Properties

Label 416.2.bk.a.175.9
Level $416$
Weight $2$
Character 416.175
Analytic conductor $3.322$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(15,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.15"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bk (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 175.9
Character \(\chi\) \(=\) 416.175
Dual form 416.2.bk.a.271.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.928193 - 1.60768i) q^{3} +(-1.51817 - 1.51817i) q^{5} +(-2.97768 - 0.797866i) q^{7} +(-0.223086 - 0.386396i) q^{9} +(-0.865440 + 0.231894i) q^{11} +(0.159516 - 3.60202i) q^{13} +(-3.84988 + 1.03157i) q^{15} +(1.05666 - 0.610061i) q^{17} +(-6.68538 - 1.79134i) q^{19} +(-4.04657 + 4.04657i) q^{21} +(0.433955 - 0.751632i) q^{23} -0.390340i q^{25} +4.74089 q^{27} +(-3.26808 - 1.88683i) q^{29} +(5.06168 + 5.06168i) q^{31} +(-0.430485 + 1.60659i) q^{33} +(3.30932 + 5.73191i) q^{35} +(2.52764 + 9.43328i) q^{37} +(-5.64283 - 3.59982i) q^{39} +(-3.12278 - 11.6544i) q^{41} +(4.22972 - 2.44203i) q^{43} +(-0.247932 + 0.925296i) q^{45} +(4.24871 - 4.24871i) q^{47} +(2.16780 + 1.25158i) q^{49} -2.26502i q^{51} -2.16454i q^{53} +(1.66594 + 0.961829i) q^{55} +(-9.08523 + 9.08523i) q^{57} +(-0.0382345 + 0.142693i) q^{59} +(7.26272 - 4.19313i) q^{61} +(0.355986 + 1.32856i) q^{63} +(-5.71064 + 5.22630i) q^{65} +(-0.422505 - 1.57681i) q^{67} +(-0.805588 - 1.39532i) q^{69} +(4.27941 - 15.9710i) q^{71} +(9.55184 + 9.55184i) q^{73} +(-0.627540 - 0.362311i) q^{75} +2.76202 q^{77} +6.37555i q^{79} +(5.06972 - 8.78102i) q^{81} +(-3.53261 + 3.53261i) q^{83} +(-2.53035 - 0.678006i) q^{85} +(-6.06683 + 3.50268i) q^{87} +(9.33624 - 2.50164i) q^{89} +(-3.34892 + 10.5984i) q^{91} +(12.8358 - 3.43933i) q^{93} +(7.42997 + 12.8691i) q^{95} +(-10.6893 - 2.86418i) q^{97} +(0.282671 + 0.282671i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{3} - 20 q^{9} + 8 q^{11} - 12 q^{17} + 8 q^{19} - 8 q^{27} + 4 q^{33} + 4 q^{35} + 12 q^{43} - 60 q^{49} + 36 q^{57} + 64 q^{59} - 16 q^{65} + 8 q^{67} - 12 q^{73} - 24 q^{75} - 8 q^{81} + 48 q^{83}+ \cdots - 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.928193 1.60768i 0.535893 0.928193i −0.463227 0.886240i \(-0.653308\pi\)
0.999120 0.0419537i \(-0.0133582\pi\)
\(4\) 0 0
\(5\) −1.51817 1.51817i −0.678945 0.678945i 0.280817 0.959761i \(-0.409395\pi\)
−0.959761 + 0.280817i \(0.909395\pi\)
\(6\) 0 0
\(7\) −2.97768 0.797866i −1.12546 0.301565i −0.352367 0.935862i \(-0.614623\pi\)
−0.773090 + 0.634297i \(0.781290\pi\)
\(8\) 0 0
\(9\) −0.223086 0.386396i −0.0743620 0.128799i
\(10\) 0 0
\(11\) −0.865440 + 0.231894i −0.260940 + 0.0699187i −0.386917 0.922114i \(-0.626460\pi\)
0.125977 + 0.992033i \(0.459793\pi\)
\(12\) 0 0
\(13\) 0.159516 3.60202i 0.0442419 0.999021i
\(14\) 0 0
\(15\) −3.84988 + 1.03157i −0.994034 + 0.266351i
\(16\) 0 0
\(17\) 1.05666 0.610061i 0.256277 0.147961i −0.366358 0.930474i \(-0.619396\pi\)
0.622635 + 0.782512i \(0.286062\pi\)
\(18\) 0 0
\(19\) −6.68538 1.79134i −1.53373 0.410962i −0.609498 0.792788i \(-0.708629\pi\)
−0.924235 + 0.381825i \(0.875296\pi\)
\(20\) 0 0
\(21\) −4.04657 + 4.04657i −0.883035 + 0.883035i
\(22\) 0 0
\(23\) 0.433955 0.751632i 0.0904858 0.156726i −0.817230 0.576312i \(-0.804491\pi\)
0.907716 + 0.419586i \(0.137825\pi\)
\(24\) 0 0
\(25\) 0.390340i 0.0780679i
\(26\) 0 0
\(27\) 4.74089 0.912385
\(28\) 0 0
\(29\) −3.26808 1.88683i −0.606868 0.350375i 0.164871 0.986315i \(-0.447279\pi\)
−0.771739 + 0.635940i \(0.780613\pi\)
\(30\) 0 0
\(31\) 5.06168 + 5.06168i 0.909104 + 0.909104i 0.996200 0.0870962i \(-0.0277588\pi\)
−0.0870962 + 0.996200i \(0.527759\pi\)
\(32\) 0 0
\(33\) −0.430485 + 1.60659i −0.0749378 + 0.279672i
\(34\) 0 0
\(35\) 3.30932 + 5.73191i 0.559377 + 0.968869i
\(36\) 0 0
\(37\) 2.52764 + 9.43328i 0.415542 + 1.55082i 0.783749 + 0.621078i \(0.213305\pi\)
−0.368207 + 0.929744i \(0.620028\pi\)
\(38\) 0 0
\(39\) −5.64283 3.59982i −0.903576 0.576433i
\(40\) 0 0
\(41\) −3.12278 11.6544i −0.487696 1.82011i −0.567602 0.823303i \(-0.692129\pi\)
0.0799065 0.996802i \(-0.474538\pi\)
\(42\) 0 0
\(43\) 4.22972 2.44203i 0.645026 0.372406i −0.141522 0.989935i \(-0.545200\pi\)
0.786548 + 0.617529i \(0.211866\pi\)
\(44\) 0 0
\(45\) −0.247932 + 0.925296i −0.0369596 + 0.137935i
\(46\) 0 0
\(47\) 4.24871 4.24871i 0.619738 0.619738i −0.325726 0.945464i \(-0.605609\pi\)
0.945464 + 0.325726i \(0.105609\pi\)
\(48\) 0 0
\(49\) 2.16780 + 1.25158i 0.309685 + 0.178797i
\(50\) 0 0
\(51\) 2.26502i 0.317166i
\(52\) 0 0
\(53\) 2.16454i 0.297323i −0.988888 0.148662i \(-0.952504\pi\)
0.988888 0.148662i \(-0.0474965\pi\)
\(54\) 0 0
\(55\) 1.66594 + 0.961829i 0.224635 + 0.129693i
\(56\) 0 0
\(57\) −9.08523 + 9.08523i −1.20337 + 1.20337i
\(58\) 0 0
\(59\) −0.0382345 + 0.142693i −0.00497771 + 0.0185771i −0.968370 0.249519i \(-0.919728\pi\)
0.963392 + 0.268096i \(0.0863943\pi\)
\(60\) 0 0
\(61\) 7.26272 4.19313i 0.929895 0.536875i 0.0431169 0.999070i \(-0.486271\pi\)
0.886778 + 0.462195i \(0.152938\pi\)
\(62\) 0 0
\(63\) 0.355986 + 1.32856i 0.0448500 + 0.167382i
\(64\) 0 0
\(65\) −5.71064 + 5.22630i −0.708318 + 0.648242i
\(66\) 0 0
\(67\) −0.422505 1.57681i −0.0516172 0.192638i 0.935303 0.353848i \(-0.115127\pi\)
−0.986920 + 0.161210i \(0.948460\pi\)
\(68\) 0 0
\(69\) −0.805588 1.39532i −0.0969814 0.167977i
\(70\) 0 0
\(71\) 4.27941 15.9710i 0.507873 1.89541i 0.0671978 0.997740i \(-0.478594\pi\)
0.440675 0.897667i \(-0.354739\pi\)
\(72\) 0 0
\(73\) 9.55184 + 9.55184i 1.11796 + 1.11796i 0.992041 + 0.125918i \(0.0401876\pi\)
0.125918 + 0.992041i \(0.459812\pi\)
\(74\) 0 0
\(75\) −0.627540 0.362311i −0.0724621 0.0418360i
\(76\) 0 0
\(77\) 2.76202 0.314762
\(78\) 0 0
\(79\) 6.37555i 0.717305i 0.933471 + 0.358653i \(0.116764\pi\)
−0.933471 + 0.358653i \(0.883236\pi\)
\(80\) 0 0
\(81\) 5.06972 8.78102i 0.563303 0.975669i
\(82\) 0 0
\(83\) −3.53261 + 3.53261i −0.387754 + 0.387754i −0.873886 0.486132i \(-0.838408\pi\)
0.486132 + 0.873886i \(0.338408\pi\)
\(84\) 0 0
\(85\) −2.53035 0.678006i −0.274455 0.0735401i
\(86\) 0 0
\(87\) −6.06683 + 3.50268i −0.650432 + 0.375527i
\(88\) 0 0
\(89\) 9.33624 2.50164i 0.989639 0.265173i 0.272540 0.962144i \(-0.412136\pi\)
0.717099 + 0.696971i \(0.245470\pi\)
\(90\) 0 0
\(91\) −3.34892 + 10.5984i −0.351062 + 1.11101i
\(92\) 0 0
\(93\) 12.8358 3.43933i 1.33101 0.356642i
\(94\) 0 0
\(95\) 7.42997 + 12.8691i 0.762299 + 1.32034i
\(96\) 0 0
\(97\) −10.6893 2.86418i −1.08533 0.290813i −0.328552 0.944486i \(-0.606561\pi\)
−0.756777 + 0.653673i \(0.773227\pi\)
\(98\) 0 0
\(99\) 0.282671 + 0.282671i 0.0284095 + 0.0284095i
\(100\) 0 0
\(101\) 2.21864 3.84279i 0.220763 0.382372i −0.734277 0.678850i \(-0.762479\pi\)
0.955040 + 0.296478i \(0.0958121\pi\)
\(102\) 0 0
\(103\) 6.24017 0.614862 0.307431 0.951570i \(-0.400531\pi\)
0.307431 + 0.951570i \(0.400531\pi\)
\(104\) 0 0
\(105\) 12.2867 1.19906
\(106\) 0 0
\(107\) −0.706753 + 1.22413i −0.0683244 + 0.118341i −0.898164 0.439661i \(-0.855099\pi\)
0.829839 + 0.558002i \(0.188432\pi\)
\(108\) 0 0
\(109\) 0.960216 + 0.960216i 0.0919720 + 0.0919720i 0.751596 0.659624i \(-0.229284\pi\)
−0.659624 + 0.751596i \(0.729284\pi\)
\(110\) 0 0
\(111\) 17.5118 + 4.69228i 1.66215 + 0.445371i
\(112\) 0 0
\(113\) 1.53001 + 2.65005i 0.143931 + 0.249296i 0.928974 0.370146i \(-0.120692\pi\)
−0.785043 + 0.619442i \(0.787359\pi\)
\(114\) 0 0
\(115\) −1.79992 + 0.482287i −0.167843 + 0.0449735i
\(116\) 0 0
\(117\) −1.42739 + 0.741924i −0.131963 + 0.0685909i
\(118\) 0 0
\(119\) −3.63313 + 0.973494i −0.333048 + 0.0892400i
\(120\) 0 0
\(121\) −8.83107 + 5.09862i −0.802824 + 0.463511i
\(122\) 0 0
\(123\) −21.6350 5.79708i −1.95076 0.522705i
\(124\) 0 0
\(125\) −8.18343 + 8.18343i −0.731949 + 0.731949i
\(126\) 0 0
\(127\) −3.69229 + 6.39523i −0.327637 + 0.567485i −0.982043 0.188659i \(-0.939586\pi\)
0.654405 + 0.756144i \(0.272919\pi\)
\(128\) 0 0
\(129\) 9.06670i 0.798278i
\(130\) 0 0
\(131\) 15.9912 1.39716 0.698580 0.715532i \(-0.253816\pi\)
0.698580 + 0.715532i \(0.253816\pi\)
\(132\) 0 0
\(133\) 18.4777 + 10.6681i 1.60222 + 0.925040i
\(134\) 0 0
\(135\) −7.19747 7.19747i −0.619459 0.619459i
\(136\) 0 0
\(137\) −2.60171 + 9.70972i −0.222279 + 0.829558i 0.761197 + 0.648521i \(0.224612\pi\)
−0.983476 + 0.181037i \(0.942055\pi\)
\(138\) 0 0
\(139\) 1.25261 + 2.16959i 0.106245 + 0.184022i 0.914246 0.405159i \(-0.132784\pi\)
−0.808001 + 0.589181i \(0.799450\pi\)
\(140\) 0 0
\(141\) −2.88694 10.7742i −0.243124 0.907350i
\(142\) 0 0
\(143\) 0.697235 + 3.15433i 0.0583057 + 0.263778i
\(144\) 0 0
\(145\) 2.09697 + 7.82602i 0.174144 + 0.649915i
\(146\) 0 0
\(147\) 4.02427 2.32341i 0.331916 0.191632i
\(148\) 0 0
\(149\) 1.27183 4.74654i 0.104192 0.388851i −0.894060 0.447947i \(-0.852155\pi\)
0.998252 + 0.0590960i \(0.0188218\pi\)
\(150\) 0 0
\(151\) −6.92678 + 6.92678i −0.563693 + 0.563693i −0.930355 0.366661i \(-0.880501\pi\)
0.366661 + 0.930355i \(0.380501\pi\)
\(152\) 0 0
\(153\) −0.471450 0.272192i −0.0381145 0.0220054i
\(154\) 0 0
\(155\) 15.3689i 1.23446i
\(156\) 0 0
\(157\) 18.0396i 1.43972i 0.694121 + 0.719858i \(0.255793\pi\)
−0.694121 + 0.719858i \(0.744207\pi\)
\(158\) 0 0
\(159\) −3.47989 2.00912i −0.275973 0.159333i
\(160\) 0 0
\(161\) −1.89188 + 1.89188i −0.149101 + 0.149101i
\(162\) 0 0
\(163\) 1.71282 6.39232i 0.134158 0.500685i −0.865842 0.500318i \(-0.833216\pi\)
1.00000 0.000367214i \(-0.000116888\pi\)
\(164\) 0 0
\(165\) 3.09262 1.78553i 0.240760 0.139003i
\(166\) 0 0
\(167\) −3.00756 11.2244i −0.232732 0.868569i −0.979158 0.203100i \(-0.934898\pi\)
0.746426 0.665469i \(-0.231768\pi\)
\(168\) 0 0
\(169\) −12.9491 1.14916i −0.996085 0.0883971i
\(170\) 0 0
\(171\) 0.799247 + 2.98283i 0.0611200 + 0.228103i
\(172\) 0 0
\(173\) −6.46840 11.2036i −0.491784 0.851794i 0.508172 0.861256i \(-0.330322\pi\)
−0.999955 + 0.00946175i \(0.996988\pi\)
\(174\) 0 0
\(175\) −0.311439 + 1.16231i −0.0235426 + 0.0878620i
\(176\) 0 0
\(177\) 0.193916 + 0.193916i 0.0145756 + 0.0145756i
\(178\) 0 0
\(179\) 4.56241 + 2.63411i 0.341011 + 0.196883i 0.660719 0.750633i \(-0.270252\pi\)
−0.319708 + 0.947516i \(0.603585\pi\)
\(180\) 0 0
\(181\) −12.7764 −0.949664 −0.474832 0.880077i \(-0.657491\pi\)
−0.474832 + 0.880077i \(0.657491\pi\)
\(182\) 0 0
\(183\) 15.5681i 1.15083i
\(184\) 0 0
\(185\) 10.4839 18.1587i 0.770793 1.33505i
\(186\) 0 0
\(187\) −0.773003 + 0.773003i −0.0565276 + 0.0565276i
\(188\) 0 0
\(189\) −14.1169 3.78260i −1.02685 0.275144i
\(190\) 0 0
\(191\) −4.76820 + 2.75292i −0.345015 + 0.199194i −0.662487 0.749073i \(-0.730499\pi\)
0.317473 + 0.948267i \(0.397166\pi\)
\(192\) 0 0
\(193\) −3.03099 + 0.812152i −0.218176 + 0.0584600i −0.366251 0.930516i \(-0.619359\pi\)
0.148075 + 0.988976i \(0.452692\pi\)
\(194\) 0 0
\(195\) 3.10162 + 14.0319i 0.222112 + 1.00484i
\(196\) 0 0
\(197\) −6.20134 + 1.66164i −0.441827 + 0.118387i −0.472873 0.881131i \(-0.656783\pi\)
0.0310457 + 0.999518i \(0.490116\pi\)
\(198\) 0 0
\(199\) −8.24489 14.2806i −0.584465 1.01232i −0.994942 0.100452i \(-0.967971\pi\)
0.410477 0.911871i \(-0.365362\pi\)
\(200\) 0 0
\(201\) −2.92717 0.784333i −0.206467 0.0553226i
\(202\) 0 0
\(203\) 8.22586 + 8.22586i 0.577342 + 0.577342i
\(204\) 0 0
\(205\) −12.9524 + 22.4342i −0.904633 + 1.56687i
\(206\) 0 0
\(207\) −0.387237 −0.0269148
\(208\) 0 0
\(209\) 6.20120 0.428946
\(210\) 0 0
\(211\) −1.39689 + 2.41949i −0.0961660 + 0.166564i −0.910095 0.414400i \(-0.863991\pi\)
0.813929 + 0.580965i \(0.197325\pi\)
\(212\) 0 0
\(213\) −21.7041 21.7041i −1.48714 1.48714i
\(214\) 0 0
\(215\) −10.1288 2.71401i −0.690780 0.185094i
\(216\) 0 0
\(217\) −11.0335 19.1106i −0.749003 1.29731i
\(218\) 0 0
\(219\) 24.2222 6.49033i 1.63679 0.438576i
\(220\) 0 0
\(221\) −2.02890 3.90341i −0.136478 0.262572i
\(222\) 0 0
\(223\) 17.8074 4.77148i 1.19247 0.319522i 0.392610 0.919705i \(-0.371572\pi\)
0.799863 + 0.600183i \(0.204906\pi\)
\(224\) 0 0
\(225\) −0.150826 + 0.0870793i −0.0100551 + 0.00580529i
\(226\) 0 0
\(227\) −11.3561 3.04286i −0.753731 0.201962i −0.138558 0.990354i \(-0.544247\pi\)
−0.615172 + 0.788393i \(0.710914\pi\)
\(228\) 0 0
\(229\) 12.3457 12.3457i 0.815827 0.815827i −0.169673 0.985500i \(-0.554271\pi\)
0.985500 + 0.169673i \(0.0542712\pi\)
\(230\) 0 0
\(231\) 2.56369 4.44044i 0.168679 0.292160i
\(232\) 0 0
\(233\) 12.3861i 0.811440i −0.913997 0.405720i \(-0.867021\pi\)
0.913997 0.405720i \(-0.132979\pi\)
\(234\) 0 0
\(235\) −12.9005 −0.841536
\(236\) 0 0
\(237\) 10.2498 + 5.91774i 0.665798 + 0.384399i
\(238\) 0 0
\(239\) −11.8203 11.8203i −0.764589 0.764589i 0.212559 0.977148i \(-0.431820\pi\)
−0.977148 + 0.212559i \(0.931820\pi\)
\(240\) 0 0
\(241\) 4.17425 15.5785i 0.268887 1.00350i −0.690941 0.722911i \(-0.742804\pi\)
0.959828 0.280589i \(-0.0905296\pi\)
\(242\) 0 0
\(243\) −2.30003 3.98377i −0.147547 0.255559i
\(244\) 0 0
\(245\) −1.39097 5.19118i −0.0888660 0.331652i
\(246\) 0 0
\(247\) −7.51889 + 23.7951i −0.478415 + 1.51405i
\(248\) 0 0
\(249\) 2.40035 + 8.95823i 0.152116 + 0.567705i
\(250\) 0 0
\(251\) −15.0162 + 8.66963i −0.947817 + 0.547222i −0.892402 0.451241i \(-0.850981\pi\)
−0.0554146 + 0.998463i \(0.517648\pi\)
\(252\) 0 0
\(253\) −0.201263 + 0.751124i −0.0126533 + 0.0472228i
\(254\) 0 0
\(255\) −3.43867 + 3.43867i −0.215338 + 0.215338i
\(256\) 0 0
\(257\) 15.3868 + 8.88359i 0.959804 + 0.554143i 0.896113 0.443826i \(-0.146379\pi\)
0.0636915 + 0.997970i \(0.479713\pi\)
\(258\) 0 0
\(259\) 30.1060i 1.87070i
\(260\) 0 0
\(261\) 1.68370i 0.104218i
\(262\) 0 0
\(263\) −13.6169 7.86171i −0.839653 0.484774i 0.0174932 0.999847i \(-0.494431\pi\)
−0.857146 + 0.515073i \(0.827765\pi\)
\(264\) 0 0
\(265\) −3.28614 + 3.28614i −0.201866 + 0.201866i
\(266\) 0 0
\(267\) 4.64401 17.3317i 0.284209 1.06068i
\(268\) 0 0
\(269\) −20.3903 + 11.7723i −1.24322 + 0.717771i −0.969748 0.244110i \(-0.921504\pi\)
−0.273469 + 0.961881i \(0.588171\pi\)
\(270\) 0 0
\(271\) 3.15771 + 11.7847i 0.191817 + 0.715872i 0.993068 + 0.117543i \(0.0375017\pi\)
−0.801251 + 0.598329i \(0.795832\pi\)
\(272\) 0 0
\(273\) 13.9303 + 15.2213i 0.843103 + 0.921237i
\(274\) 0 0
\(275\) 0.0905174 + 0.337816i 0.00545841 + 0.0203711i
\(276\) 0 0
\(277\) −0.828359 1.43476i −0.0497713 0.0862063i 0.840066 0.542483i \(-0.182516\pi\)
−0.889838 + 0.456277i \(0.849183\pi\)
\(278\) 0 0
\(279\) 0.826624 3.08500i 0.0494887 0.184694i
\(280\) 0 0
\(281\) 9.02164 + 9.02164i 0.538186 + 0.538186i 0.922996 0.384810i \(-0.125733\pi\)
−0.384810 + 0.922996i \(0.625733\pi\)
\(282\) 0 0
\(283\) 18.6957 + 10.7940i 1.11134 + 0.641634i 0.939177 0.343434i \(-0.111590\pi\)
0.172166 + 0.985068i \(0.444924\pi\)
\(284\) 0 0
\(285\) 27.5858 1.63404
\(286\) 0 0
\(287\) 37.1945i 2.19552i
\(288\) 0 0
\(289\) −7.75565 + 13.4332i −0.456215 + 0.790187i
\(290\) 0 0
\(291\) −14.5264 + 14.5264i −0.851551 + 0.851551i
\(292\) 0 0
\(293\) 22.9272 + 6.14333i 1.33942 + 0.358897i 0.856220 0.516612i \(-0.172807\pi\)
0.483202 + 0.875509i \(0.339474\pi\)
\(294\) 0 0
\(295\) 0.274678 0.158586i 0.0159924 0.00923321i
\(296\) 0 0
\(297\) −4.10296 + 1.09938i −0.238078 + 0.0637928i
\(298\) 0 0
\(299\) −2.63817 1.68301i −0.152569 0.0973311i
\(300\) 0 0
\(301\) −14.5432 + 3.89683i −0.838253 + 0.224609i
\(302\) 0 0
\(303\) −4.11865 7.13371i −0.236610 0.409821i
\(304\) 0 0
\(305\) −17.3919 4.66014i −0.995856 0.266839i
\(306\) 0 0
\(307\) 3.16487 + 3.16487i 0.180629 + 0.180629i 0.791630 0.611001i \(-0.209233\pi\)
−0.611001 + 0.791630i \(0.709233\pi\)
\(308\) 0 0
\(309\) 5.79208 10.0322i 0.329500 0.570711i
\(310\) 0 0
\(311\) 20.2792 1.14993 0.574965 0.818178i \(-0.305016\pi\)
0.574965 + 0.818178i \(0.305016\pi\)
\(312\) 0 0
\(313\) −2.16882 −0.122589 −0.0612945 0.998120i \(-0.519523\pi\)
−0.0612945 + 0.998120i \(0.519523\pi\)
\(314\) 0 0
\(315\) 1.47652 2.55742i 0.0831927 0.144094i
\(316\) 0 0
\(317\) 12.9527 + 12.9527i 0.727494 + 0.727494i 0.970120 0.242626i \(-0.0780087\pi\)
−0.242626 + 0.970120i \(0.578009\pi\)
\(318\) 0 0
\(319\) 3.26588 + 0.875089i 0.182854 + 0.0489956i
\(320\) 0 0
\(321\) 1.31201 + 2.27246i 0.0732291 + 0.126837i
\(322\) 0 0
\(323\) −8.15698 + 2.18566i −0.453866 + 0.121613i
\(324\) 0 0
\(325\) −1.40601 0.0622656i −0.0779915 0.00345387i
\(326\) 0 0
\(327\) 2.43498 0.652452i 0.134655 0.0360807i
\(328\) 0 0
\(329\) −16.0412 + 9.26139i −0.884380 + 0.510597i
\(330\) 0 0
\(331\) 1.73058 + 0.463707i 0.0951211 + 0.0254876i 0.306066 0.952010i \(-0.400987\pi\)
−0.210945 + 0.977498i \(0.567654\pi\)
\(332\) 0 0
\(333\) 3.08110 3.08110i 0.168843 0.168843i
\(334\) 0 0
\(335\) −1.75243 + 3.03529i −0.0957454 + 0.165836i
\(336\) 0 0
\(337\) 26.4251i 1.43947i −0.694250 0.719734i \(-0.744264\pi\)
0.694250 0.719734i \(-0.255736\pi\)
\(338\) 0 0
\(339\) 5.68057 0.308526
\(340\) 0 0
\(341\) −5.55435 3.20681i −0.300785 0.173658i
\(342\) 0 0
\(343\) 9.80227 + 9.80227i 0.529273 + 0.529273i
\(344\) 0 0
\(345\) −0.895310 + 3.34134i −0.0482019 + 0.179892i
\(346\) 0 0
\(347\) −13.6071 23.5682i −0.730469 1.26521i −0.956683 0.291131i \(-0.905968\pi\)
0.226214 0.974078i \(-0.427365\pi\)
\(348\) 0 0
\(349\) −1.42060 5.30175i −0.0760429 0.283796i 0.917425 0.397909i \(-0.130264\pi\)
−0.993468 + 0.114113i \(0.963597\pi\)
\(350\) 0 0
\(351\) 0.756250 17.0768i 0.0403656 0.911492i
\(352\) 0 0
\(353\) 2.30377 + 8.59780i 0.122618 + 0.457615i 0.999744 0.0226454i \(-0.00720886\pi\)
−0.877126 + 0.480260i \(0.840542\pi\)
\(354\) 0 0
\(355\) −30.7435 + 17.7497i −1.63169 + 0.942059i
\(356\) 0 0
\(357\) −1.80718 + 6.74449i −0.0956461 + 0.356956i
\(358\) 0 0
\(359\) 2.49366 2.49366i 0.131611 0.131611i −0.638233 0.769843i \(-0.720334\pi\)
0.769843 + 0.638233i \(0.220334\pi\)
\(360\) 0 0
\(361\) 25.0310 + 14.4516i 1.31742 + 0.760613i
\(362\) 0 0
\(363\) 18.9300i 0.993568i
\(364\) 0 0
\(365\) 29.0026i 1.51806i
\(366\) 0 0
\(367\) 3.94804 + 2.27940i 0.206086 + 0.118984i 0.599491 0.800381i \(-0.295370\pi\)
−0.393405 + 0.919365i \(0.628703\pi\)
\(368\) 0 0
\(369\) −3.80655 + 3.80655i −0.198161 + 0.198161i
\(370\) 0 0
\(371\) −1.72702 + 6.44532i −0.0896623 + 0.334624i
\(372\) 0 0
\(373\) 6.61761 3.82068i 0.342647 0.197827i −0.318795 0.947824i \(-0.603278\pi\)
0.661442 + 0.749997i \(0.269945\pi\)
\(374\) 0 0
\(375\) 5.56052 + 20.7521i 0.287144 + 1.07164i
\(376\) 0 0
\(377\) −7.31771 + 11.4707i −0.376881 + 0.590772i
\(378\) 0 0
\(379\) 6.19755 + 23.1296i 0.318347 + 1.18809i 0.920833 + 0.389957i \(0.127510\pi\)
−0.602486 + 0.798129i \(0.705823\pi\)
\(380\) 0 0
\(381\) 6.85431 + 11.8720i 0.351157 + 0.608222i
\(382\) 0 0
\(383\) 1.99580 7.44844i 0.101981 0.380598i −0.896004 0.444045i \(-0.853543\pi\)
0.997985 + 0.0634476i \(0.0202096\pi\)
\(384\) 0 0
\(385\) −4.19321 4.19321i −0.213706 0.213706i
\(386\) 0 0
\(387\) −1.88718 1.08956i −0.0959308 0.0553857i
\(388\) 0 0
\(389\) 31.2509 1.58448 0.792242 0.610207i \(-0.208914\pi\)
0.792242 + 0.610207i \(0.208914\pi\)
\(390\) 0 0
\(391\) 1.05895i 0.0535536i
\(392\) 0 0
\(393\) 14.8429 25.7087i 0.748727 1.29683i
\(394\) 0 0
\(395\) 9.67914 9.67914i 0.487011 0.487011i
\(396\) 0 0
\(397\) 9.70876 + 2.60145i 0.487269 + 0.130563i 0.494085 0.869413i \(-0.335503\pi\)
−0.00681640 + 0.999977i \(0.502170\pi\)
\(398\) 0 0
\(399\) 34.3017 19.8041i 1.71723 0.991445i
\(400\) 0 0
\(401\) −0.321158 + 0.0860540i −0.0160379 + 0.00429733i −0.266829 0.963744i \(-0.585976\pi\)
0.250791 + 0.968041i \(0.419309\pi\)
\(402\) 0 0
\(403\) 19.0397 17.4248i 0.948434 0.867993i
\(404\) 0 0
\(405\) −21.0277 + 5.63436i −1.04488 + 0.279974i
\(406\) 0 0
\(407\) −4.37504 7.57780i −0.216863 0.375618i
\(408\) 0 0
\(409\) 12.2976 + 3.29512i 0.608076 + 0.162933i 0.549701 0.835361i \(-0.314742\pi\)
0.0583746 + 0.998295i \(0.481408\pi\)
\(410\) 0 0
\(411\) 13.1952 + 13.1952i 0.650872 + 0.650872i
\(412\) 0 0
\(413\) 0.227700 0.394388i 0.0112044 0.0194066i
\(414\) 0 0
\(415\) 10.7262 0.526527
\(416\) 0 0
\(417\) 4.65067 0.227744
\(418\) 0 0
\(419\) 11.7449 20.3428i 0.573777 0.993812i −0.422396 0.906411i \(-0.638811\pi\)
0.996173 0.0874001i \(-0.0278559\pi\)
\(420\) 0 0
\(421\) 7.20576 + 7.20576i 0.351187 + 0.351187i 0.860551 0.509364i \(-0.170119\pi\)
−0.509364 + 0.860551i \(0.670119\pi\)
\(422\) 0 0
\(423\) −2.58951 0.693858i −0.125907 0.0337366i
\(424\) 0 0
\(425\) −0.238131 0.412455i −0.0115510 0.0200070i
\(426\) 0 0
\(427\) −24.9716 + 6.69112i −1.20846 + 0.323806i
\(428\) 0 0
\(429\) 5.71831 + 1.80689i 0.276083 + 0.0872377i
\(430\) 0 0
\(431\) −33.7738 + 9.04966i −1.62683 + 0.435907i −0.952997 0.302981i \(-0.902018\pi\)
−0.673829 + 0.738887i \(0.735352\pi\)
\(432\) 0 0
\(433\) −15.6775 + 9.05142i −0.753414 + 0.434984i −0.826926 0.562311i \(-0.809913\pi\)
0.0735123 + 0.997294i \(0.476579\pi\)
\(434\) 0 0
\(435\) 14.5281 + 3.89280i 0.696570 + 0.186645i
\(436\) 0 0
\(437\) −4.24758 + 4.24758i −0.203190 + 0.203190i
\(438\) 0 0
\(439\) 8.05255 13.9474i 0.384327 0.665674i −0.607348 0.794436i \(-0.707767\pi\)
0.991676 + 0.128761i \(0.0411001\pi\)
\(440\) 0 0
\(441\) 1.11684i 0.0531828i
\(442\) 0 0
\(443\) 17.9120 0.851025 0.425512 0.904953i \(-0.360094\pi\)
0.425512 + 0.904953i \(0.360094\pi\)
\(444\) 0 0
\(445\) −17.9719 10.3761i −0.851948 0.491872i
\(446\) 0 0
\(447\) −6.45040 6.45040i −0.305093 0.305093i
\(448\) 0 0
\(449\) 6.95151 25.9434i 0.328062 1.22434i −0.583136 0.812375i \(-0.698174\pi\)
0.911198 0.411969i \(-0.135159\pi\)
\(450\) 0 0
\(451\) 5.40515 + 9.36200i 0.254519 + 0.440839i
\(452\) 0 0
\(453\) 4.70664 + 17.5654i 0.221137 + 0.825296i
\(454\) 0 0
\(455\) 21.1743 11.0059i 0.992668 0.515964i
\(456\) 0 0
\(457\) 4.15957 + 15.5237i 0.194577 + 0.726170i 0.992376 + 0.123247i \(0.0393307\pi\)
−0.797799 + 0.602923i \(0.794003\pi\)
\(458\) 0 0
\(459\) 5.00949 2.89223i 0.233823 0.134998i
\(460\) 0 0
\(461\) 3.69416 13.7868i 0.172054 0.642115i −0.824981 0.565161i \(-0.808814\pi\)
0.997035 0.0769536i \(-0.0245193\pi\)
\(462\) 0 0
\(463\) 4.18298 4.18298i 0.194400 0.194400i −0.603194 0.797594i \(-0.706106\pi\)
0.797594 + 0.603194i \(0.206106\pi\)
\(464\) 0 0
\(465\) −24.7083 14.2653i −1.14582 0.661539i
\(466\) 0 0
\(467\) 3.76421i 0.174187i −0.996200 0.0870935i \(-0.972242\pi\)
0.996200 0.0870935i \(-0.0277579\pi\)
\(468\) 0 0
\(469\) 5.03234i 0.232372i
\(470\) 0 0
\(471\) 29.0019 + 16.7442i 1.33634 + 0.771534i
\(472\) 0 0
\(473\) −3.09428 + 3.09428i −0.142275 + 0.142275i
\(474\) 0 0
\(475\) −0.699232 + 2.60957i −0.0320830 + 0.119735i
\(476\) 0 0
\(477\) −0.836372 + 0.482880i −0.0382948 + 0.0221095i
\(478\) 0 0
\(479\) −2.57796 9.62109i −0.117790 0.439599i 0.881690 0.471828i \(-0.156406\pi\)
−0.999480 + 0.0322298i \(0.989739\pi\)
\(480\) 0 0
\(481\) 34.3821 7.59985i 1.56769 0.346523i
\(482\) 0 0
\(483\) 1.28550 + 4.79756i 0.0584924 + 0.218297i
\(484\) 0 0
\(485\) 11.8798 + 20.5764i 0.539433 + 0.934325i
\(486\) 0 0
\(487\) −7.18195 + 26.8034i −0.325445 + 1.21458i 0.588418 + 0.808557i \(0.299751\pi\)
−0.913864 + 0.406021i \(0.866916\pi\)
\(488\) 0 0
\(489\) −8.68697 8.68697i −0.392838 0.392838i
\(490\) 0 0
\(491\) 4.70703 + 2.71760i 0.212425 + 0.122644i 0.602438 0.798166i \(-0.294196\pi\)
−0.390013 + 0.920809i \(0.627529\pi\)
\(492\) 0 0
\(493\) −4.60432 −0.207368
\(494\) 0 0
\(495\) 0.858282i 0.0385769i
\(496\) 0 0
\(497\) −25.4854 + 44.1420i −1.14318 + 1.98004i
\(498\) 0 0
\(499\) −14.7930 + 14.7930i −0.662226 + 0.662226i −0.955904 0.293678i \(-0.905121\pi\)
0.293678 + 0.955904i \(0.405121\pi\)
\(500\) 0 0
\(501\) −20.8368 5.58320i −0.930920 0.249439i
\(502\) 0 0
\(503\) −1.65389 + 0.954873i −0.0737432 + 0.0425757i −0.536418 0.843952i \(-0.680223\pi\)
0.462675 + 0.886528i \(0.346890\pi\)
\(504\) 0 0
\(505\) −9.20226 + 2.46574i −0.409495 + 0.109724i
\(506\) 0 0
\(507\) −13.8668 + 19.7514i −0.615845 + 0.877188i
\(508\) 0 0
\(509\) 25.0168 6.70324i 1.10885 0.297116i 0.342488 0.939522i \(-0.388730\pi\)
0.766364 + 0.642406i \(0.222064\pi\)
\(510\) 0 0
\(511\) −20.8212 36.0634i −0.921076 1.59535i
\(512\) 0 0
\(513\) −31.6947 8.49257i −1.39935 0.374956i
\(514\) 0 0
\(515\) −9.47362 9.47362i −0.417457 0.417457i
\(516\) 0 0
\(517\) −2.69176 + 4.66226i −0.118383 + 0.205046i
\(518\) 0 0
\(519\) −24.0157 −1.05417
\(520\) 0 0
\(521\) −34.4885 −1.51097 −0.755485 0.655166i \(-0.772599\pi\)
−0.755485 + 0.655166i \(0.772599\pi\)
\(522\) 0 0
\(523\) 4.27922 7.41182i 0.187117 0.324096i −0.757171 0.653217i \(-0.773419\pi\)
0.944288 + 0.329121i \(0.106752\pi\)
\(524\) 0 0
\(525\) 1.57954 + 1.57954i 0.0689367 + 0.0689367i
\(526\) 0 0
\(527\) 8.43638 + 2.26052i 0.367494 + 0.0984698i
\(528\) 0 0
\(529\) 11.1234 + 19.2662i 0.483625 + 0.837662i
\(530\) 0 0
\(531\) 0.0636657 0.0170592i 0.00276285 0.000740305i
\(532\) 0 0
\(533\) −42.4774 + 9.38924i −1.83990 + 0.406693i
\(534\) 0 0
\(535\) 2.93141 0.785468i 0.126736 0.0339587i
\(536\) 0 0
\(537\) 8.46961 4.88993i 0.365490 0.211016i
\(538\) 0 0
\(539\) −2.16633 0.580467i −0.0933105 0.0250025i
\(540\) 0 0
\(541\) 4.38710 4.38710i 0.188616 0.188616i −0.606481 0.795098i \(-0.707420\pi\)
0.795098 + 0.606481i \(0.207420\pi\)
\(542\) 0 0
\(543\) −11.8590 + 20.5404i −0.508918 + 0.881472i
\(544\) 0 0
\(545\) 2.91553i 0.124888i
\(546\) 0 0
\(547\) 7.06581 0.302112 0.151056 0.988525i \(-0.451733\pi\)
0.151056 + 0.988525i \(0.451733\pi\)
\(548\) 0 0
\(549\) −3.24042 1.87086i −0.138298 0.0798462i
\(550\) 0 0
\(551\) 18.4684 + 18.4684i 0.786782 + 0.786782i
\(552\) 0 0
\(553\) 5.08683 18.9843i 0.216314 0.807296i
\(554\) 0 0
\(555\) −19.4622 33.7095i −0.826124 1.43089i
\(556\) 0 0
\(557\) 5.75717 + 21.4861i 0.243939 + 0.910394i 0.973914 + 0.226919i \(0.0728653\pi\)
−0.729974 + 0.683475i \(0.760468\pi\)
\(558\) 0 0
\(559\) −8.12153 15.6251i −0.343504 0.660870i
\(560\) 0 0
\(561\) 0.525244 + 1.96024i 0.0221758 + 0.0827613i
\(562\) 0 0
\(563\) −7.46259 + 4.30853i −0.314511 + 0.181583i −0.648943 0.760837i \(-0.724789\pi\)
0.334432 + 0.942420i \(0.391455\pi\)
\(564\) 0 0
\(565\) 1.70041 6.34603i 0.0715369 0.266979i
\(566\) 0 0
\(567\) −22.1021 + 22.1021i −0.928200 + 0.928200i
\(568\) 0 0
\(569\) 18.5329 + 10.7000i 0.776940 + 0.448566i 0.835345 0.549727i \(-0.185268\pi\)
−0.0584048 + 0.998293i \(0.518601\pi\)
\(570\) 0 0
\(571\) 32.6657i 1.36702i −0.729943 0.683508i \(-0.760454\pi\)
0.729943 0.683508i \(-0.239546\pi\)
\(572\) 0 0
\(573\) 10.2210i 0.426987i
\(574\) 0 0
\(575\) −0.293392 0.169390i −0.0122353 0.00706404i
\(576\) 0 0
\(577\) 14.9528 14.9528i 0.622495 0.622495i −0.323674 0.946169i \(-0.604918\pi\)
0.946169 + 0.323674i \(0.104918\pi\)
\(578\) 0 0
\(579\) −1.50767 + 5.62670i −0.0626566 + 0.233838i
\(580\) 0 0
\(581\) 13.3375 7.70041i 0.553333 0.319467i
\(582\) 0 0
\(583\) 0.501945 + 1.87328i 0.0207884 + 0.0775835i
\(584\) 0 0
\(585\) 3.29338 + 1.04066i 0.136165 + 0.0430259i
\(586\) 0 0
\(587\) −2.77481 10.3557i −0.114529 0.427427i 0.884722 0.466118i \(-0.154348\pi\)
−0.999251 + 0.0386910i \(0.987681\pi\)
\(588\) 0 0
\(589\) −24.7720 42.9064i −1.02071 1.76793i
\(590\) 0 0
\(591\) −3.08465 + 11.5121i −0.126886 + 0.473544i
\(592\) 0 0
\(593\) −1.75970 1.75970i −0.0722623 0.0722623i 0.670052 0.742314i \(-0.266272\pi\)
−0.742314 + 0.670052i \(0.766272\pi\)
\(594\) 0 0
\(595\) 6.99362 + 4.03777i 0.286710 + 0.165532i
\(596\) 0 0
\(597\) −30.6114 −1.25284
\(598\) 0 0
\(599\) 27.9976i 1.14395i −0.820271 0.571975i \(-0.806177\pi\)
0.820271 0.571975i \(-0.193823\pi\)
\(600\) 0 0
\(601\) 0.221136 0.383018i 0.00902032 0.0156236i −0.861480 0.507791i \(-0.830462\pi\)
0.870500 + 0.492168i \(0.163795\pi\)
\(602\) 0 0
\(603\) −0.515019 + 0.515019i −0.0209732 + 0.0209732i
\(604\) 0 0
\(605\) 21.1476 + 5.66648i 0.859772 + 0.230375i
\(606\) 0 0
\(607\) −5.63658 + 3.25428i −0.228782 + 0.132087i −0.610010 0.792394i \(-0.708835\pi\)
0.381228 + 0.924481i \(0.375501\pi\)
\(608\) 0 0
\(609\) 20.8597 5.58935i 0.845279 0.226492i
\(610\) 0 0
\(611\) −14.6262 15.9817i −0.591713 0.646550i
\(612\) 0 0
\(613\) 0.889978 0.238469i 0.0359459 0.00963167i −0.240801 0.970574i \(-0.577410\pi\)
0.276747 + 0.960943i \(0.410744\pi\)
\(614\) 0 0
\(615\) 24.0446 + 41.6465i 0.969572 + 1.67935i
\(616\) 0 0
\(617\) 31.2554 + 8.37486i 1.25830 + 0.337159i 0.825536 0.564350i \(-0.190873\pi\)
0.432760 + 0.901509i \(0.357540\pi\)
\(618\) 0 0
\(619\) 5.65589 + 5.65589i 0.227329 + 0.227329i 0.811576 0.584247i \(-0.198610\pi\)
−0.584247 + 0.811576i \(0.698610\pi\)
\(620\) 0 0
\(621\) 2.05733 3.56341i 0.0825579 0.142995i
\(622\) 0 0
\(623\) −29.7963 −1.19376
\(624\) 0 0
\(625\) 22.8959 0.915837
\(626\) 0 0
\(627\) 5.75592 9.96954i 0.229869 0.398145i
\(628\) 0 0
\(629\) 8.42572 + 8.42572i 0.335955 + 0.335955i
\(630\) 0 0
\(631\) −37.9511 10.1690i −1.51081 0.404820i −0.594106 0.804387i \(-0.702494\pi\)
−0.916704 + 0.399567i \(0.869161\pi\)
\(632\) 0 0
\(633\) 2.59317 + 4.49151i 0.103069 + 0.178521i
\(634\) 0 0
\(635\) 15.3145 4.10351i 0.607738 0.162843i
\(636\) 0 0
\(637\) 4.85401 7.60880i 0.192323 0.301472i
\(638\) 0 0
\(639\) −7.12580 + 1.90935i −0.281892 + 0.0755328i
\(640\) 0 0
\(641\) 30.9704 17.8808i 1.22326 0.706248i 0.257647 0.966239i \(-0.417053\pi\)
0.965611 + 0.259991i \(0.0837196\pi\)
\(642\) 0 0
\(643\) 38.3465 + 10.2749i 1.51224 + 0.405203i 0.917178 0.398477i \(-0.130461\pi\)
0.595061 + 0.803680i \(0.297128\pi\)
\(644\) 0 0
\(645\) −13.7648 + 13.7648i −0.541987 + 0.541987i
\(646\) 0 0
\(647\) −10.7499 + 18.6195i −0.422624 + 0.732006i −0.996195 0.0871493i \(-0.972224\pi\)
0.573571 + 0.819156i \(0.305558\pi\)
\(648\) 0 0
\(649\) 0.132359i 0.00519554i
\(650\) 0 0
\(651\) −40.9649 −1.60554
\(652\) 0 0
\(653\) −35.0221 20.2200i −1.37052 0.791270i −0.379526 0.925181i \(-0.623913\pi\)
−0.990993 + 0.133911i \(0.957246\pi\)
\(654\) 0 0
\(655\) −24.2773 24.2773i −0.948594 0.948594i
\(656\) 0 0
\(657\) 1.55991 5.82168i 0.0608580 0.227125i
\(658\) 0 0
\(659\) 19.3441 + 33.5049i 0.753539 + 1.30517i 0.946098 + 0.323882i \(0.104988\pi\)
−0.192559 + 0.981285i \(0.561679\pi\)
\(660\) 0 0
\(661\) −6.62710 24.7327i −0.257764 0.961990i −0.966532 0.256548i \(-0.917415\pi\)
0.708767 0.705443i \(-0.249252\pi\)
\(662\) 0 0
\(663\) −8.15864 0.361307i −0.316855 0.0140320i
\(664\) 0 0
\(665\) −11.8562 44.2481i −0.459766 1.71587i
\(666\) 0 0
\(667\) −2.83640 + 1.63760i −0.109826 + 0.0634080i
\(668\) 0 0
\(669\) 8.85771 33.0574i 0.342459 1.27807i
\(670\) 0 0
\(671\) −5.31309 + 5.31309i −0.205109 + 0.205109i
\(672\) 0 0
\(673\) −14.8421 8.56910i −0.572121 0.330314i 0.185875 0.982573i \(-0.440488\pi\)
−0.757996 + 0.652259i \(0.773821\pi\)
\(674\) 0 0
\(675\) 1.85056i 0.0712280i
\(676\) 0 0
\(677\) 3.78614i 0.145513i 0.997350 + 0.0727565i \(0.0231796\pi\)
−0.997350 + 0.0727565i \(0.976820\pi\)
\(678\) 0 0
\(679\) 29.5439 + 17.0572i 1.13379 + 0.654595i
\(680\) 0 0
\(681\) −15.4326 + 15.4326i −0.591378 + 0.591378i
\(682\) 0 0
\(683\) −6.18965 + 23.1001i −0.236840 + 0.883900i 0.740470 + 0.672089i \(0.234603\pi\)
−0.977311 + 0.211811i \(0.932064\pi\)
\(684\) 0 0
\(685\) 18.6908 10.7911i 0.714139 0.412309i
\(686\) 0 0
\(687\) −8.38872 31.3071i −0.320050 1.19444i
\(688\) 0 0
\(689\) −7.79674 0.345280i −0.297032 0.0131541i
\(690\) 0 0
\(691\) −8.71060 32.5084i −0.331367 1.23668i −0.907755 0.419502i \(-0.862205\pi\)
0.576388 0.817176i \(-0.304462\pi\)
\(692\) 0 0
\(693\) −0.616169 1.06724i −0.0234063 0.0405409i
\(694\) 0 0
\(695\) 1.39212 5.19547i 0.0528062 0.197076i
\(696\) 0 0
\(697\) −10.4096 10.4096i −0.394290 0.394290i
\(698\) 0 0
\(699\) −19.9129 11.4967i −0.753173 0.434845i
\(700\) 0 0
\(701\) −42.4122 −1.60189 −0.800943 0.598741i \(-0.795668\pi\)
−0.800943 + 0.598741i \(0.795668\pi\)
\(702\) 0 0
\(703\) 67.5930i 2.54932i
\(704\) 0 0
\(705\) −11.9742 + 20.7399i −0.450973 + 0.781109i
\(706\) 0 0
\(707\) −9.67242 + 9.67242i −0.363769 + 0.363769i
\(708\) 0 0
\(709\) 16.5841 + 4.44369i 0.622828 + 0.166886i 0.556413 0.830906i \(-0.312177\pi\)
0.0664152 + 0.997792i \(0.478844\pi\)
\(710\) 0 0
\(711\) 2.46349 1.42230i 0.0923880 0.0533402i
\(712\) 0 0
\(713\) 6.00105 1.60798i 0.224741 0.0602192i
\(714\) 0 0
\(715\) 3.73027 5.84731i 0.139504 0.218677i
\(716\) 0 0
\(717\) −29.9747 + 8.03169i −1.11942 + 0.299949i
\(718\) 0 0
\(719\) 12.9144 + 22.3684i 0.481625 + 0.834199i 0.999778 0.0210891i \(-0.00671335\pi\)
−0.518152 + 0.855288i \(0.673380\pi\)
\(720\) 0 0
\(721\) −18.5812 4.97882i −0.692000 0.185421i
\(722\) 0 0
\(723\) −21.1707 21.1707i −0.787347 0.787347i
\(724\) 0 0
\(725\) −0.736504 + 1.27566i −0.0273531 + 0.0473769i
\(726\) 0 0
\(727\) 20.4783 0.759499 0.379749 0.925089i \(-0.376010\pi\)
0.379749 + 0.925089i \(0.376010\pi\)
\(728\) 0 0
\(729\) 21.8789 0.810328
\(730\) 0 0
\(731\) 2.97957 5.16077i 0.110203 0.190878i
\(732\) 0 0
\(733\) −3.94018 3.94018i −0.145534 0.145534i 0.630586 0.776120i \(-0.282815\pi\)
−0.776120 + 0.630586i \(0.782815\pi\)
\(734\) 0 0
\(735\) −9.63684 2.58218i −0.355460 0.0952452i
\(736\) 0 0
\(737\) 0.731306 + 1.26666i 0.0269380 + 0.0466580i
\(738\) 0 0
\(739\) 7.07345 1.89532i 0.260201 0.0697206i −0.126360 0.991984i \(-0.540329\pi\)
0.386561 + 0.922264i \(0.373663\pi\)
\(740\) 0 0
\(741\) 31.2760 + 34.1744i 1.14895 + 1.25543i
\(742\) 0 0
\(743\) 18.7680 5.02887i 0.688530 0.184491i 0.102443 0.994739i \(-0.467334\pi\)
0.586088 + 0.810248i \(0.300667\pi\)
\(744\) 0 0
\(745\) −9.13688 + 5.27518i −0.334750 + 0.193268i
\(746\) 0 0
\(747\) 2.15306 + 0.576911i 0.0787764 + 0.0211081i
\(748\) 0 0
\(749\) 3.08118 3.08118i 0.112584 0.112584i
\(750\) 0 0
\(751\) 1.09140 1.89037i 0.0398259 0.0689805i −0.845425 0.534094i \(-0.820653\pi\)
0.885251 + 0.465113i \(0.153986\pi\)
\(752\) 0 0
\(753\) 32.1884i 1.17301i
\(754\) 0 0
\(755\) 21.0320 0.765433
\(756\) 0 0
\(757\) −30.6174 17.6769i −1.11281 0.642479i −0.173252 0.984878i \(-0.555428\pi\)
−0.939555 + 0.342398i \(0.888761\pi\)
\(758\) 0 0
\(759\) 1.02075 + 1.02075i 0.0370510 + 0.0370510i
\(760\) 0 0
\(761\) −12.7004 + 47.3984i −0.460388 + 1.71819i 0.211356 + 0.977409i \(0.432212\pi\)
−0.671744 + 0.740783i \(0.734455\pi\)
\(762\) 0 0
\(763\) −2.09309 3.62534i −0.0757749 0.131246i
\(764\) 0 0
\(765\) 0.302507 + 1.12897i 0.0109372 + 0.0408181i
\(766\) 0 0
\(767\) 0.507885 + 0.160483i 0.0183386 + 0.00579472i
\(768\) 0 0
\(769\) 9.20326 + 34.3470i 0.331878 + 1.23859i 0.907214 + 0.420669i \(0.138205\pi\)
−0.575336 + 0.817917i \(0.695129\pi\)
\(770\) 0 0
\(771\) 28.5639 16.4914i 1.02870 0.593923i
\(772\) 0 0
\(773\) 2.31295 8.63204i 0.0831910 0.310473i −0.911775 0.410691i \(-0.865287\pi\)
0.994965 + 0.100218i \(0.0319541\pi\)
\(774\) 0 0
\(775\) 1.97577 1.97577i 0.0709718 0.0709718i
\(776\) 0 0
\(777\) −48.4007 27.9442i −1.73637 1.00249i
\(778\) 0 0
\(779\) 83.5078i 2.99198i
\(780\) 0 0
\(781\) 14.8143i 0.530097i
\(782\) 0 0
\(783\) −15.4936 8.94525i −0.553697 0.319677i
\(784\) 0 0
\(785\) 27.3871 27.3871i 0.977488 0.977488i
\(786\) 0 0
\(787\) −0.134667 + 0.502585i −0.00480037 + 0.0179152i −0.968284 0.249850i \(-0.919619\pi\)
0.963484 + 0.267766i \(0.0862853\pi\)
\(788\) 0 0
\(789\) −25.2782 + 14.5944i −0.899928 + 0.519574i
\(790\) 0 0
\(791\) −2.44148 9.11174i −0.0868092 0.323976i
\(792\) 0 0
\(793\) −13.9452 26.8293i −0.495209 0.952737i
\(794\) 0 0
\(795\) 2.23288 + 8.33323i 0.0791922 + 0.295549i
\(796\) 0 0
\(797\) 26.5438 + 45.9751i 0.940228 + 1.62852i 0.765035 + 0.643989i \(0.222722\pi\)
0.175193 + 0.984534i \(0.443945\pi\)
\(798\) 0 0
\(799\) 1.89746 7.08140i 0.0671271 0.250522i
\(800\) 0 0
\(801\) −3.04941 3.04941i −0.107745 0.107745i
\(802\) 0 0
\(803\) −10.4816 6.05153i −0.369886 0.213554i
\(804\) 0 0
\(805\) 5.74438 0.202463
\(806\) 0 0
\(807\) 43.7080i 1.53859i
\(808\) 0 0
\(809\) −0.520277 + 0.901146i −0.0182920 + 0.0316826i −0.875026 0.484075i \(-0.839156\pi\)
0.856735 + 0.515758i \(0.172490\pi\)
\(810\) 0 0
\(811\) 37.2714 37.2714i 1.30878 1.30878i 0.386479 0.922298i \(-0.373691\pi\)
0.922298 0.386479i \(-0.126309\pi\)
\(812\) 0 0
\(813\) 21.8770 + 5.86193i 0.767261 + 0.205587i
\(814\) 0 0
\(815\) −12.3050 + 7.10427i −0.431024 + 0.248852i
\(816\) 0 0
\(817\) −32.6518 + 8.74903i −1.14234 + 0.306090i
\(818\) 0 0
\(819\) 4.84227 1.07034i 0.169203 0.0374007i
\(820\) 0 0
\(821\) 35.4311 9.49372i 1.23655 0.331333i 0.419425 0.907790i \(-0.362232\pi\)
0.817128 + 0.576457i \(0.195565\pi\)
\(822\) 0 0
\(823\) 5.46329 + 9.46269i 0.190438 + 0.329849i 0.945396 0.325925i \(-0.105676\pi\)
−0.754957 + 0.655774i \(0.772342\pi\)
\(824\) 0 0
\(825\) 0.627117 + 0.168035i 0.0218334 + 0.00585024i
\(826\) 0 0
\(827\) 7.38922 + 7.38922i 0.256948 + 0.256948i 0.823812 0.566864i \(-0.191843\pi\)
−0.566864 + 0.823812i \(0.691843\pi\)
\(828\) 0 0
\(829\) 9.96688 17.2631i 0.346164 0.599574i −0.639401 0.768874i \(-0.720817\pi\)
0.985565 + 0.169300i \(0.0541507\pi\)
\(830\) 0 0
\(831\) −3.07551 −0.106688
\(832\) 0 0
\(833\) 3.05415 0.105820
\(834\) 0 0
\(835\) −12.4745 + 21.6065i −0.431698 + 0.747723i
\(836\) 0 0
\(837\) 23.9969 + 23.9969i 0.829453 + 0.829453i
\(838\) 0 0
\(839\) 46.7341 + 12.5224i 1.61344 + 0.432320i 0.949065 0.315079i \(-0.102031\pi\)
0.664375 + 0.747399i \(0.268698\pi\)
\(840\) 0 0
\(841\) −7.37975 12.7821i −0.254474 0.440762i
\(842\) 0 0
\(843\) 22.8777 6.13007i 0.787951 0.211131i
\(844\) 0 0
\(845\) 17.9143 + 21.4035i 0.616270 + 0.736304i
\(846\) 0 0
\(847\) 30.3641 8.13603i 1.04332 0.279557i
\(848\) 0 0
\(849\) 34.7064 20.0378i 1.19112 0.687694i
\(850\) 0 0
\(851\) 8.18724 + 2.19376i 0.280655 + 0.0752012i
\(852\) 0 0
\(853\) 0.897526 0.897526i 0.0307307 0.0307307i −0.691574 0.722305i \(-0.743083\pi\)
0.722305 + 0.691574i \(0.243083\pi\)
\(854\) 0 0
\(855\) 3.31504 5.74183i 0.113372 0.196366i
\(856\) 0 0
\(857\) 11.9475i 0.408120i 0.978958 + 0.204060i \(0.0654137\pi\)
−0.978958 + 0.204060i \(0.934586\pi\)
\(858\) 0 0
\(859\) −46.0184 −1.57013 −0.785065 0.619414i \(-0.787370\pi\)
−0.785065 + 0.619414i \(0.787370\pi\)
\(860\) 0 0
\(861\) 59.7968 + 34.5237i 2.03787 + 1.17656i
\(862\) 0 0
\(863\) 15.2947 + 15.2947i 0.520639 + 0.520639i 0.917764 0.397125i \(-0.129992\pi\)
−0.397125 + 0.917764i \(0.629992\pi\)
\(864\) 0 0
\(865\) −7.18882 + 26.8290i −0.244427 + 0.912215i
\(866\) 0 0
\(867\) 14.3975 + 24.9372i 0.488964 + 0.846911i
\(868\) 0 0
\(869\) −1.47845 5.51766i −0.0501530 0.187174i
\(870\) 0 0
\(871\) −5.74710 + 1.27034i −0.194733 + 0.0430440i
\(872\) 0 0
\(873\) 1.27792 + 4.76925i 0.0432509 + 0.161415i
\(874\) 0 0
\(875\) 30.8969 17.8383i 1.04451 0.603046i
\(876\) 0 0
\(877\) −4.34149 + 16.2027i −0.146602 + 0.547125i 0.853077 + 0.521785i \(0.174734\pi\)
−0.999679 + 0.0253405i \(0.991933\pi\)
\(878\) 0 0
\(879\) 31.1574 31.1574i 1.05091 1.05091i
\(880\) 0 0
\(881\) −11.9739 6.91316i −0.403412 0.232910i 0.284543 0.958663i \(-0.408158\pi\)
−0.687955 + 0.725753i \(0.741491\pi\)
\(882\) 0 0
\(883\) 9.15740i 0.308171i 0.988058 + 0.154086i \(0.0492431\pi\)
−0.988058 + 0.154086i \(0.950757\pi\)
\(884\) 0 0
\(885\) 0.588792i 0.0197920i
\(886\) 0 0
\(887\) 23.0479 + 13.3067i 0.773873 + 0.446796i 0.834255 0.551379i \(-0.185898\pi\)
−0.0603813 + 0.998175i \(0.519232\pi\)
\(888\) 0 0
\(889\) 16.0970 16.0970i 0.539875 0.539875i
\(890\) 0 0
\(891\) −2.35128 + 8.77509i −0.0787708 + 0.293976i
\(892\) 0 0
\(893\) −36.0152 + 20.7934i −1.20520 + 0.695824i
\(894\) 0 0
\(895\) −2.92749 10.9255i −0.0978551 0.365200i
\(896\) 0 0
\(897\) −5.15447 + 2.67917i −0.172103 + 0.0894548i
\(898\) 0 0
\(899\) −6.99146 26.0925i −0.233178 0.870233i
\(900\) 0 0
\(901\) −1.32050 2.28718i −0.0439923 0.0761970i
\(902\) 0 0
\(903\) −7.23402 + 26.9977i −0.240733 + 0.898428i
\(904\) 0 0
\(905\) 19.3967 + 19.3967i 0.644769 + 0.644769i
\(906\) 0 0
\(907\) 24.0477 + 13.8839i 0.798490 + 0.461008i 0.842943 0.538003i \(-0.180821\pi\)
−0.0444530 + 0.999011i \(0.514154\pi\)
\(908\) 0 0
\(909\) −1.97979 −0.0656654
\(910\) 0 0
\(911\) 49.1603i 1.62875i 0.580336 + 0.814377i \(0.302921\pi\)
−0.580336 + 0.814377i \(0.697079\pi\)
\(912\) 0 0
\(913\) 2.23807 3.87645i 0.0740693 0.128292i
\(914\) 0 0
\(915\) −23.6350 + 23.6350i −0.781350 + 0.781350i
\(916\) 0 0
\(917\) −47.6167 12.7589i −1.57244 0.421334i
\(918\) 0 0
\(919\) −1.24049 + 0.716196i −0.0409199 + 0.0236251i −0.520320 0.853971i \(-0.674187\pi\)
0.479400 + 0.877596i \(0.340854\pi\)
\(920\) 0 0
\(921\) 8.02570 2.15048i 0.264456 0.0708607i
\(922\) 0 0
\(923\) −56.8452 17.9622i −1.87108 0.591232i
\(924\) 0 0
\(925\) 3.68218 0.986638i 0.121069 0.0324405i
\(926\) 0 0
\(927\) −1.39209 2.41118i −0.0457224 0.0791935i
\(928\) 0 0
\(929\) −21.5871 5.78426i −0.708251 0.189775i −0.113328 0.993558i \(-0.536151\pi\)
−0.594924 + 0.803782i \(0.702818\pi\)
\(930\) 0 0
\(931\) −12.2505 12.2505i −0.401495 0.401495i
\(932\) 0 0
\(933\) 18.8231 32.6025i 0.616239 1.06736i
\(934\) 0 0
\(935\) 2.34710 0.0767582
\(936\) 0 0
\(937\) 13.0538 0.426448 0.213224 0.977003i \(-0.431604\pi\)
0.213224 + 0.977003i \(0.431604\pi\)
\(938\) 0 0
\(939\) −2.01308 + 3.48676i −0.0656945 + 0.113786i
\(940\) 0 0
\(941\) −16.6807 16.6807i −0.543777 0.543777i 0.380857 0.924634i \(-0.375629\pi\)
−0.924634 + 0.380857i \(0.875629\pi\)
\(942\) 0 0
\(943\) −10.1149 2.71029i −0.329387 0.0882591i
\(944\) 0 0
\(945\) 15.6891 + 27.1743i 0.510367 + 0.883982i
\(946\) 0 0
\(947\) −53.5470 + 14.3479i −1.74004 + 0.466243i −0.982456 0.186493i \(-0.940288\pi\)
−0.757586 + 0.652735i \(0.773621\pi\)
\(948\) 0 0
\(949\) 35.9296 32.8823i 1.16632 1.06740i
\(950\) 0 0
\(951\) 32.8463 8.80114i 1.06511 0.285396i
\(952\) 0 0
\(953\) −0.170196 + 0.0982626i −0.00551318 + 0.00318304i −0.502754 0.864429i \(-0.667680\pi\)
0.497241 + 0.867613i \(0.334347\pi\)
\(954\) 0 0
\(955\) 11.4183 + 3.05953i 0.369488 + 0.0990040i
\(956\) 0 0
\(957\) 4.43823 4.43823i 0.143467 0.143467i
\(958\) 0 0
\(959\) 15.4941 26.8366i 0.500331 0.866599i
\(960\) 0 0
\(961\) 20.2411i 0.652939i
\(962\) 0 0
\(963\) 0.630667 0.0203230
\(964\) 0 0
\(965\) 5.83454 + 3.36857i 0.187820 + 0.108438i
\(966\) 0 0
\(967\) −8.39214 8.39214i −0.269873 0.269873i 0.559176 0.829049i \(-0.311118\pi\)
−0.829049 + 0.559176i \(0.811118\pi\)
\(968\) 0 0
\(969\) −4.05742 + 15.1425i −0.130343 + 0.486447i
\(970\) 0 0
\(971\) 4.01139 + 6.94792i 0.128731 + 0.222969i 0.923185 0.384355i \(-0.125576\pi\)
−0.794454 + 0.607324i \(0.792243\pi\)
\(972\) 0 0
\(973\) −1.99884 7.45976i −0.0640797 0.239149i
\(974\) 0 0
\(975\) −1.40515 + 2.20262i −0.0450009 + 0.0705403i
\(976\) 0 0
\(977\) −10.4415 38.9682i −0.334053 1.24670i −0.904892 0.425641i \(-0.860049\pi\)
0.570839 0.821062i \(-0.306618\pi\)
\(978\) 0 0
\(979\) −7.49984 + 4.33004i −0.239696 + 0.138389i
\(980\) 0 0
\(981\) 0.156813 0.585234i 0.00500666 0.0186851i
\(982\) 0 0
\(983\) 19.1993 19.1993i 0.612363 0.612363i −0.331198 0.943561i \(-0.607453\pi\)
0.943561 + 0.331198i \(0.107453\pi\)
\(984\) 0 0
\(985\) 11.9373 + 6.89201i 0.380354 + 0.219598i
\(986\) 0 0
\(987\) 34.3855i 1.09450i
\(988\) 0 0
\(989\) 4.23892i 0.134790i
\(990\) 0 0
\(991\) −22.0555 12.7338i −0.700616 0.404501i 0.106961 0.994263i \(-0.465888\pi\)
−0.807577 + 0.589762i \(0.799221\pi\)
\(992\) 0 0
\(993\) 2.35180 2.35180i 0.0746321 0.0746321i
\(994\) 0 0
\(995\) −9.16316 + 34.1974i −0.290492 + 1.08413i
\(996\) 0 0
\(997\) 10.7663 6.21593i 0.340972 0.196860i −0.319730 0.947509i \(-0.603592\pi\)
0.660702 + 0.750648i \(0.270259\pi\)
\(998\) 0 0
\(999\) 11.9833 + 44.7222i 0.379134 + 1.41495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.bk.a.175.9 48
4.3 odd 2 104.2.u.a.19.9 yes 48
8.3 odd 2 inner 416.2.bk.a.175.10 48
8.5 even 2 104.2.u.a.19.6 yes 48
12.11 even 2 936.2.ed.d.19.4 48
13.11 odd 12 inner 416.2.bk.a.271.10 48
24.5 odd 2 936.2.ed.d.19.7 48
52.11 even 12 104.2.u.a.11.6 48
104.11 even 12 inner 416.2.bk.a.271.9 48
104.37 odd 12 104.2.u.a.11.9 yes 48
156.11 odd 12 936.2.ed.d.739.7 48
312.245 even 12 936.2.ed.d.739.4 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.u.a.11.6 48 52.11 even 12
104.2.u.a.11.9 yes 48 104.37 odd 12
104.2.u.a.19.6 yes 48 8.5 even 2
104.2.u.a.19.9 yes 48 4.3 odd 2
416.2.bk.a.175.9 48 1.1 even 1 trivial
416.2.bk.a.175.10 48 8.3 odd 2 inner
416.2.bk.a.271.9 48 104.11 even 12 inner
416.2.bk.a.271.10 48 13.11 odd 12 inner
936.2.ed.d.19.4 48 12.11 even 2
936.2.ed.d.19.7 48 24.5 odd 2
936.2.ed.d.739.4 48 312.245 even 12
936.2.ed.d.739.7 48 156.11 odd 12