9.86517i q^{79} +(5.62354 + 9.74026i) q^{81} +(7.31249 + 7.31249i) q^{83} +(14.4462 - 3.87084i) q^{85} +(15.5166 + 8.95850i) q^{87} +(0.299076 + 0.0801373i) q^{89} +(-4.43099 - 0.880132i) q^{91} +(-6.59946 - 1.76832i) q^{93} +(-4.22719 + 7.32172i) q^{95} +(10.4399 - 2.79736i) q^{97} +(-3.98659 + 3.98659i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{3} - 20 q^{9} + 8 q^{11} - 12 q^{17} + 8 q^{19} - 8 q^{27} + 4 q^{33} + 4 q^{35} + 12 q^{43} - 60 q^{49} + 36 q^{57} + 64 q^{59} - 16 q^{65} + 8 q^{67} - 12 q^{73} - 24 q^{75} - 8 q^{81} + 48 q^{83}+ \cdots - 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.05427 1.82605i −0.608685 1.05427i −0.991457 0.130431i \(-0.958364\pi\)
0.382773 0.923843i \(-0.374969\pi\)
\(4\) 0 0
\(5\) 2.29020 2.29020i 1.02421 1.02421i 0.0245086 0.999700i \(-0.492198\pi\)
0.999700 0.0245086i \(-0.00780212\pi\)
\(6\) 0 0
\(7\) 1.21025 0.324286i 0.457432 0.122569i −0.0227429 0.999741i \(-0.507240\pi\)
0.480175 + 0.877173i \(0.340573\pi\)
\(8\) 0 0
\(9\) −0.722984 + 1.25224i −0.240995 + 0.417415i
\(10\) 0 0
\(11\) 3.76618 + 1.00915i 1.13555 + 0.304269i 0.777159 0.629304i \(-0.216660\pi\)
0.358387 + 0.933573i \(0.383327\pi\)
\(12\) 0 0
\(13\) −3.23415 1.59382i −0.896992 0.442046i
\(14\) 0 0
\(15\) −6.59652 1.76753i −1.70322 0.456375i
\(16\) 0 0
\(17\) 3.99899 + 2.30882i 0.969899 + 0.559971i 0.899205 0.437527i \(-0.144146\pi\)
0.0706933 + 0.997498i \(0.477479\pi\)
\(18\) 0 0
\(19\) −2.52138 + 0.675601i −0.578444 + 0.154993i −0.536166 0.844112i \(-0.680128\pi\)
−0.0422773 + 0.999106i \(0.513461\pi\)
\(20\) 0 0
\(21\) −1.86810 1.86810i −0.407653 0.407653i
\(22\) 0 0
\(23\) −1.62930 2.82203i −0.339732 0.588433i 0.644650 0.764478i \(-0.277003\pi\)
−0.984382 + 0.176044i \(0.943670\pi\)
\(24\) 0 0
\(25\) 5.49003i 1.09801i
\(26\) 0 0
\(27\) −3.27675 −0.630611
\(28\) 0 0
\(29\) −7.35890 + 4.24866i −1.36651 + 0.788957i −0.990481 0.137650i \(-0.956045\pi\)
−0.376032 + 0.926607i \(0.622712\pi\)
\(30\) 0 0
\(31\) 2.29122 2.29122i 0.411515 0.411515i −0.470751 0.882266i \(-0.656017\pi\)
0.882266 + 0.470751i \(0.156017\pi\)
\(32\) 0 0
\(33\) −2.12783 7.94117i −0.370408 1.38238i
\(34\) 0 0
\(35\) 2.02904 3.51440i 0.342970 0.594041i
\(36\) 0 0
\(37\) 1.94326 7.25236i 0.319471 1.19228i −0.600284 0.799787i \(-0.704946\pi\)
0.919755 0.392494i \(-0.128388\pi\)
\(38\) 0 0
\(39\) 0.499278 + 7.58606i 0.0799485 + 1.21474i
\(40\) 0 0
\(41\) −0.391230 + 1.46009i −0.0610999 + 0.228028i −0.989723 0.142996i \(-0.954326\pi\)
0.928623 + 0.371024i \(0.120993\pi\)
\(42\) 0 0
\(43\) 9.48630 + 5.47692i 1.44665 + 0.835222i 0.998280 0.0586272i \(-0.0186723\pi\)
0.448367 + 0.893849i \(0.352006\pi\)
\(44\) 0 0
\(45\) 1.21211 + 4.52367i 0.180691 + 0.674349i
\(46\) 0 0
\(47\) −3.31585 3.31585i −0.483667 0.483667i 0.422634 0.906301i \(-0.361106\pi\)
−0.906301 + 0.422634i \(0.861106\pi\)
\(48\) 0 0
\(49\) −4.70263 + 2.71507i −0.671805 + 0.387867i
\(50\) 0 0
\(51\) 9.73651i 1.36338i
\(52\) 0 0
\(53\) 2.94222i 0.404144i 0.979371 + 0.202072i \(0.0647676\pi\)
−0.979371 + 0.202072i \(0.935232\pi\)
\(54\) 0 0
\(55\) 10.9365 6.31416i 1.47467 0.851402i
\(56\) 0 0
\(57\) 3.89190 + 3.89190i 0.515495 + 0.515495i
\(58\) 0 0
\(59\) −0.115929 0.432654i −0.0150927 0.0563267i 0.957969 0.286872i \(-0.0926156\pi\)
−0.973062 + 0.230546i \(0.925949\pi\)
\(60\) 0 0
\(61\) 9.70024 + 5.60044i 1.24199 + 0.717063i 0.969499 0.245096i \(-0.0788194\pi\)
0.272490 + 0.962159i \(0.412153\pi\)
\(62\) 0 0
\(63\) −0.468907 + 1.74998i −0.0590767 + 0.220477i
\(64\) 0 0
\(65\) −11.0570 + 3.75669i −1.37145 + 0.465960i
\(66\) 0 0
\(67\) −2.48521 + 9.27491i −0.303616 + 1.13311i 0.630514 + 0.776178i \(0.282844\pi\)
−0.934130 + 0.356933i \(0.883822\pi\)
\(68\) 0 0
\(69\) −3.43545 + 5.95037i −0.413580 + 0.716341i
\(70\) 0 0
\(71\) −0.740035 2.76185i −0.0878259 0.327771i 0.908008 0.418952i \(-0.137602\pi\)
−0.995834 + 0.0911811i \(0.970936\pi\)
\(72\) 0 0
\(73\) 0.0928135 0.0928135i 0.0108630 0.0108630i −0.701654 0.712517i \(-0.747555\pi\)
0.712517 + 0.701654i \(0.247555\pi\)
\(74\) 0 0
\(75\) −10.0251 + 5.78799i −1.15760 + 0.668339i
\(76\) 0 0
\(77\) 4.88528 0.556729
\(78\) 0 0
\(79\) 9.86517i 1.10992i 0.831877 + 0.554959i \(0.187266\pi\)
−0.831877 + 0.554959i \(0.812734\pi\)
\(80\) 0 0
\(81\) 5.62354 + 9.74026i 0.624838 + 1.08225i
\(82\) 0 0
\(83\) 7.31249 + 7.31249i 0.802650 + 0.802650i 0.983509 0.180859i \(-0.0578878\pi\)
−0.180859 + 0.983509i \(0.557888\pi\)
\(84\) 0 0
\(85\) 14.4462 3.87084i 1.56691 0.419851i
\(86\) 0 0
\(87\) 15.5166 + 8.95850i 1.66355 + 0.960452i
\(88\) 0 0
\(89\) 0.299076 + 0.0801373i 0.0317020 + 0.00849454i 0.274635 0.961548i \(-0.411443\pi\)
−0.242933 + 0.970043i \(0.578110\pi\)
\(90\) 0 0
\(91\) −4.43099 0.880132i −0.464494 0.0922629i
\(92\) 0 0
\(93\) −6.59946 1.76832i −0.684332 0.183366i
\(94\) 0 0
\(95\) −4.22719 + 7.32172i −0.433701 + 0.751192i
\(96\) 0 0
\(97\) 10.4399 2.79736i 1.06001 0.284029i 0.313628 0.949546i \(-0.398456\pi\)
0.746382 + 0.665517i \(0.231789\pi\)
\(98\) 0 0
\(99\) −3.98659 + 3.98659i −0.400667 + 0.400667i
\(100\) 0 0
\(101\) −1.29598 2.24470i −0.128955 0.223356i 0.794317 0.607503i \(-0.207829\pi\)
−0.923272 + 0.384147i \(0.874496\pi\)
\(102\) 0 0
\(103\) 6.17989 0.608923 0.304461 0.952525i \(-0.401524\pi\)
0.304461 + 0.952525i \(0.401524\pi\)
\(104\) 0 0
\(105\) −8.55664 −0.835042
\(106\) 0 0
\(107\) −8.60555 14.9053i −0.831930 1.44095i −0.896505 0.443033i \(-0.853903\pi\)
0.0645752 0.997913i \(-0.479431\pi\)
\(108\) 0 0
\(109\) −2.35705 + 2.35705i −0.225764 + 0.225764i −0.810920 0.585156i \(-0.801033\pi\)
0.585156 + 0.810920i \(0.301033\pi\)
\(110\) 0 0
\(111\) −15.2919 + 4.09746i −1.45145 + 0.388914i
\(112\) 0 0
\(113\) 3.88399 6.72727i 0.365375 0.632849i −0.623461 0.781854i \(-0.714274\pi\)
0.988836 + 0.149006i \(0.0476073\pi\)
\(114\) 0 0
\(115\) −10.1944 2.73159i −0.950635 0.254722i
\(116\) 0 0
\(117\) 4.33409 2.89764i 0.400687 0.267887i
\(118\) 0 0
\(119\) 5.58851 + 1.49744i 0.512297 + 0.137270i
\(120\) 0 0
\(121\) 3.63947 + 2.10125i 0.330861 + 0.191023i
\(122\) 0 0
\(123\) 3.07867 0.824927i 0.277594 0.0743811i
\(124\) 0 0
\(125\) −1.12226 1.12226i −0.100378 0.100378i
\(126\) 0 0
\(127\) −3.89299 6.74286i −0.345447 0.598332i 0.639988 0.768385i \(-0.278939\pi\)
−0.985435 + 0.170053i \(0.945606\pi\)
\(128\) 0 0
\(129\) 23.0967i 2.03355i
\(130\) 0 0
\(131\) 6.90178 0.603011 0.301505 0.953464i \(-0.402511\pi\)
0.301505 + 0.953464i \(0.402511\pi\)
\(132\) 0 0
\(133\) −2.83241 + 1.63529i −0.245601 + 0.141798i
\(134\) 0 0
\(135\) −7.50441 + 7.50441i −0.645877 + 0.645877i
\(136\) 0 0
\(137\) 0.462635 + 1.72658i 0.0395256 + 0.147512i 0.982869 0.184308i \(-0.0590043\pi\)
−0.943343 + 0.331819i \(0.892338\pi\)
\(138\) 0 0
\(139\) 3.70296 6.41371i 0.314081 0.544004i −0.665161 0.746700i \(-0.731637\pi\)
0.979242 + 0.202696i \(0.0649703\pi\)
\(140\) 0 0
\(141\) −2.55912 + 9.55075i −0.215516 + 0.804318i
\(142\) 0 0
\(143\) −10.5720 9.26634i −0.884076 0.774891i
\(144\) 0 0
\(145\) −7.12306 + 26.5836i −0.591538 + 2.20765i
\(146\) 0 0
\(147\) 9.91572 + 5.72484i 0.817835 + 0.472177i
\(148\) 0 0
\(149\) 5.80875 + 21.6786i 0.475872 + 1.77598i 0.618053 + 0.786136i \(0.287922\pi\)
−0.142182 + 0.989841i \(0.545412\pi\)
\(150\) 0 0
\(151\) 7.33817 + 7.33817i 0.597172 + 0.597172i 0.939559 0.342387i \(-0.111236\pi\)
−0.342387 + 0.939559i \(0.611236\pi\)
\(152\) 0 0
\(153\) −5.78242 + 3.33848i −0.467481 + 0.269900i
\(154\) 0 0
\(155\) 10.4947i 0.842954i
\(156\) 0 0
\(157\) 12.2573i 0.978235i −0.872218 0.489118i \(-0.837319\pi\)
0.872218 0.489118i \(-0.162681\pi\)
\(158\) 0 0
\(159\) 5.37265 3.10190i 0.426079 0.245997i
\(160\) 0 0
\(161\) −2.88700 2.88700i −0.227528 0.227528i
\(162\) 0 0
\(163\) −1.40055 5.22694i −0.109700 0.409405i 0.889136 0.457643i \(-0.151306\pi\)
−0.998836 + 0.0482377i \(0.984640\pi\)
\(164\) 0 0
\(165\) −23.0600 13.3137i −1.79522 1.03647i
\(166\) 0 0
\(167\) 0.577213 2.15419i 0.0446661 0.166696i −0.939990 0.341202i \(-0.889166\pi\)
0.984656 + 0.174506i \(0.0558327\pi\)
\(168\) 0 0
\(169\) 7.91948 + 10.3093i 0.609191 + 0.793024i
\(170\) 0 0
\(171\) 0.976897 3.64583i 0.0747052 0.278804i
\(172\) 0 0
\(173\) 7.82068 13.5458i 0.594596 1.02987i −0.399008 0.916947i \(-0.630646\pi\)
0.993604 0.112922i \(-0.0360211\pi\)
\(174\) 0 0
\(175\) −1.78034 6.64431i −0.134581 0.502263i
\(176\) 0 0
\(177\) −0.667828 + 0.667828i −0.0501971 + 0.0501971i
\(178\) 0 0
\(179\) −9.96811 + 5.75509i −0.745052 + 0.430156i −0.823903 0.566731i \(-0.808208\pi\)
0.0788516 + 0.996886i \(0.474875\pi\)
\(180\) 0 0
\(181\) 7.79567 0.579447 0.289724 0.957110i \(-0.406437\pi\)
0.289724 + 0.957110i \(0.406437\pi\)
\(182\) 0 0
\(183\) 23.6176i 1.74586i
\(184\) 0 0
\(185\) −12.1589 21.0598i −0.893939 1.54835i
\(186\) 0 0
\(187\) 12.7310 + 12.7310i 0.930983 + 0.930983i
\(188\) 0 0
\(189\) −3.96569 + 1.06260i −0.288461 + 0.0772930i
\(190\) 0 0
\(191\) −17.2652 9.96807i −1.24927 0.721265i −0.278304 0.960493i \(-0.589772\pi\)
−0.970963 + 0.239229i \(0.923105\pi\)
\(192\) 0 0
\(193\) 1.92417 + 0.515579i 0.138504 + 0.0371122i 0.327405 0.944884i \(-0.393826\pi\)
−0.188901 + 0.981996i \(0.560492\pi\)
\(194\) 0 0
\(195\) 18.5170 + 16.2301i 1.32603 + 1.16226i
\(196\) 0 0
\(197\) −12.2994 3.29561i −0.876294 0.234802i −0.207486 0.978238i \(-0.566528\pi\)
−0.668807 + 0.743436i \(0.733195\pi\)
\(198\) 0 0
\(199\) −4.99633 + 8.65390i −0.354180 + 0.613458i −0.986977 0.160859i \(-0.948573\pi\)
0.632797 + 0.774318i \(0.281907\pi\)
\(200\) 0 0
\(201\) 19.5566 5.24017i 1.37942 0.369613i
\(202\) 0 0
\(203\) −7.52833 + 7.52833i −0.528385 + 0.528385i
\(204\) 0 0
\(205\) 2.44790 + 4.23989i 0.170969 + 0.296127i
\(206\) 0 0
\(207\) 4.71183 0.327495
\(208\) 0 0
\(209\) −10.1777 −0.704009
\(210\) 0 0
\(211\) 1.69925 + 2.94319i 0.116981 + 0.202617i 0.918570 0.395258i \(-0.129345\pi\)
−0.801589 + 0.597876i \(0.796012\pi\)
\(212\) 0 0
\(213\) −4.26308 + 4.26308i −0.292102 + 0.292102i
\(214\) 0 0
\(215\) 34.2688 9.18228i 2.33711 0.626227i
\(216\) 0 0
\(217\) 2.02994 3.51596i 0.137801 0.238679i
\(218\) 0 0
\(219\) −0.267333 0.0716317i −0.0180647 0.00484042i
\(220\) 0 0
\(221\) −9.25351 13.8408i −0.622459 0.931030i
\(222\) 0 0
\(223\) 16.7653 + 4.49225i 1.12269 + 0.300823i 0.771971 0.635658i \(-0.219271\pi\)
0.350717 + 0.936481i \(0.385938\pi\)
\(224\) 0 0
\(225\) 6.87486 + 3.96920i 0.458324 + 0.264613i
\(226\) 0 0
\(227\) 7.61599 2.04070i 0.505491 0.135446i 0.00294381 0.999996i \(-0.499063\pi\)
0.502547 + 0.864550i \(0.332396\pi\)
\(228\) 0 0
\(229\) 4.45287 + 4.45287i 0.294254 + 0.294254i 0.838758 0.544504i \(-0.183282\pi\)
−0.544504 + 0.838758i \(0.683282\pi\)
\(230\) 0 0
\(231\) −5.15042 8.92078i −0.338873 0.586944i
\(232\) 0 0
\(233\) 5.68518i 0.372449i 0.982507 + 0.186224i \(0.0596251\pi\)
−0.982507 + 0.186224i \(0.940375\pi\)
\(234\) 0 0
\(235\) −15.1879 −0.990752
\(236\) 0 0
\(237\) 18.0143 10.4006i 1.17016 0.675591i
\(238\) 0 0
\(239\) −16.8128 + 16.8128i −1.08753 + 1.08753i −0.0917504 + 0.995782i \(0.529246\pi\)
−0.995782 + 0.0917504i \(0.970754\pi\)
\(240\) 0 0
\(241\) −5.03466 18.7896i −0.324311 1.21035i −0.915002 0.403448i \(-0.867812\pi\)
0.590691 0.806898i \(-0.298855\pi\)
\(242\) 0 0
\(243\) 6.94237 12.0245i 0.445353 0.771375i
\(244\) 0 0
\(245\) −4.55192 + 16.9880i −0.290812 + 1.08532i
\(246\) 0 0
\(247\) 9.23130 + 1.83362i 0.587374 + 0.116671i
\(248\) 0 0
\(249\) 5.64364 21.0624i 0.357651 1.33477i
\(250\) 0 0
\(251\) −2.07027 1.19527i −0.130674 0.0754449i 0.433238 0.901280i \(-0.357371\pi\)
−0.563912 + 0.825835i \(0.690704\pi\)
\(252\) 0 0
\(253\) −3.28840 12.2725i −0.206740 0.771563i
\(254\) 0 0
\(255\) −22.2986 22.2986i −1.39639 1.39639i
\(256\) 0 0
\(257\) 5.65573 3.26534i 0.352795 0.203686i −0.313121 0.949713i \(-0.601374\pi\)
0.665915 + 0.746027i \(0.268041\pi\)
\(258\) 0 0
\(259\) 9.40735i 0.584544i
\(260\) 0 0
\(261\) 12.2869i 0.760537i
\(262\) 0 0
\(263\) −20.7443 + 11.9767i −1.27915 + 0.738515i −0.976691 0.214649i \(-0.931139\pi\)
−0.302454 + 0.953164i \(0.597806\pi\)
\(264\) 0 0
\(265\) 6.73826 + 6.73826i 0.413928 + 0.413928i
\(266\) 0 0
\(267\) −0.168973 0.630617i −0.0103410 0.0385931i
\(268\) 0 0
\(269\) −9.95910 5.74989i −0.607217 0.350577i 0.164659 0.986351i \(-0.447348\pi\)
−0.771875 + 0.635774i \(0.780681\pi\)
\(270\) 0 0
\(271\) 3.39502 12.6704i 0.206233 0.769672i −0.782837 0.622227i \(-0.786228\pi\)
0.989070 0.147446i \(-0.0471051\pi\)
\(272\) 0 0
\(273\) 3.06430 + 9.01913i 0.185460 + 0.545862i
\(274\) 0 0
\(275\) 5.54023 20.6764i 0.334089 1.24684i
\(276\) 0 0
\(277\) −5.80918 + 10.0618i −0.349040 + 0.604554i −0.986079 0.166277i \(-0.946825\pi\)
0.637040 + 0.770831i \(0.280159\pi\)
\(278\) 0 0
\(279\) 1.21265 + 4.52568i 0.0725996 + 0.270946i
\(280\) 0 0
\(281\) −21.2569 + 21.2569i −1.26808 + 1.26808i −0.320998 + 0.947080i \(0.604018\pi\)
−0.947080 + 0.320998i \(0.895982\pi\)
\(282\) 0 0
\(283\) 13.0633 7.54209i 0.776532 0.448331i −0.0586678 0.998278i \(-0.518685\pi\)
0.835200 + 0.549947i \(0.185352\pi\)
\(284\) 0 0
\(285\) 17.8265 1.05595
\(286\) 0 0
\(287\) 1.89395i 0.111796i
\(288\) 0 0
\(289\) 2.16131 + 3.74349i 0.127136 + 0.220205i
\(290\) 0 0
\(291\) −16.1146 16.1146i −0.944656 0.944656i
\(292\) 0 0
\(293\) −19.0818 + 5.11294i −1.11477 + 0.298701i −0.768765 0.639532i \(-0.779128\pi\)
−0.346004 + 0.938233i \(0.612462\pi\)
\(294\) 0 0
\(295\) −1.25636 0.725362i −0.0731484 0.0422322i
\(296\) 0 0
\(297\) −12.3408 3.30672i −0.716088 0.191875i
\(298\) 0 0
\(299\) 0.771596 + 11.7237i 0.0446226 + 0.677997i
\(300\) 0 0
\(301\) 13.2569 + 3.55217i 0.764115 + 0.204744i
\(302\) 0 0
\(303\) −2.73263 + 4.73306i −0.156986 + 0.271907i
\(304\) 0 0
\(305\) 35.0416 9.38937i 2.00648 0.537634i
\(306\) 0 0
\(307\) −16.7842 + 16.7842i −0.957925 + 0.957925i −0.999150 0.0412249i \(-0.986874\pi\)
0.0412249 + 0.999150i \(0.486874\pi\)
\(308\) 0 0
\(309\) −6.51530 11.2848i −0.370642 0.641971i
\(310\) 0 0
\(311\) −2.69726 −0.152947 −0.0764737 0.997072i \(-0.524366\pi\)
−0.0764737 + 0.997072i \(0.524366\pi\)
\(312\) 0 0
\(313\) −1.31716 −0.0744504 −0.0372252 0.999307i \(-0.511852\pi\)
−0.0372252 + 0.999307i \(0.511852\pi\)
\(314\) 0 0
\(315\) 2.93392 + 5.08170i 0.165308 + 0.286322i
\(316\) 0 0
\(317\) −1.39773 + 1.39773i −0.0785043 + 0.0785043i −0.745269 0.666764i \(-0.767679\pi\)
0.666764 + 0.745269i \(0.267679\pi\)
\(318\) 0 0
\(319\) −32.0025 + 8.57503i −1.79179 + 0.480110i
\(320\) 0 0
\(321\) −18.1452 + 31.4284i −1.01277 + 1.75416i
\(322\) 0 0
\(323\) −11.6428 3.11968i −0.647823 0.173584i
\(324\) 0 0
\(325\) −8.75011 + 17.7556i −0.485369 + 0.984902i
\(326\) 0 0
\(327\) 6.78906 + 1.81912i 0.375436 + 0.100598i
\(328\) 0 0
\(329\) −5.08830 2.93773i −0.280527 0.161962i
\(330\) 0 0
\(331\) 21.5728 5.78041i 1.18575 0.317720i 0.388543 0.921430i \(-0.372978\pi\)
0.797204 + 0.603710i \(0.206312\pi\)
\(332\) 0 0
\(333\) 7.67678 + 7.67678i 0.420685 + 0.420685i
\(334\) 0 0
\(335\) 15.5498 + 26.9330i 0.849575 + 1.47151i
\(336\) 0 0
\(337\) 5.34167i 0.290980i −0.989360 0.145490i \(-0.953524\pi\)
0.989360 0.145490i \(-0.0464758\pi\)
\(338\) 0 0
\(339\) −16.3792 −0.889594
\(340\) 0 0
\(341\) 10.9413 6.31698i 0.592506 0.342083i
\(342\) 0 0
\(343\) −11.0127 + 11.0127i −0.594628 + 0.594628i
\(344\) 0 0
\(345\) 5.75968 + 21.4954i 0.310091 + 1.15727i
\(346\) 0 0
\(347\) −10.3411 + 17.9114i −0.555141 + 0.961532i 0.442752 + 0.896644i \(0.354002\pi\)
−0.997893 + 0.0648876i \(0.979331\pi\)
\(348\) 0 0
\(349\) 2.22015 8.28571i 0.118842 0.443524i −0.880704 0.473668i \(-0.842930\pi\)
0.999546 + 0.0301437i \(0.00959651\pi\)
\(350\) 0 0
\(351\) 10.5975 + 5.22255i 0.565653 + 0.278759i
\(352\) 0 0
\(353\) 0.901606 3.36484i 0.0479877 0.179092i −0.937772 0.347251i \(-0.887115\pi\)
0.985760 + 0.168158i \(0.0537820\pi\)
\(354\) 0 0
\(355\) −8.02001 4.63035i −0.425658 0.245754i
\(356\) 0 0
\(357\) −3.15741 11.7836i −0.167108 0.623655i
\(358\) 0 0
\(359\) 6.93846 + 6.93846i 0.366198 + 0.366198i 0.866089 0.499891i \(-0.166626\pi\)
−0.499891 + 0.866089i \(0.666626\pi\)
\(360\) 0 0
\(361\) −10.5536 + 6.09311i −0.555451 + 0.320690i
\(362\) 0 0
\(363\) 8.86117i 0.465091i
\(364\) 0 0
\(365\) 0.425123i 0.0222519i
\(366\) 0 0
\(367\) 22.4992 12.9899i 1.17445 0.678069i 0.219725 0.975562i \(-0.429484\pi\)
0.954724 + 0.297493i \(0.0961506\pi\)
\(368\) 0 0
\(369\) −1.54554 1.54554i −0.0804575 0.0804575i
\(370\) 0 0
\(371\) 0.954119 + 3.56082i 0.0495354 + 0.184869i
\(372\) 0 0
\(373\) 26.2714 + 15.1678i 1.36028 + 0.785360i 0.989661 0.143424i \(-0.0458111\pi\)
0.370622 + 0.928784i \(0.379144\pi\)
\(374\) 0 0
\(375\) −0.866136 + 3.23246i −0.0447271 + 0.166924i
\(376\) 0 0
\(377\) 30.5714 2.01206i 1.57451 0.103627i
\(378\) 0 0
\(379\) −2.16766 + 8.08981i −0.111345 + 0.415545i −0.998988 0.0449877i \(-0.985675\pi\)
0.887642 + 0.460533i \(0.152342\pi\)
\(380\) 0 0
\(381\) −8.20856 + 14.2176i −0.420537 + 0.728392i
\(382\) 0 0
\(383\) 7.70643 + 28.7608i 0.393780 + 1.46961i 0.823848 + 0.566811i \(0.191823\pi\)
−0.430067 + 0.902797i \(0.641510\pi\)
\(384\) 0 0
\(385\) 11.1883 11.1883i 0.570206 0.570206i
\(386\) 0 0
\(387\) −13.7169 + 7.91945i −0.697269 + 0.402568i
\(388\) 0 0
\(389\) −3.84623 −0.195011 −0.0975057 0.995235i \(-0.531086\pi\)
−0.0975057 + 0.995235i \(0.531086\pi\)
\(390\) 0 0
\(391\) 15.0470i 0.760961i
\(392\) 0 0
\(393\) −7.27636 12.6030i −0.367044 0.635738i
\(394\) 0 0
\(395\) 22.5932 + 22.5932i 1.13679 + 1.13679i
\(396\) 0 0
\(397\) 9.31163 2.49504i 0.467337 0.125223i −0.0174631 0.999848i \(-0.505559\pi\)
0.484800 + 0.874625i \(0.338892\pi\)
\(398\) 0 0
\(399\) 5.97227 + 3.44809i 0.298987 + 0.172621i
\(400\) 0 0
\(401\) −1.97323 0.528724i −0.0985382 0.0264032i 0.209213 0.977870i \(-0.432910\pi\)
−0.307751 + 0.951467i \(0.599576\pi\)
\(402\) 0 0
\(403\) −11.0619 + 3.75836i −0.551035 + 0.187217i
\(404\) 0 0
\(405\) 35.1862 + 9.42810i 1.74841 + 0.468486i
\(406\) 0 0
\(407\) 14.6374 25.3527i 0.725548 1.25669i
\(408\) 0 0
\(409\) −29.2634 + 7.84111i −1.44698 + 0.387718i −0.894973 0.446120i \(-0.852805\pi\)
−0.552010 + 0.833838i \(0.686139\pi\)
\(410\) 0 0
\(411\) 2.66508 2.66508i 0.131459 0.131459i
\(412\) 0 0
\(413\) −0.280607 0.486026i −0.0138078 0.0239158i
\(414\) 0 0
\(415\) 33.4941 1.64416
\(416\) 0 0
\(417\) −15.6157 −0.764705
\(418\) 0 0
\(419\) −6.89015 11.9341i −0.336606 0.583018i 0.647186 0.762332i \(-0.275946\pi\)
−0.983792 + 0.179314i \(0.942612\pi\)
\(420\) 0 0
\(421\) −4.93256 + 4.93256i −0.240398 + 0.240398i −0.817015 0.576617i \(-0.804373\pi\)
0.576617 + 0.817015i \(0.304373\pi\)
\(422\) 0 0
\(423\) 6.54957 1.75495i 0.318451 0.0853287i
\(424\) 0 0
\(425\) 12.6755 21.9546i 0.614851 1.06495i
\(426\) 0 0
\(427\) 13.5559 + 3.63229i 0.656015 + 0.175779i
\(428\) 0 0
\(429\) −5.77506 + 29.0743i −0.278823 + 1.40372i
\(430\) 0 0
\(431\) −8.44752 2.26351i −0.406903 0.109029i 0.0495614 0.998771i \(-0.484218\pi\)
−0.456464 + 0.889742i \(0.650884\pi\)
\(432\) 0 0
\(433\) −27.8926 16.1038i −1.34043 0.773899i −0.353561 0.935411i \(-0.615029\pi\)
−0.986871 + 0.161513i \(0.948363\pi\)
\(434\) 0 0
\(435\) 56.0528 15.0193i 2.68753 0.720120i
\(436\) 0 0
\(437\) 6.01464 + 6.01464i 0.287719 + 0.287719i
\(438\) 0 0
\(439\) 5.69401 + 9.86231i 0.271760 + 0.470702i 0.969313 0.245831i \(-0.0790609\pi\)
−0.697552 + 0.716534i \(0.745728\pi\)
\(440\) 0 0
\(441\) 7.85180i 0.373895i
\(442\) 0 0
\(443\) −27.4615 −1.30474 −0.652368 0.757902i \(-0.726224\pi\)
−0.652368 + 0.757902i \(0.726224\pi\)
\(444\) 0 0
\(445\) 0.868475 0.501414i 0.0411697 0.0237693i
\(446\) 0 0
\(447\) 33.4622 33.4622i 1.58271 1.58271i
\(448\) 0 0
\(449\) 2.24637 + 8.38356i 0.106013 + 0.395645i 0.998458 0.0555107i \(-0.0176787\pi\)
−0.892445 + 0.451155i \(0.851012\pi\)
\(450\) 0 0
\(451\) −2.94689 + 5.10416i −0.138763 + 0.240345i
\(452\) 0 0
\(453\) 5.66346 21.1363i 0.266093 0.993071i
\(454\) 0 0
\(455\) −12.1635 + 8.13217i −0.570235 + 0.381242i
\(456\) 0 0
\(457\) 4.80284 17.9244i 0.224667 0.838470i −0.757870 0.652405i \(-0.773760\pi\)
0.982538 0.186064i \(-0.0595733\pi\)
\(458\) 0 0
\(459\) −13.1037 7.56543i −0.611628 0.353124i
\(460\) 0 0
\(461\) 10.0386 + 37.4647i 0.467546 + 1.74491i 0.648308 + 0.761379i \(0.275477\pi\)
−0.180762 + 0.983527i \(0.557856\pi\)
\(462\) 0 0
\(463\) −9.92788 9.92788i −0.461388 0.461388i 0.437722 0.899110i \(-0.355785\pi\)
−0.899110 + 0.437722i \(0.855785\pi\)
\(464\) 0 0
\(465\) −19.1639 + 11.0643i −0.888704 + 0.513094i
\(466\) 0 0
\(467\) 35.4639i 1.64107i 0.571593 + 0.820537i \(0.306326\pi\)
−0.571593 + 0.820537i \(0.693674\pi\)
\(468\) 0 0
\(469\) 12.0309i 0.555535i
\(470\) 0 0
\(471\) −22.3824 + 12.9225i −1.03133 + 0.595437i
\(472\) 0 0
\(473\) 30.2001 + 30.2001i 1.38860 + 1.38860i
\(474\) 0 0
\(475\) 3.70907 + 13.8424i 0.170184 + 0.635134i
\(476\) 0 0
\(477\) −3.68437 2.12717i −0.168696 0.0973966i
\(478\) 0 0
\(479\) −1.42073 + 5.30222i −0.0649146 + 0.242265i −0.990758 0.135644i \(-0.956690\pi\)
0.925843 + 0.377908i \(0.123356\pi\)
\(480\) 0 0
\(481\) −17.8438 + 20.3580i −0.813606 + 0.928246i
\(482\) 0 0
\(483\) −2.22814 + 8.31552i −0.101384 + 0.378369i
\(484\) 0 0
\(485\) 17.5029 30.3159i 0.794766 1.37658i
\(486\) 0 0
\(487\) 4.62678 + 17.2674i 0.209659 + 0.782459i 0.987979 + 0.154590i \(0.0494058\pi\)
−0.778319 + 0.627869i \(0.783928\pi\)
\(488\) 0 0
\(489\) −8.06811 + 8.06811i −0.364852 + 0.364852i
\(490\) 0 0
\(491\) 8.57769 4.95233i 0.387106 0.223496i −0.293800 0.955867i \(-0.594920\pi\)
0.680905 + 0.732371i \(0.261586\pi\)
\(492\) 0 0
\(493\) −39.2376 −1.76717
\(494\) 0 0
\(495\) 18.2602i 0.820733i
\(496\) 0 0
\(497\) −1.79126 3.10255i −0.0803488 0.139168i
\(498\) 0 0
\(499\) −3.67656 3.67656i −0.164586 0.164586i 0.620009 0.784595i \(-0.287129\pi\)
−0.784595 + 0.620009i \(0.787129\pi\)
\(500\) 0 0
\(501\) −4.54220 + 1.21708i −0.202931 + 0.0543751i
\(502\) 0 0
\(503\) −1.93976 1.11992i −0.0864895 0.0499347i 0.456131 0.889912i \(-0.349235\pi\)
−0.542621 + 0.839978i \(0.682568\pi\)
\(504\) 0 0
\(505\) −8.10887 2.17276i −0.360840 0.0966868i
\(506\) 0 0
\(507\) 10.4761 25.3302i 0.465258 1.12496i
\(508\) 0 0
\(509\) −32.3428 8.66622i −1.43357 0.384123i −0.543292 0.839544i \(-0.682822\pi\)
−0.890276 + 0.455420i \(0.849489\pi\)
\(510\) 0 0
\(511\) 0.0822295 0.142426i 0.00363762 0.00630054i
\(512\) 0 0
\(513\) 8.26192 2.21377i 0.364773 0.0977405i
\(514\) 0 0
\(515\) 14.1532 14.1532i 0.623664 0.623664i
\(516\) 0 0
\(517\) −9.14193 15.8343i −0.402062 0.696391i
\(518\) 0 0
\(519\) −32.9805 −1.44769
\(520\) 0 0
\(521\) −3.39964 −0.148941 −0.0744704 0.997223i \(-0.523727\pi\)
−0.0744704 + 0.997223i \(0.523727\pi\)
\(522\) 0 0
\(523\) −6.71270 11.6267i −0.293526 0.508402i 0.681115 0.732176i \(-0.261495\pi\)
−0.974641 + 0.223775i \(0.928162\pi\)
\(524\) 0 0
\(525\) −10.2559 + 10.2559i −0.447605 + 0.447605i
\(526\) 0 0
\(527\) 14.4526 3.87256i 0.629565 0.168691i
\(528\) 0 0
\(529\) 6.19078 10.7227i 0.269164 0.466206i
\(530\) 0 0
\(531\) 0.625604 + 0.167630i 0.0271489 + 0.00727452i
\(532\) 0 0
\(533\) 3.59242 4.09860i 0.155605 0.177530i
\(534\) 0 0
\(535\) −53.8444 14.4276i −2.32790 0.623758i
\(536\) 0 0
\(537\) 21.0182 + 12.1349i 0.907003 + 0.523659i
\(538\) 0 0
\(539\) −20.4509 + 5.47979i −0.880881 + 0.236031i
\(540\) 0 0
\(541\) −18.5776 18.5776i −0.798712 0.798712i 0.184180 0.982892i \(-0.441037\pi\)
−0.982892 + 0.184180i \(0.941037\pi\)
\(542\) 0 0
\(543\) −8.21876 14.2353i −0.352701 0.610896i
\(544\) 0 0
\(545\) 10.7962i 0.462459i
\(546\) 0 0
\(547\) 20.0481 0.857194 0.428597 0.903496i \(-0.359008\pi\)
0.428597 + 0.903496i \(0.359008\pi\)
\(548\) 0 0
\(549\) −14.0262 + 8.09805i −0.598625 + 0.345617i
\(550\) 0 0
\(551\) 15.6842 15.6842i 0.668167 0.668167i
\(552\) 0 0
\(553\) 3.19914 + 11.9393i 0.136041 + 0.507712i
\(554\) 0 0
\(555\) −25.6376 + 44.4056i −1.08825 + 1.88491i
\(556\) 0 0
\(557\) 10.3278 38.5437i 0.437601 1.63315i −0.297164 0.954827i \(-0.596041\pi\)
0.734765 0.678322i \(-0.237293\pi\)
\(558\) 0 0
\(559\) −21.9509 32.8326i −0.928425 1.38867i
\(560\) 0 0
\(561\) 9.82556 36.6695i 0.414835 1.54819i
\(562\) 0 0
\(563\) −14.7019 8.48814i −0.619611 0.357732i 0.157107 0.987582i \(-0.449783\pi\)
−0.776717 + 0.629849i \(0.783117\pi\)
\(564\) 0 0
\(565\) −6.51168 24.3019i −0.273948 1.02239i
\(566\) 0 0
\(567\) 9.96452 + 9.96452i 0.418471 + 0.418471i
\(568\) 0 0
\(569\) 16.8884 9.75054i 0.708000 0.408764i −0.102320 0.994752i \(-0.532627\pi\)
0.810320 + 0.585988i \(0.199293\pi\)
\(570\) 0 0
\(571\) 41.0843i 1.71933i −0.510861 0.859663i \(-0.670673\pi\)
0.510861 0.859663i \(-0.329327\pi\)
\(572\) 0 0
\(573\) 42.0363i 1.75609i
\(574\) 0 0
\(575\) −15.4930 + 8.94489i −0.646103 + 0.373028i
\(576\) 0 0
\(577\) 9.64086 + 9.64086i 0.401354 + 0.401354i 0.878710 0.477356i \(-0.158405\pi\)
−0.477356 + 0.878710i \(0.658405\pi\)
\(578\) 0 0
\(579\) −1.08712 4.05719i −0.0451792 0.168611i
\(580\) 0 0
\(581\) 11.2213 + 6.47861i 0.465537 + 0.268778i
\(582\) 0 0
\(583\) −2.96912 + 11.0809i −0.122969 + 0.458925i
\(584\) 0 0
\(585\) 3.28975 16.5621i 0.136014 0.684759i
\(586\) 0 0
\(587\) 5.31077 19.8201i 0.219199 0.818062i −0.765447 0.643499i \(-0.777482\pi\)
0.984646 0.174563i \(-0.0558513\pi\)
\(588\) 0 0
\(589\) −4.22908 + 7.32498i −0.174256 + 0.301820i
\(590\) 0 0
\(591\) 6.94894 + 25.9338i 0.285841 + 1.06677i
\(592\) 0 0
\(593\) 2.37364 2.37364i 0.0974736 0.0974736i −0.656688 0.754162i \(-0.728043\pi\)
0.754162 + 0.656688i \(0.228043\pi\)
\(594\) 0 0
\(595\) 16.2282 9.36936i 0.665292 0.384107i
\(596\) 0 0
\(597\) 21.0700 0.862337
\(598\) 0 0
\(599\) 24.3394i 0.994482i −0.867613 0.497241i \(-0.834347\pi\)
0.867613 0.497241i \(-0.165653\pi\)
\(600\) 0 0
\(601\) −10.6546 18.4543i −0.434609 0.752765i 0.562654 0.826692i \(-0.309780\pi\)
−0.997264 + 0.0739270i \(0.976447\pi\)
\(602\) 0 0
\(603\) −9.81770 9.81770i −0.399808 0.399808i
\(604\) 0 0
\(605\) 13.1474 3.52284i 0.534518 0.143224i
\(606\) 0 0
\(607\) 6.84369 + 3.95121i 0.277777 + 0.160375i 0.632417 0.774628i \(-0.282063\pi\)
−0.354640 + 0.935003i \(0.615396\pi\)
\(608\) 0 0
\(609\) 21.6841 + 5.81023i 0.878683 + 0.235442i
\(610\) 0 0
\(611\) 5.43911 + 16.0089i 0.220043 + 0.647649i
\(612\) 0 0
\(613\) −6.78166 1.81714i −0.273909 0.0733936i 0.119250 0.992864i \(-0.461951\pi\)
−0.393159 + 0.919471i \(0.628618\pi\)
\(614\) 0 0
\(615\) 5.16152 8.94001i 0.208132 0.360496i
\(616\) 0 0
\(617\) −40.4764 + 10.8456i −1.62952 + 0.436628i −0.953778 0.300512i \(-0.902842\pi\)
−0.675740 + 0.737140i \(0.736176\pi\)
\(618\) 0 0
\(619\) 26.0395 26.0395i 1.04662 1.04662i 0.0477560 0.998859i \(-0.484793\pi\)
0.998859 0.0477560i \(-0.0152070\pi\)
\(620\) 0 0
\(621\) 5.33880 + 9.24707i 0.214239 + 0.371072i
\(622\) 0 0
\(623\) 0.387945 0.0155427
\(624\) 0 0
\(625\) 22.3097 0.892390
\(626\) 0 0
\(627\) 10.7301 + 18.5851i 0.428520 + 0.742218i
\(628\) 0 0
\(629\) 24.5155 24.5155i 0.977497 0.977497i
\(630\) 0 0
\(631\) −14.7339 + 3.94794i −0.586549 + 0.157165i −0.539875 0.841745i \(-0.681529\pi\)
−0.0466732 + 0.998910i \(0.514862\pi\)
\(632\) 0 0
\(633\) 3.58295 6.20585i 0.142409 0.246660i
\(634\) 0 0
\(635\) −24.3582 6.52677i −0.966627 0.259007i
\(636\) 0 0
\(637\) 19.5363 1.28579i 0.774058 0.0509448i
\(638\) 0 0
\(639\) 3.99354 + 1.07007i 0.157982 + 0.0423312i
\(640\) 0 0
\(641\) −7.34895 4.24292i −0.290266 0.167585i 0.347796 0.937570i \(-0.386930\pi\)
−0.638062 + 0.769985i \(0.720264\pi\)
\(642\) 0 0
\(643\) −14.0735 + 3.77097i −0.555003 + 0.148713i −0.525410 0.850849i \(-0.676088\pi\)
−0.0295934 + 0.999562i \(0.509421\pi\)
\(644\) 0 0
\(645\) −52.8960 52.8960i −2.08278 2.08278i
\(646\) 0 0
\(647\) −18.7622 32.4970i −0.737617 1.27759i −0.953566 0.301185i \(-0.902618\pi\)
0.215949 0.976405i \(-0.430715\pi\)
\(648\) 0 0
\(649\) 1.74644i 0.0685539i
\(650\) 0 0
\(651\) −8.56045 −0.335510
\(652\) 0 0
\(653\) 7.35887 4.24865i 0.287975 0.166262i −0.349053 0.937103i \(-0.613497\pi\)
0.637028 + 0.770840i \(0.280163\pi\)
\(654\) 0 0
\(655\) 15.8064 15.8064i 0.617609 0.617609i
\(656\) 0 0
\(657\) 0.0491226 + 0.183328i 0.00191645 + 0.00715230i
\(658\) 0 0
\(659\) 19.3603 33.5330i 0.754170 1.30626i −0.191615 0.981470i \(-0.561373\pi\)
0.945786 0.324791i \(-0.105294\pi\)
\(660\) 0 0
\(661\) −5.01953 + 18.7331i −0.195237 + 0.728635i 0.796968 + 0.604021i \(0.206436\pi\)
−0.992205 + 0.124614i \(0.960231\pi\)
\(662\) 0 0
\(663\) −15.5182 + 31.4894i −0.602678 + 1.22295i
\(664\) 0 0
\(665\) −2.74164 + 10.2319i −0.106316 + 0.396777i
\(666\) 0 0
\(667\) 23.9797 + 13.8447i 0.928497 + 0.536068i
\(668\) 0 0
\(669\) −9.47212 35.3504i −0.366213 1.36673i
\(670\) 0 0
\(671\) 30.8812 + 30.8812i 1.19216 + 1.19216i
\(672\) 0 0
\(673\) 29.8245 17.2192i 1.14965 0.663750i 0.200848 0.979622i \(-0.435630\pi\)
0.948802 + 0.315872i \(0.102297\pi\)
\(674\) 0 0
\(675\) 17.9894i 0.692414i
\(676\) 0 0
\(677\) 25.5730i 0.982851i −0.870920 0.491425i \(-0.836476\pi\)
0.870920 0.491425i \(-0.163524\pi\)
\(678\) 0 0
\(679\) 11.7277 6.77101i 0.450069 0.259848i
\(680\) 0 0
\(681\) −11.7558 11.7558i −0.450482 0.450482i
\(682\) 0 0
\(683\) −6.43982 24.0338i −0.246413 0.919626i −0.972668 0.232201i \(-0.925407\pi\)
0.726255 0.687426i \(-0.241259\pi\)
\(684\) 0 0
\(685\) 5.01373 + 2.89468i 0.191565 + 0.110600i
\(686\) 0 0
\(687\) 3.43664 12.8257i 0.131116 0.489332i
\(688\) 0 0
\(689\) 4.68936 9.51557i 0.178650 0.362514i
\(690\) 0 0
\(691\) −11.2681 + 42.0530i −0.428658 + 1.59977i 0.327146 + 0.944974i \(0.393913\pi\)
−0.755803 + 0.654799i \(0.772753\pi\)
\(692\) 0 0
\(693\) −3.53198 + 6.11756i −0.134169 + 0.232387i
\(694\) 0 0
\(695\) −6.20817 23.1692i −0.235489 0.878858i
\(696\) 0 0
\(697\) −4.93561 + 4.93561i −0.186950 + 0.186950i
\(698\) 0 0
\(699\) 10.3815 5.99373i 0.392663 0.226704i
\(700\) 0 0
\(701\) −10.1949 −0.385056 −0.192528 0.981292i \(-0.561669\pi\)
−0.192528 + 0.981292i \(0.561669\pi\)
\(702\) 0 0
\(703\) 19.5988i 0.739183i
\(704\) 0 0
\(705\) 16.0122 + 27.7340i 0.603056 + 1.04452i
\(706\) 0 0
\(707\) −2.29639 2.29639i −0.0863645 0.0863645i
\(708\) 0 0
\(709\) −16.4497 + 4.40767i −0.617780 + 0.165534i −0.554118 0.832438i \(-0.686944\pi\)
−0.0636615 + 0.997972i \(0.520278\pi\)
\(710\) 0 0
\(711\) −12.3536 7.13236i −0.463297 0.267484i
\(712\) 0 0
\(713\) −10.1990 2.73280i −0.381954 0.102344i
\(714\) 0 0
\(715\) −45.4338 + 2.99024i −1.69913 + 0.111828i
\(716\) 0 0
\(717\) 48.4265 + 12.9758i 1.80852 + 0.484592i
\(718\) 0 0
\(719\) 15.8375 27.4313i 0.590639 1.02302i −0.403508 0.914976i \(-0.632209\pi\)
0.994147 0.108040i \(-0.0344575\pi\)
\(720\) 0 0
\(721\) 7.47922 2.00405i 0.278541 0.0746348i
\(722\) 0 0
\(723\) −29.0030 + 29.0030i −1.07863 + 1.07863i
\(724\) 0 0
\(725\) 23.3253 + 40.4005i 0.866278 + 1.50044i
\(726\) 0 0
\(727\) −51.1295 −1.89629 −0.948144 0.317841i \(-0.897042\pi\)
−0.948144 + 0.317841i \(0.897042\pi\)
\(728\) 0 0
\(729\) 4.46461 0.165356
\(730\) 0 0
\(731\) 25.2904 + 43.8043i 0.935401 + 1.62016i
\(732\) 0 0
\(733\) −11.7589 + 11.7589i −0.434323 + 0.434323i −0.890096 0.455773i \(-0.849363\pi\)
0.455773 + 0.890096i \(0.349363\pi\)
\(734\) 0 0
\(735\) 35.8200 9.59794i 1.32124 0.354025i
\(736\) 0 0
\(737\) −18.7195 + 32.4231i −0.689541 + 1.19432i
\(738\) 0 0
\(739\) 31.0502 + 8.31988i 1.14220 + 0.306052i 0.779835 0.625985i \(-0.215303\pi\)
0.362365 + 0.932036i \(0.381969\pi\)
\(740\) 0 0
\(741\) −6.38402 18.7900i −0.234523 0.690268i
\(742\) 0 0
\(743\) 21.3536 + 5.72168i 0.783388 + 0.209908i 0.628278 0.777989i \(-0.283760\pi\)
0.155110 + 0.987897i \(0.450427\pi\)
\(744\) 0 0
\(745\) 62.9514 + 36.3450i 2.30636 + 1.33158i
\(746\) 0 0
\(747\) −14.4438 + 3.87022i −0.528472 + 0.141604i
\(748\) 0 0
\(749\) −15.2484 15.2484i −0.557166 0.557166i
\(750\) 0 0
\(751\) 12.7994 + 22.1693i 0.467058 + 0.808969i 0.999292 0.0376290i \(-0.0119805\pi\)
−0.532234 + 0.846598i \(0.678647\pi\)
\(752\) 0 0
\(753\) 5.04058i 0.183689i
\(754\) 0 0
\(755\) 33.6117 1.22326
\(756\) 0 0
\(757\) 2.23415 1.28989i 0.0812015 0.0468817i −0.458849 0.888514i \(-0.651738\pi\)
0.540051 + 0.841632i \(0.318405\pi\)
\(758\) 0 0
\(759\) −18.9433 + 18.9433i −0.687599 + 0.687599i
\(760\) 0 0
\(761\) 0.542840 + 2.02591i 0.0196779 + 0.0734390i 0.975067 0.221912i \(-0.0712299\pi\)
−0.955389 + 0.295351i \(0.904563\pi\)
\(762\) 0 0
\(763\) −2.08826 + 3.61697i −0.0756001 + 0.130943i
\(764\) 0 0
\(765\) −5.59710 + 20.8887i −0.202364 + 0.755232i
\(766\) 0 0
\(767\) −0.314639 + 1.58404i −0.0113610 + 0.0571963i
\(768\) 0 0
\(769\) −9.36439 + 34.9484i −0.337688 + 1.26027i 0.563237 + 0.826296i \(0.309556\pi\)
−0.900925 + 0.433975i \(0.857111\pi\)
\(770\) 0 0
\(771\) −11.9254 6.88511i −0.429482 0.247961i
\(772\) 0 0
\(773\) −0.0318054 0.118699i −0.00114396 0.00426932i 0.965351 0.260953i \(-0.0840368\pi\)
−0.966495 + 0.256684i \(0.917370\pi\)
\(774\) 0 0
\(775\) −12.5789 12.5789i −0.451846 0.451846i
\(776\) 0 0
\(777\) −17.1783 + 9.91792i −0.616269 + 0.355803i
\(778\) 0 0
\(779\) 3.94575i 0.141371i
\(780\) 0 0
\(781\) 11.1484i 0.398922i
\(782\) 0 0
\(783\) 24.1133 13.9218i 0.861738 0.497524i
\(784\) 0 0
\(785\) −28.0716 28.0716i −1.00192 1.00192i
\(786\) 0 0
\(787\) −12.5110 46.6918i −0.445970 1.66438i −0.713364 0.700794i \(-0.752829\pi\)
0.267394 0.963587i \(-0.413837\pi\)
\(788\) 0 0
\(789\) 43.7402 + 25.2534i 1.55719 + 0.899046i
\(790\) 0 0
\(791\) 2.51905 9.40121i 0.0895670 0.334269i
\(792\) 0 0
\(793\) −22.4460 33.5731i −0.797080 1.19222i
\(794\) 0 0
\(795\) 5.20046 19.4084i 0.184441 0.688345i
\(796\) 0 0
\(797\) −25.2414 + 43.7194i −0.894097 + 1.54862i −0.0591787 + 0.998247i \(0.518848\pi\)
−0.834918 + 0.550374i \(0.814485\pi\)
\(798\) 0 0
\(799\) −5.60437 20.9158i −0.198268 0.739948i
\(800\) 0 0
\(801\) −0.316579 + 0.316579i −0.0111858 + 0.0111858i
\(802\) 0 0
\(803\) 0.443215 0.255890i 0.0156407 0.00903017i
\(804\) 0 0
\(805\) −13.2236 −0.466071
\(806\) 0 0
\(807\) 24.2478i 0.853563i
\(808\) 0 0
\(809\) −14.2698 24.7160i −0.501700 0.868970i −0.999998 0.00196414i \(-0.999375\pi\)
0.498298 0.867006i \(-0.333959\pi\)
\(810\) 0 0
\(811\) −2.06103 2.06103i −0.0723725 0.0723725i 0.669994 0.742367i \(-0.266297\pi\)
−0.742367 + 0.669994i \(0.766297\pi\)
\(812\) 0 0
\(813\) −26.7161 + 7.15857i −0.936976 + 0.251062i
\(814\) 0 0
\(815\) −15.1783 8.76318i −0.531672 0.306961i
\(816\) 0 0
\(817\) −27.6187 7.40042i −0.966258 0.258908i
\(818\) 0 0
\(819\) 4.30567 4.91236i 0.150452 0.171652i
\(820\) 0 0
\(821\) −19.2311 5.15295i −0.671169 0.179839i −0.0928874 0.995677i \(-0.529610\pi\)
−0.578281 + 0.815838i \(0.696276\pi\)
\(822\) 0 0
\(823\) −24.7340 + 42.8406i −0.862174 + 1.49333i 0.00765139 + 0.999971i \(0.497564\pi\)
−0.869826 + 0.493359i \(0.835769\pi\)
\(824\) 0 0
\(825\) −43.5972 + 11.6818i −1.51786 + 0.406709i
\(826\) 0 0
\(827\) 29.4872 29.4872i 1.02537 1.02537i 0.0256999 0.999670i \(-0.491819\pi\)
0.999670 0.0256999i \(-0.00818142\pi\)
\(828\) 0 0
\(829\) −20.6361 35.7427i −0.716720 1.24140i −0.962292 0.272017i \(-0.912309\pi\)
0.245573 0.969378i \(-0.421024\pi\)
\(830\) 0 0
\(831\) 24.4978 0.849821
\(832\) 0 0
\(833\) −25.0744 −0.868776
\(834\) 0 0
\(835\) −3.61159 6.25545i −0.124984 0.216479i
\(836\) 0 0
\(837\) −7.50775 + 7.50775i −0.259506 + 0.259506i
\(838\) 0 0
\(839\) 4.33187 1.16072i 0.149553 0.0400726i −0.183266 0.983063i \(-0.558667\pi\)
0.332819 + 0.942991i \(0.392000\pi\)
\(840\) 0 0
\(841\) 21.6022 37.4162i 0.744905 1.29021i
\(842\) 0 0
\(843\) 61.2267 + 16.4056i 2.10876 + 0.565041i
\(844\) 0 0
\(845\) 41.7476 + 5.47318i 1.43616 + 0.188283i
\(846\) 0 0
\(847\) 5.08608 + 1.36281i 0.174760 + 0.0468268i
\(848\) 0 0
\(849\) −27.5446 15.9029i −0.945327 0.545785i
\(850\) 0 0
\(851\) −23.6325 + 6.33231i −0.810112 + 0.217069i
\(852\) 0 0
\(853\) 37.6495 + 37.6495i 1.28909 + 1.28909i 0.935338 + 0.353757i \(0.115096\pi\)
0.353757 + 0.935338i \(0.384904\pi\)
\(854\) 0 0
\(855\) −6.11239 10.5870i −0.209039 0.362067i
\(856\) 0 0
\(857\) 26.5260i 0.906111i 0.891482 + 0.453056i \(0.149666\pi\)
−0.891482 + 0.453056i \(0.850334\pi\)
\(858\) 0 0
\(859\) 12.7866 0.436275 0.218137 0.975918i \(-0.430002\pi\)
0.218137 + 0.975918i \(0.430002\pi\)
\(860\) 0 0
\(861\) 3.45845 1.99674i 0.117864 0.0680486i
\(862\) 0 0
\(863\) −0.543555 + 0.543555i −0.0185028 + 0.0185028i −0.716298 0.697795i \(-0.754165\pi\)
0.697795 + 0.716298i \(0.254165\pi\)
\(864\) 0 0
\(865\) −13.1117 48.9335i −0.445811 1.66379i
\(866\) 0 0
\(867\) 4.55721 7.89332i 0.154771 0.268071i
\(868\) 0 0
\(869\) −9.95539 + 37.1540i −0.337714 + 1.26036i
\(870\) 0 0
\(871\) 22.8201 26.0355i 0.773229 0.882180i
\(872\) 0 0
\(873\) −4.04489 + 15.0957i −0.136899 + 0.510914i
\(874\) 0 0
\(875\) −1.72214 0.994280i −0.0582191 0.0336128i
\(876\) 0 0
\(877\) −0.0541703 0.202166i −0.00182920 0.00682667i 0.965005 0.262231i \(-0.0844582\pi\)
−0.966834 + 0.255404i \(0.917791\pi\)
\(878\) 0 0
\(879\) 29.4539 + 29.4539i 0.993456 + 0.993456i
\(880\) 0 0
\(881\) 23.2483 13.4224i 0.783257 0.452213i −0.0543265 0.998523i \(-0.517301\pi\)
0.837583 + 0.546310i \(0.183968\pi\)
\(882\) 0 0
\(883\) 13.3689i 0.449900i 0.974370 + 0.224950i \(0.0722219\pi\)
−0.974370 + 0.224950i \(0.927778\pi\)
\(884\) 0 0
\(885\) 3.05892i 0.102824i
\(886\) 0 0
\(887\) −15.7025 + 9.06585i −0.527239 + 0.304402i −0.739891 0.672726i \(-0.765123\pi\)
0.212652 + 0.977128i \(0.431790\pi\)
\(888\) 0 0
\(889\) −6.89811 6.89811i −0.231355 0.231355i
\(890\) 0 0
\(891\) 11.3499 + 42.3586i 0.380237 + 1.41906i
\(892\) 0 0
\(893\) 10.6007 + 6.12033i 0.354739 + 0.204809i
\(894\) 0 0
\(895\) −9.64865 + 36.0093i −0.322519 + 1.20366i
\(896\) 0 0
\(897\) 20.5946 13.7689i 0.687633 0.459731i
\(898\) 0 0
\(899\) −7.12623 + 26.5955i −0.237673 + 0.887008i
\(900\) 0 0
\(901\) −6.79305 + 11.7659i −0.226309 + 0.391979i
\(902\) 0 0
\(903\) −7.48992 27.9528i −0.249249 0.930210i
\(904\) 0 0
\(905\) 17.8536 17.8536i 0.593475 0.593475i
\(906\) 0 0
\(907\) −45.5299 + 26.2867i −1.51180 + 0.872835i −0.511890 + 0.859051i \(0.671054\pi\)
−0.999905 + 0.0137843i \(0.995612\pi\)
\(908\) 0 0
\(909\) 3.74789 0.124310
\(910\) 0 0
\(911\) 35.3565i 1.17141i 0.810523 + 0.585706i \(0.199183\pi\)
−0.810523 + 0.585706i \(0.800817\pi\)
\(912\) 0 0
\(913\) 20.1608 + 34.9195i 0.667225 + 1.15567i
\(914\) 0 0
\(915\) −54.0889 54.0889i −1.78813 1.78813i
\(916\) 0 0
\(917\) 8.35288 2.23815i 0.275836 0.0739101i
\(918\) 0 0
\(919\) −8.61424 4.97343i −0.284158 0.164058i 0.351147 0.936321i \(-0.385792\pi\)
−0.635304 + 0.772262i \(0.719125\pi\)
\(920\) 0 0
\(921\) 48.3440 + 12.9537i 1.59299 + 0.426840i
\(922\) 0 0
\(923\) −2.00850 + 10.1117i −0.0661106 + 0.332831i
\(924\) 0 0
\(925\) −39.8156 10.6686i −1.30913 0.350780i
\(926\) 0 0
\(927\) −4.46796 + 7.73874i −0.146747 + 0.254174i
\(928\) 0 0
\(929\) 0.422561 0.113225i 0.0138638 0.00371478i −0.251880 0.967758i \(-0.581049\pi\)
0.265744 + 0.964044i \(0.414382\pi\)
\(930\) 0 0
\(931\) 10.0228 10.0228i 0.328484 0.328484i
\(932\) 0 0
\(933\) 2.84365 + 4.92534i 0.0930968 + 0.161248i
\(934\) 0 0
\(935\) 58.3131 1.90704
\(936\) 0 0
\(937\) 51.7178 1.68955 0.844773 0.535125i \(-0.179736\pi\)
0.844773 + 0.535125i \(0.179736\pi\)
\(938\) 0 0
\(939\) 1.38865 + 2.40521i 0.0453168 + 0.0784910i
\(940\) 0 0
\(941\) 13.5346 13.5346i 0.441216 0.441216i −0.451204 0.892421i \(-0.649005\pi\)
0.892421 + 0.451204i \(0.149005\pi\)
\(942\) 0 0
\(943\) 4.75784 1.27486i 0.154937 0.0415152i
\(944\) 0 0
\(945\) −6.64864 + 11.5158i −0.216280 + 0.374609i
\(946\) 0 0
\(947\) −42.1120 11.2839i −1.36846 0.366676i −0.501541 0.865134i \(-0.667233\pi\)
−0.866914 + 0.498457i \(0.833900\pi\)
\(948\) 0 0
\(949\) −0.448101 + 0.152245i −0.0145460 + 0.00494208i
\(950\) 0 0
\(951\) 4.02592 + 1.07874i 0.130549 + 0.0349806i
\(952\) 0 0
\(953\) −7.41906 4.28340i −0.240327 0.138753i 0.375000 0.927025i \(-0.377643\pi\)
−0.615327 + 0.788272i \(0.710976\pi\)
\(954\) 0 0
\(955\) −62.3696 + 16.7119i −2.01823 + 0.540784i
\(956\) 0 0
\(957\) 49.3978 + 49.3978i 1.59680 + 1.59680i
\(958\) 0 0
\(959\) 1.11981 + 1.93957i 0.0361605 + 0.0626319i
\(960\) 0 0
\(961\) 20.5006i 0.661311i
\(962\) 0 0
\(963\) 24.8867 0.801963
\(964\) 0 0
\(965\) 5.58750 3.22595i 0.179868 0.103847i
\(966\) 0 0
\(967\) −8.23209 + 8.23209i −0.264726 + 0.264726i −0.826971 0.562245i \(-0.809938\pi\)
0.562245 + 0.826971i \(0.309938\pi\)
\(968\) 0 0
\(969\) 6.57800 + 24.5494i 0.211316 + 0.788641i
\(970\) 0 0
\(971\) −5.46039 + 9.45767i −0.175232 + 0.303511i −0.940242 0.340508i \(-0.889401\pi\)
0.765009 + 0.644019i \(0.222734\pi\)
\(972\) 0 0
\(973\) 2.40163 8.96302i 0.0769929 0.287341i
\(974\) 0 0
\(975\) 41.6477 2.74105i 1.33379 0.0877839i
\(976\) 0 0
\(977\) −13.2470 + 49.4385i −0.423810 + 1.58168i 0.342699 + 0.939445i \(0.388659\pi\)
−0.766509 + 0.642234i \(0.778008\pi\)
\(978\) 0 0
\(979\) 1.04551 + 0.603623i 0.0334145 + 0.0192919i
\(980\) 0 0
\(981\) −1.24749 4.65570i −0.0398294 0.148645i
\(982\) 0 0
\(983\) 2.46458 + 2.46458i 0.0786077 + 0.0786077i 0.745317 0.666710i \(-0.232298\pi\)
−0.666710 + 0.745317i \(0.732298\pi\)
\(984\) 0 0
\(985\) −35.7156 + 20.6204i −1.13799 + 0.657021i
\(986\) 0 0
\(987\) 12.3887i 0.394336i
\(988\) 0 0
\(989\) 35.6941i 1.13501i
\(990\) 0 0
\(991\) −27.6587 + 15.9687i −0.878607 + 0.507264i −0.870199 0.492701i \(-0.836010\pi\)
−0.00840818 + 0.999965i \(0.502676\pi\)
\(992\) 0 0
\(993\) −33.2989 33.2989i −1.05671 1.05671i
\(994\) 0 0
\(995\) 8.37656 + 31.2617i 0.265555 + 0.991064i
\(996\) 0 0
\(997\) −45.7679 26.4241i −1.44948 0.836860i −0.451033 0.892507i \(-0.648944\pi\)
−0.998450 + 0.0556477i \(0.982278\pi\)
\(998\) 0 0
\(999\) −6.36759 + 23.7642i −0.201462 + 0.751865i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.bk.a.271.4 48
4.3 odd 2 104.2.u.a.11.7 yes 48
8.3 odd 2 inner 416.2.bk.a.271.3 48
8.5 even 2 104.2.u.a.11.4 48
12.11 even 2 936.2.ed.d.739.6 48
13.6 odd 12 inner 416.2.bk.a.175.3 48
24.5 odd 2 936.2.ed.d.739.9 48
52.19 even 12 104.2.u.a.19.4 yes 48
104.19 even 12 inner 416.2.bk.a.175.4 48
104.45 odd 12 104.2.u.a.19.7 yes 48
156.71 odd 12 936.2.ed.d.19.9 48
312.149 even 12 936.2.ed.d.19.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.u.a.11.4 48 8.5 even 2
104.2.u.a.11.7 yes 48 4.3 odd 2
104.2.u.a.19.4 yes 48 52.19 even 12
104.2.u.a.19.7 yes 48 104.45 odd 12
416.2.bk.a.175.3 48 13.6 odd 12 inner
416.2.bk.a.175.4 48 104.19 even 12 inner
416.2.bk.a.271.3 48 8.3 odd 2 inner
416.2.bk.a.271.4 48 1.1 even 1 trivial
936.2.ed.d.19.6 48 312.149 even 12
936.2.ed.d.19.9 48 156.71 odd 12
936.2.ed.d.739.6 48 12.11 even 2
936.2.ed.d.739.9 48 24.5 odd 2