Properties

Label 416.2.bk.a.175.7
Level $416$
Weight $2$
Character 416.175
Analytic conductor $3.322$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(15,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.15"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bk (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 175.7
Character \(\chi\) \(=\) 416.175
Dual form 416.2.bk.a.271.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.223033 - 0.386304i) q^{3} +(-0.612771 - 0.612771i) q^{5} +(2.00697 + 0.537767i) q^{7} +(1.40051 + 2.42576i) q^{9} +(3.04671 - 0.816364i) q^{11} +(-3.45772 - 1.02185i) q^{13} +(-0.373384 + 0.100048i) q^{15} +(2.68659 - 1.55110i) q^{17} +(3.53955 + 0.948419i) q^{19} +(0.655362 - 0.655362i) q^{21} +(1.56087 - 2.70351i) q^{23} -4.24902i q^{25} +2.58764 q^{27} +(6.13693 + 3.54316i) q^{29} +(-2.77530 - 2.77530i) q^{31} +(0.364152 - 1.35903i) q^{33} +(-0.900287 - 1.55934i) q^{35} +(-0.155585 - 0.580652i) q^{37} +(-1.16593 + 1.10782i) q^{39} +(1.60304 + 5.98263i) q^{41} +(-5.34113 + 3.08370i) q^{43} +(0.628242 - 2.34463i) q^{45} +(-6.19352 + 6.19352i) q^{47} +(-2.32343 - 1.34143i) q^{49} -1.38379i q^{51} +2.19261i q^{53} +(-2.36718 - 1.36669i) q^{55} +(1.15581 - 1.15581i) q^{57} +(-1.67691 + 6.25832i) q^{59} +(0.346176 - 0.199865i) q^{61} +(1.50630 + 5.62158i) q^{63} +(1.49263 + 2.74495i) q^{65} +(-2.40698 - 8.98296i) q^{67} +(-0.696252 - 1.20594i) q^{69} +(4.33338 - 16.1724i) q^{71} +(-6.53734 - 6.53734i) q^{73} +(-1.64142 - 0.947672i) q^{75} +6.55368 q^{77} +12.9134i q^{79} +(-3.62441 + 6.27766i) q^{81} +(-9.22816 + 9.22816i) q^{83} +(-2.59674 - 0.695794i) q^{85} +(2.73747 - 1.58048i) q^{87} +(-6.08135 + 1.62949i) q^{89} +(-6.39003 - 3.91028i) q^{91} +(-1.69109 + 0.453127i) q^{93} +(-1.58777 - 2.75010i) q^{95} +(-15.1972 - 4.07209i) q^{97} +(6.24726 + 6.24726i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{3} - 20 q^{9} + 8 q^{11} - 12 q^{17} + 8 q^{19} - 8 q^{27} + 4 q^{33} + 4 q^{35} + 12 q^{43} - 60 q^{49} + 36 q^{57} + 64 q^{59} - 16 q^{65} + 8 q^{67} - 12 q^{73} - 24 q^{75} - 8 q^{81} + 48 q^{83}+ \cdots - 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.223033 0.386304i 0.128768 0.223033i −0.794431 0.607354i \(-0.792231\pi\)
0.923200 + 0.384321i \(0.125564\pi\)
\(4\) 0 0
\(5\) −0.612771 0.612771i −0.274040 0.274040i 0.556684 0.830724i \(-0.312073\pi\)
−0.830724 + 0.556684i \(0.812073\pi\)
\(6\) 0 0
\(7\) 2.00697 + 0.537767i 0.758564 + 0.203257i 0.617314 0.786717i \(-0.288221\pi\)
0.141251 + 0.989974i \(0.454888\pi\)
\(8\) 0 0
\(9\) 1.40051 + 2.42576i 0.466838 + 0.808586i
\(10\) 0 0
\(11\) 3.04671 0.816364i 0.918618 0.246143i 0.231623 0.972806i \(-0.425596\pi\)
0.686995 + 0.726663i \(0.258930\pi\)
\(12\) 0 0
\(13\) −3.45772 1.02185i −0.958999 0.283411i
\(14\) 0 0
\(15\) −0.373384 + 0.100048i −0.0964074 + 0.0258323i
\(16\) 0 0
\(17\) 2.68659 1.55110i 0.651594 0.376198i −0.137473 0.990506i \(-0.543898\pi\)
0.789067 + 0.614308i \(0.210565\pi\)
\(18\) 0 0
\(19\) 3.53955 + 0.948419i 0.812028 + 0.217582i 0.640858 0.767659i \(-0.278579\pi\)
0.171170 + 0.985242i \(0.445245\pi\)
\(20\) 0 0
\(21\) 0.655362 0.655362i 0.143012 0.143012i
\(22\) 0 0
\(23\) 1.56087 2.70351i 0.325464 0.563721i −0.656142 0.754638i \(-0.727813\pi\)
0.981606 + 0.190917i \(0.0611460\pi\)
\(24\) 0 0
\(25\) 4.24902i 0.849805i
\(26\) 0 0
\(27\) 2.58764 0.497991
\(28\) 0 0
\(29\) 6.13693 + 3.54316i 1.13960 + 0.657948i 0.946331 0.323198i \(-0.104758\pi\)
0.193268 + 0.981146i \(0.438091\pi\)
\(30\) 0 0
\(31\) −2.77530 2.77530i −0.498459 0.498459i 0.412499 0.910958i \(-0.364656\pi\)
−0.910958 + 0.412499i \(0.864656\pi\)
\(32\) 0 0
\(33\) 0.364152 1.35903i 0.0633907 0.236577i
\(34\) 0 0
\(35\) −0.900287 1.55934i −0.152176 0.263577i
\(36\) 0 0
\(37\) −0.155585 0.580652i −0.0255781 0.0954586i 0.951957 0.306232i \(-0.0990684\pi\)
−0.977535 + 0.210774i \(0.932402\pi\)
\(38\) 0 0
\(39\) −1.16593 + 1.10782i −0.186698 + 0.177394i
\(40\) 0 0
\(41\) 1.60304 + 5.98263i 0.250353 + 0.934330i 0.970617 + 0.240630i \(0.0773540\pi\)
−0.720264 + 0.693700i \(0.755979\pi\)
\(42\) 0 0
\(43\) −5.34113 + 3.08370i −0.814514 + 0.470260i −0.848521 0.529162i \(-0.822507\pi\)
0.0340068 + 0.999422i \(0.489173\pi\)
\(44\) 0 0
\(45\) 0.628242 2.34463i 0.0936527 0.349517i
\(46\) 0 0
\(47\) −6.19352 + 6.19352i −0.903418 + 0.903418i −0.995730 0.0923122i \(-0.970574\pi\)
0.0923122 + 0.995730i \(0.470574\pi\)
\(48\) 0 0
\(49\) −2.32343 1.34143i −0.331919 0.191633i
\(50\) 0 0
\(51\) 1.38379i 0.193769i
\(52\) 0 0
\(53\) 2.19261i 0.301178i 0.988596 + 0.150589i \(0.0481170\pi\)
−0.988596 + 0.150589i \(0.951883\pi\)
\(54\) 0 0
\(55\) −2.36718 1.36669i −0.319191 0.184285i
\(56\) 0 0
\(57\) 1.15581 1.15581i 0.153091 0.153091i
\(58\) 0 0
\(59\) −1.67691 + 6.25832i −0.218315 + 0.814764i 0.766658 + 0.642056i \(0.221918\pi\)
−0.984973 + 0.172708i \(0.944748\pi\)
\(60\) 0 0
\(61\) 0.346176 0.199865i 0.0443234 0.0255901i −0.477675 0.878537i \(-0.658520\pi\)
0.521998 + 0.852947i \(0.325187\pi\)
\(62\) 0 0
\(63\) 1.50630 + 5.62158i 0.189776 + 0.708253i
\(64\) 0 0
\(65\) 1.49263 + 2.74495i 0.185138 + 0.340469i
\(66\) 0 0
\(67\) −2.40698 8.98296i −0.294059 1.09744i −0.941962 0.335720i \(-0.891020\pi\)
0.647903 0.761723i \(-0.275646\pi\)
\(68\) 0 0
\(69\) −0.696252 1.20594i −0.0838189 0.145179i
\(70\) 0 0
\(71\) 4.33338 16.1724i 0.514277 1.91931i 0.147246 0.989100i \(-0.452959\pi\)
0.367031 0.930209i \(-0.380374\pi\)
\(72\) 0 0
\(73\) −6.53734 6.53734i −0.765137 0.765137i 0.212109 0.977246i \(-0.431967\pi\)
−0.977246 + 0.212109i \(0.931967\pi\)
\(74\) 0 0
\(75\) −1.64142 0.947672i −0.189534 0.109428i
\(76\) 0 0
\(77\) 6.55368 0.746861
\(78\) 0 0
\(79\) 12.9134i 1.45287i 0.687234 + 0.726436i \(0.258825\pi\)
−0.687234 + 0.726436i \(0.741175\pi\)
\(80\) 0 0
\(81\) −3.62441 + 6.27766i −0.402712 + 0.697518i
\(82\) 0 0
\(83\) −9.22816 + 9.22816i −1.01292 + 1.01292i −0.0130073 + 0.999915i \(0.504140\pi\)
−0.999915 + 0.0130073i \(0.995860\pi\)
\(84\) 0 0
\(85\) −2.59674 0.695794i −0.281656 0.0754694i
\(86\) 0 0
\(87\) 2.73747 1.58048i 0.293488 0.169445i
\(88\) 0 0
\(89\) −6.08135 + 1.62949i −0.644622 + 0.172726i −0.566296 0.824202i \(-0.691624\pi\)
−0.0783258 + 0.996928i \(0.524957\pi\)
\(90\) 0 0
\(91\) −6.39003 3.91028i −0.669857 0.409908i
\(92\) 0 0
\(93\) −1.69109 + 0.453127i −0.175358 + 0.0469871i
\(94\) 0 0
\(95\) −1.58777 2.75010i −0.162902 0.282154i
\(96\) 0 0
\(97\) −15.1972 4.07209i −1.54305 0.413458i −0.615798 0.787904i \(-0.711166\pi\)
−0.927249 + 0.374446i \(0.877833\pi\)
\(98\) 0 0
\(99\) 6.24726 + 6.24726i 0.627873 + 0.627873i
\(100\) 0 0
\(101\) −8.35641 + 14.4737i −0.831493 + 1.44019i 0.0653604 + 0.997862i \(0.479180\pi\)
−0.896854 + 0.442327i \(0.854153\pi\)
\(102\) 0 0
\(103\) 15.3368 1.51118 0.755590 0.655044i \(-0.227350\pi\)
0.755590 + 0.655044i \(0.227350\pi\)
\(104\) 0 0
\(105\) −0.803175 −0.0783818
\(106\) 0 0
\(107\) 4.67529 8.09785i 0.451978 0.782848i −0.546531 0.837439i \(-0.684052\pi\)
0.998509 + 0.0545904i \(0.0173853\pi\)
\(108\) 0 0
\(109\) −7.59869 7.59869i −0.727822 0.727822i 0.242363 0.970186i \(-0.422077\pi\)
−0.970186 + 0.242363i \(0.922077\pi\)
\(110\) 0 0
\(111\) −0.259009 0.0694012i −0.0245840 0.00658727i
\(112\) 0 0
\(113\) 4.50930 + 7.81034i 0.424200 + 0.734735i 0.996345 0.0854166i \(-0.0272221\pi\)
−0.572146 + 0.820152i \(0.693889\pi\)
\(114\) 0 0
\(115\) −2.61309 + 0.700176i −0.243672 + 0.0652917i
\(116\) 0 0
\(117\) −2.36381 9.81871i −0.218534 0.907740i
\(118\) 0 0
\(119\) 6.22605 1.66826i 0.570741 0.152930i
\(120\) 0 0
\(121\) −0.910281 + 0.525551i −0.0827528 + 0.0477774i
\(122\) 0 0
\(123\) 2.66865 + 0.715062i 0.240624 + 0.0644749i
\(124\) 0 0
\(125\) −5.66754 + 5.66754i −0.506920 + 0.506920i
\(126\) 0 0
\(127\) −8.27984 + 14.3411i −0.734717 + 1.27257i 0.220130 + 0.975471i \(0.429352\pi\)
−0.954847 + 0.297097i \(0.903982\pi\)
\(128\) 0 0
\(129\) 2.75107i 0.242218i
\(130\) 0 0
\(131\) −6.74450 −0.589270 −0.294635 0.955610i \(-0.595198\pi\)
−0.294635 + 0.955610i \(0.595198\pi\)
\(132\) 0 0
\(133\) 6.59375 + 3.80690i 0.571751 + 0.330100i
\(134\) 0 0
\(135\) −1.58563 1.58563i −0.136469 0.136469i
\(136\) 0 0
\(137\) 2.22488 8.30336i 0.190084 0.709404i −0.803401 0.595439i \(-0.796978\pi\)
0.993485 0.113965i \(-0.0363552\pi\)
\(138\) 0 0
\(139\) −6.82393 11.8194i −0.578798 1.00251i −0.995618 0.0935188i \(-0.970188\pi\)
0.416819 0.908989i \(-0.363145\pi\)
\(140\) 0 0
\(141\) 1.01122 + 3.77394i 0.0851605 + 0.317823i
\(142\) 0 0
\(143\) −11.3689 0.290534i −0.950713 0.0242956i
\(144\) 0 0
\(145\) −1.58939 5.93168i −0.131992 0.492599i
\(146\) 0 0
\(147\) −1.03640 + 0.598367i −0.0854811 + 0.0493525i
\(148\) 0 0
\(149\) 4.11452 15.3556i 0.337074 1.25798i −0.564529 0.825414i \(-0.690942\pi\)
0.901603 0.432565i \(-0.142391\pi\)
\(150\) 0 0
\(151\) 2.00046 2.00046i 0.162795 0.162795i −0.621009 0.783804i \(-0.713277\pi\)
0.783804 + 0.621009i \(0.213277\pi\)
\(152\) 0 0
\(153\) 7.52521 + 4.34468i 0.608377 + 0.351247i
\(154\) 0 0
\(155\) 3.40125i 0.273195i
\(156\) 0 0
\(157\) 7.48330i 0.597233i 0.954373 + 0.298616i \(0.0965251\pi\)
−0.954373 + 0.298616i \(0.903475\pi\)
\(158\) 0 0
\(159\) 0.847015 + 0.489024i 0.0671726 + 0.0387821i
\(160\) 0 0
\(161\) 4.58649 4.58649i 0.361466 0.361466i
\(162\) 0 0
\(163\) 0.915854 3.41801i 0.0717352 0.267720i −0.920738 0.390181i \(-0.872412\pi\)
0.992473 + 0.122462i \(0.0390789\pi\)
\(164\) 0 0
\(165\) −1.05592 + 0.609635i −0.0822031 + 0.0474600i
\(166\) 0 0
\(167\) −0.664336 2.47934i −0.0514079 0.191857i 0.935447 0.353468i \(-0.114998\pi\)
−0.986855 + 0.161611i \(0.948331\pi\)
\(168\) 0 0
\(169\) 10.9116 + 7.06656i 0.839357 + 0.543581i
\(170\) 0 0
\(171\) 2.65655 + 9.91437i 0.203151 + 0.758171i
\(172\) 0 0
\(173\) −2.80779 4.86324i −0.213473 0.369745i 0.739326 0.673347i \(-0.235144\pi\)
−0.952799 + 0.303602i \(0.901811\pi\)
\(174\) 0 0
\(175\) 2.28498 8.52767i 0.172728 0.644631i
\(176\) 0 0
\(177\) 2.04361 + 2.04361i 0.153607 + 0.153607i
\(178\) 0 0
\(179\) 13.4278 + 7.75255i 1.00364 + 0.579453i 0.909324 0.416089i \(-0.136600\pi\)
0.0943183 + 0.995542i \(0.469933\pi\)
\(180\) 0 0
\(181\) 24.7729 1.84136 0.920678 0.390323i \(-0.127637\pi\)
0.920678 + 0.390323i \(0.127637\pi\)
\(182\) 0 0
\(183\) 0.178306i 0.0131808i
\(184\) 0 0
\(185\) −0.260469 + 0.451145i −0.0191500 + 0.0331688i
\(186\) 0 0
\(187\) 6.91900 6.91900i 0.505967 0.505967i
\(188\) 0 0
\(189\) 5.19332 + 1.39155i 0.377758 + 0.101220i
\(190\) 0 0
\(191\) −7.56637 + 4.36844i −0.547483 + 0.316090i −0.748106 0.663579i \(-0.769037\pi\)
0.200623 + 0.979669i \(0.435703\pi\)
\(192\) 0 0
\(193\) 7.59913 2.03618i 0.546997 0.146567i 0.0252713 0.999681i \(-0.491955\pi\)
0.521726 + 0.853113i \(0.325288\pi\)
\(194\) 0 0
\(195\) 1.39329 + 0.0356058i 0.0997757 + 0.00254979i
\(196\) 0 0
\(197\) 6.71320 1.79880i 0.478296 0.128159i −0.0116133 0.999933i \(-0.503697\pi\)
0.489909 + 0.871774i \(0.337030\pi\)
\(198\) 0 0
\(199\) −6.11321 10.5884i −0.433354 0.750591i 0.563806 0.825907i \(-0.309337\pi\)
−0.997160 + 0.0753164i \(0.976003\pi\)
\(200\) 0 0
\(201\) −4.00699 1.07367i −0.282631 0.0757308i
\(202\) 0 0
\(203\) 10.4113 + 10.4113i 0.730727 + 0.730727i
\(204\) 0 0
\(205\) 2.68369 4.64828i 0.187437 0.324650i
\(206\) 0 0
\(207\) 8.74409 0.607756
\(208\) 0 0
\(209\) 11.5582 0.799500
\(210\) 0 0
\(211\) 6.18515 10.7130i 0.425803 0.737513i −0.570692 0.821164i \(-0.693325\pi\)
0.996495 + 0.0836516i \(0.0266583\pi\)
\(212\) 0 0
\(213\) −5.28097 5.28097i −0.361846 0.361846i
\(214\) 0 0
\(215\) 5.16249 + 1.38329i 0.352079 + 0.0943393i
\(216\) 0 0
\(217\) −4.07749 7.06242i −0.276798 0.479428i
\(218\) 0 0
\(219\) −3.98344 + 1.06736i −0.269176 + 0.0721255i
\(220\) 0 0
\(221\) −10.8745 + 2.61798i −0.731496 + 0.176104i
\(222\) 0 0
\(223\) −17.8596 + 4.78547i −1.19597 + 0.320459i −0.801242 0.598340i \(-0.795827\pi\)
−0.394726 + 0.918799i \(0.629160\pi\)
\(224\) 0 0
\(225\) 10.3071 5.95081i 0.687140 0.396721i
\(226\) 0 0
\(227\) 9.38417 + 2.51448i 0.622849 + 0.166892i 0.556423 0.830899i \(-0.312174\pi\)
0.0664264 + 0.997791i \(0.478840\pi\)
\(228\) 0 0
\(229\) −18.0244 + 18.0244i −1.19109 + 1.19109i −0.214324 + 0.976763i \(0.568755\pi\)
−0.976763 + 0.214324i \(0.931245\pi\)
\(230\) 0 0
\(231\) 1.46169 2.53171i 0.0961719 0.166575i
\(232\) 0 0
\(233\) 0.0680880i 0.00446059i 0.999998 + 0.00223030i \(0.000709926\pi\)
−0.999998 + 0.00223030i \(0.999290\pi\)
\(234\) 0 0
\(235\) 7.59042 0.495145
\(236\) 0 0
\(237\) 4.98850 + 2.88011i 0.324038 + 0.187084i
\(238\) 0 0
\(239\) −5.90861 5.90861i −0.382196 0.382196i 0.489697 0.871893i \(-0.337108\pi\)
−0.871893 + 0.489697i \(0.837108\pi\)
\(240\) 0 0
\(241\) 0.964885 3.60100i 0.0621537 0.231961i −0.927861 0.372927i \(-0.878354\pi\)
0.990014 + 0.140966i \(0.0450209\pi\)
\(242\) 0 0
\(243\) 5.49818 + 9.52313i 0.352709 + 0.610909i
\(244\) 0 0
\(245\) 0.601740 + 2.24572i 0.0384437 + 0.143474i
\(246\) 0 0
\(247\) −11.2696 6.89626i −0.717069 0.438799i
\(248\) 0 0
\(249\) 1.50670 + 5.62306i 0.0954829 + 0.356347i
\(250\) 0 0
\(251\) 5.43844 3.13989i 0.343271 0.198188i −0.318446 0.947941i \(-0.603161\pi\)
0.661718 + 0.749753i \(0.269828\pi\)
\(252\) 0 0
\(253\) 2.54848 9.51106i 0.160222 0.597955i
\(254\) 0 0
\(255\) −0.847946 + 0.847946i −0.0531004 + 0.0531004i
\(256\) 0 0
\(257\) −5.81970 3.36000i −0.363023 0.209591i 0.307383 0.951586i \(-0.400547\pi\)
−0.670406 + 0.741995i \(0.733880\pi\)
\(258\) 0 0
\(259\) 1.24902i 0.0776104i
\(260\) 0 0
\(261\) 19.8490i 1.22862i
\(262\) 0 0
\(263\) 25.0990 + 14.4909i 1.54767 + 0.893548i 0.998319 + 0.0579570i \(0.0184586\pi\)
0.549352 + 0.835591i \(0.314875\pi\)
\(264\) 0 0
\(265\) 1.34357 1.34357i 0.0825348 0.0825348i
\(266\) 0 0
\(267\) −0.726861 + 2.71268i −0.0444832 + 0.166013i
\(268\) 0 0
\(269\) 15.9192 9.19093i 0.970608 0.560381i 0.0711868 0.997463i \(-0.477321\pi\)
0.899422 + 0.437082i \(0.143988\pi\)
\(270\) 0 0
\(271\) −0.415837 1.55192i −0.0252603 0.0942727i 0.952145 0.305647i \(-0.0988728\pi\)
−0.977405 + 0.211374i \(0.932206\pi\)
\(272\) 0 0
\(273\) −2.93574 + 1.59637i −0.177679 + 0.0966170i
\(274\) 0 0
\(275\) −3.46875 12.9455i −0.209173 0.780646i
\(276\) 0 0
\(277\) −14.7809 25.6013i −0.888100 1.53823i −0.842119 0.539291i \(-0.818692\pi\)
−0.0459802 0.998942i \(-0.514641\pi\)
\(278\) 0 0
\(279\) 2.84537 10.6191i 0.170348 0.635746i
\(280\) 0 0
\(281\) 14.2859 + 14.2859i 0.852225 + 0.852225i 0.990407 0.138182i \(-0.0441260\pi\)
−0.138182 + 0.990407i \(0.544126\pi\)
\(282\) 0 0
\(283\) −1.72953 0.998544i −0.102810 0.0593573i 0.447713 0.894177i \(-0.352238\pi\)
−0.550523 + 0.834820i \(0.685572\pi\)
\(284\) 0 0
\(285\) −1.41650 −0.0839062
\(286\) 0 0
\(287\) 12.8690i 0.759635i
\(288\) 0 0
\(289\) −3.68815 + 6.38807i −0.216950 + 0.375769i
\(290\) 0 0
\(291\) −4.96255 + 4.96255i −0.290910 + 0.290910i
\(292\) 0 0
\(293\) 8.32527 + 2.23075i 0.486367 + 0.130322i 0.493666 0.869652i \(-0.335657\pi\)
−0.00729863 + 0.999973i \(0.502323\pi\)
\(294\) 0 0
\(295\) 4.86248 2.80736i 0.283105 0.163451i
\(296\) 0 0
\(297\) 7.88379 2.11245i 0.457464 0.122577i
\(298\) 0 0
\(299\) −8.15965 + 7.75300i −0.471885 + 0.448367i
\(300\) 0 0
\(301\) −12.3778 + 3.31662i −0.713445 + 0.191167i
\(302\) 0 0
\(303\) 3.72751 + 6.45623i 0.214140 + 0.370901i
\(304\) 0 0
\(305\) −0.334599 0.0896554i −0.0191591 0.00513365i
\(306\) 0 0
\(307\) −20.6396 20.6396i −1.17797 1.17797i −0.980262 0.197703i \(-0.936652\pi\)
−0.197703 0.980262i \(-0.563348\pi\)
\(308\) 0 0
\(309\) 3.42061 5.92467i 0.194592 0.337043i
\(310\) 0 0
\(311\) 18.1641 1.02999 0.514995 0.857193i \(-0.327794\pi\)
0.514995 + 0.857193i \(0.327794\pi\)
\(312\) 0 0
\(313\) −13.0914 −0.739968 −0.369984 0.929038i \(-0.620637\pi\)
−0.369984 + 0.929038i \(0.620637\pi\)
\(314\) 0 0
\(315\) 2.52173 4.36776i 0.142083 0.246095i
\(316\) 0 0
\(317\) −16.6920 16.6920i −0.937519 0.937519i 0.0606409 0.998160i \(-0.480686\pi\)
−0.998160 + 0.0606409i \(0.980686\pi\)
\(318\) 0 0
\(319\) 21.5900 + 5.78501i 1.20881 + 0.323899i
\(320\) 0 0
\(321\) −2.08549 3.61217i −0.116401 0.201612i
\(322\) 0 0
\(323\) 10.9804 2.94219i 0.610967 0.163708i
\(324\) 0 0
\(325\) −4.34187 + 14.6919i −0.240844 + 0.814961i
\(326\) 0 0
\(327\) −4.63016 + 1.24065i −0.256049 + 0.0686080i
\(328\) 0 0
\(329\) −15.7609 + 9.09956i −0.868926 + 0.501675i
\(330\) 0 0
\(331\) −23.0936 6.18790i −1.26934 0.340118i −0.439560 0.898213i \(-0.644866\pi\)
−0.829777 + 0.558095i \(0.811532\pi\)
\(332\) 0 0
\(333\) 1.19062 1.19062i 0.0652457 0.0652457i
\(334\) 0 0
\(335\) −4.02957 + 6.97943i −0.220159 + 0.381327i
\(336\) 0 0
\(337\) 10.3450i 0.563530i −0.959483 0.281765i \(-0.909080\pi\)
0.959483 0.281765i \(-0.0909198\pi\)
\(338\) 0 0
\(339\) 4.02289 0.218493
\(340\) 0 0
\(341\) −10.7212 6.18989i −0.580585 0.335201i
\(342\) 0 0
\(343\) −14.2261 14.2261i −0.768139 0.768139i
\(344\) 0 0
\(345\) −0.312324 + 1.16561i −0.0168150 + 0.0627544i
\(346\) 0 0
\(347\) −3.70616 6.41927i −0.198957 0.344604i 0.749233 0.662306i \(-0.230422\pi\)
−0.948191 + 0.317702i \(0.897089\pi\)
\(348\) 0 0
\(349\) 4.31088 + 16.0884i 0.230756 + 0.861193i 0.980016 + 0.198917i \(0.0637425\pi\)
−0.749260 + 0.662276i \(0.769591\pi\)
\(350\) 0 0
\(351\) −8.94733 2.64418i −0.477573 0.141136i
\(352\) 0 0
\(353\) 1.99348 + 7.43976i 0.106102 + 0.395978i 0.998468 0.0553346i \(-0.0176225\pi\)
−0.892366 + 0.451313i \(0.850956\pi\)
\(354\) 0 0
\(355\) −12.5653 + 7.25460i −0.666899 + 0.385034i
\(356\) 0 0
\(357\) 0.744155 2.77723i 0.0393849 0.146986i
\(358\) 0 0
\(359\) −11.7450 + 11.7450i −0.619878 + 0.619878i −0.945500 0.325622i \(-0.894426\pi\)
0.325622 + 0.945500i \(0.394426\pi\)
\(360\) 0 0
\(361\) −4.82557 2.78605i −0.253978 0.146634i
\(362\) 0 0
\(363\) 0.468860i 0.0246088i
\(364\) 0 0
\(365\) 8.01178i 0.419356i
\(366\) 0 0
\(367\) 5.54625 + 3.20213i 0.289512 + 0.167150i 0.637722 0.770267i \(-0.279877\pi\)
−0.348210 + 0.937417i \(0.613210\pi\)
\(368\) 0 0
\(369\) −12.2673 + 12.2673i −0.638612 + 0.638612i
\(370\) 0 0
\(371\) −1.17911 + 4.40051i −0.0612165 + 0.228463i
\(372\) 0 0
\(373\) 4.49235 2.59366i 0.232605 0.134295i −0.379168 0.925328i \(-0.623790\pi\)
0.611773 + 0.791033i \(0.290456\pi\)
\(374\) 0 0
\(375\) 0.925346 + 3.45344i 0.0477847 + 0.178335i
\(376\) 0 0
\(377\) −17.5992 18.5223i −0.906405 0.953946i
\(378\) 0 0
\(379\) 7.15495 + 26.7026i 0.367525 + 1.37162i 0.863965 + 0.503551i \(0.167974\pi\)
−0.496440 + 0.868071i \(0.665360\pi\)
\(380\) 0 0
\(381\) 3.69335 + 6.39708i 0.189216 + 0.327732i
\(382\) 0 0
\(383\) 2.27219 8.47994i 0.116104 0.433305i −0.883263 0.468877i \(-0.844659\pi\)
0.999367 + 0.0355723i \(0.0113254\pi\)
\(384\) 0 0
\(385\) −4.01591 4.01591i −0.204670 0.204670i
\(386\) 0 0
\(387\) −14.9606 8.63753i −0.760492 0.439070i
\(388\) 0 0
\(389\) 1.89321 0.0959896 0.0479948 0.998848i \(-0.484717\pi\)
0.0479948 + 0.998848i \(0.484717\pi\)
\(390\) 0 0
\(391\) 9.68430i 0.489756i
\(392\) 0 0
\(393\) −1.50425 + 2.60543i −0.0758791 + 0.131427i
\(394\) 0 0
\(395\) 7.91297 7.91297i 0.398145 0.398145i
\(396\) 0 0
\(397\) 3.02242 + 0.809855i 0.151691 + 0.0406455i 0.333865 0.942621i \(-0.391647\pi\)
−0.182174 + 0.983266i \(0.558314\pi\)
\(398\) 0 0
\(399\) 2.94125 1.69813i 0.147246 0.0850128i
\(400\) 0 0
\(401\) −14.5581 + 3.90083i −0.726997 + 0.194798i −0.603292 0.797521i \(-0.706145\pi\)
−0.123706 + 0.992319i \(0.539478\pi\)
\(402\) 0 0
\(403\) 6.76026 + 12.4322i 0.336753 + 0.619290i
\(404\) 0 0
\(405\) 6.06771 1.62584i 0.301507 0.0807885i
\(406\) 0 0
\(407\) −0.948046 1.64206i −0.0469929 0.0813941i
\(408\) 0 0
\(409\) 16.6323 + 4.45660i 0.822412 + 0.220365i 0.645401 0.763844i \(-0.276690\pi\)
0.177011 + 0.984209i \(0.443357\pi\)
\(410\) 0 0
\(411\) −2.71140 2.71140i −0.133744 0.133744i
\(412\) 0 0
\(413\) −6.73103 + 11.6585i −0.331213 + 0.573677i
\(414\) 0 0
\(415\) 11.3095 0.555162
\(416\) 0 0
\(417\) −6.08784 −0.298123
\(418\) 0 0
\(419\) −15.2221 + 26.3654i −0.743647 + 1.28803i 0.207178 + 0.978303i \(0.433572\pi\)
−0.950824 + 0.309730i \(0.899761\pi\)
\(420\) 0 0
\(421\) 14.5609 + 14.5609i 0.709654 + 0.709654i 0.966462 0.256809i \(-0.0826710\pi\)
−0.256809 + 0.966462i \(0.582671\pi\)
\(422\) 0 0
\(423\) −23.6981 6.34989i −1.15224 0.308742i
\(424\) 0 0
\(425\) −6.59068 11.4154i −0.319695 0.553727i
\(426\) 0 0
\(427\) 0.802247 0.214962i 0.0388235 0.0104027i
\(428\) 0 0
\(429\) −2.64787 + 4.32704i −0.127840 + 0.208912i
\(430\) 0 0
\(431\) 0.530842 0.142239i 0.0255697 0.00685139i −0.246012 0.969267i \(-0.579120\pi\)
0.271581 + 0.962416i \(0.412453\pi\)
\(432\) 0 0
\(433\) −8.21876 + 4.74511i −0.394969 + 0.228035i −0.684311 0.729191i \(-0.739897\pi\)
0.289342 + 0.957226i \(0.406563\pi\)
\(434\) 0 0
\(435\) −2.64592 0.708972i −0.126862 0.0339926i
\(436\) 0 0
\(437\) 8.08885 8.08885i 0.386942 0.386942i
\(438\) 0 0
\(439\) −15.4192 + 26.7068i −0.735916 + 1.27464i 0.218404 + 0.975858i \(0.429915\pi\)
−0.954320 + 0.298786i \(0.903418\pi\)
\(440\) 0 0
\(441\) 7.51478i 0.357847i
\(442\) 0 0
\(443\) −27.9824 −1.32949 −0.664743 0.747072i \(-0.731459\pi\)
−0.664743 + 0.747072i \(0.731459\pi\)
\(444\) 0 0
\(445\) 4.72498 + 2.72797i 0.223986 + 0.129318i
\(446\) 0 0
\(447\) −5.01425 5.01425i −0.237166 0.237166i
\(448\) 0 0
\(449\) −4.57532 + 17.0753i −0.215923 + 0.805835i 0.769917 + 0.638144i \(0.220298\pi\)
−0.985840 + 0.167690i \(0.946369\pi\)
\(450\) 0 0
\(451\) 9.76801 + 16.9187i 0.459958 + 0.796670i
\(452\) 0 0
\(453\) −0.326618 1.21895i −0.0153458 0.0572715i
\(454\) 0 0
\(455\) 1.51952 + 6.31173i 0.0712362 + 0.295899i
\(456\) 0 0
\(457\) −4.64267 17.3267i −0.217175 0.810508i −0.985390 0.170315i \(-0.945521\pi\)
0.768215 0.640192i \(-0.221145\pi\)
\(458\) 0 0
\(459\) 6.95192 4.01370i 0.324488 0.187343i
\(460\) 0 0
\(461\) 4.87396 18.1899i 0.227003 0.847186i −0.754589 0.656197i \(-0.772164\pi\)
0.981592 0.190989i \(-0.0611695\pi\)
\(462\) 0 0
\(463\) 9.12291 9.12291i 0.423978 0.423978i −0.462593 0.886571i \(-0.653081\pi\)
0.886571 + 0.462593i \(0.153081\pi\)
\(464\) 0 0
\(465\) 1.31392 + 0.758590i 0.0609314 + 0.0351788i
\(466\) 0 0
\(467\) 32.7960i 1.51762i −0.651313 0.758809i \(-0.725781\pi\)
0.651313 0.758809i \(-0.274219\pi\)
\(468\) 0 0
\(469\) 19.3229i 0.892251i
\(470\) 0 0
\(471\) 2.89083 + 1.66902i 0.133202 + 0.0769045i
\(472\) 0 0
\(473\) −13.7554 + 13.7554i −0.632476 + 0.632476i
\(474\) 0 0
\(475\) 4.02986 15.0396i 0.184902 0.690065i
\(476\) 0 0
\(477\) −5.31875 + 3.07078i −0.243529 + 0.140601i
\(478\) 0 0
\(479\) −2.37037 8.84634i −0.108305 0.404200i 0.890394 0.455190i \(-0.150429\pi\)
−0.998699 + 0.0509907i \(0.983762\pi\)
\(480\) 0 0
\(481\) −0.0553708 + 2.16672i −0.00252469 + 0.0987937i
\(482\) 0 0
\(483\) −0.748842 2.79472i −0.0340735 0.127164i
\(484\) 0 0
\(485\) 6.81718 + 11.8077i 0.309552 + 0.536160i
\(486\) 0 0
\(487\) −4.31509 + 16.1041i −0.195535 + 0.729748i 0.796592 + 0.604517i \(0.206634\pi\)
−0.992128 + 0.125231i \(0.960033\pi\)
\(488\) 0 0
\(489\) −1.11613 1.11613i −0.0504730 0.0504730i
\(490\) 0 0
\(491\) 10.6955 + 6.17507i 0.482683 + 0.278677i 0.721534 0.692379i \(-0.243437\pi\)
−0.238851 + 0.971056i \(0.576771\pi\)
\(492\) 0 0
\(493\) 21.9832 0.990075
\(494\) 0 0
\(495\) 7.65628i 0.344124i
\(496\) 0 0
\(497\) 17.3939 30.1272i 0.780225 1.35139i
\(498\) 0 0
\(499\) −3.14337 + 3.14337i −0.140717 + 0.140717i −0.773956 0.633239i \(-0.781725\pi\)
0.633239 + 0.773956i \(0.281725\pi\)
\(500\) 0 0
\(501\) −1.10595 0.296338i −0.0494101 0.0132394i
\(502\) 0 0
\(503\) −1.32816 + 0.766812i −0.0592196 + 0.0341905i −0.529317 0.848424i \(-0.677552\pi\)
0.470098 + 0.882614i \(0.344219\pi\)
\(504\) 0 0
\(505\) 13.9896 3.74851i 0.622531 0.166807i
\(506\) 0 0
\(507\) 5.16349 2.63914i 0.229319 0.117208i
\(508\) 0 0
\(509\) 2.31792 0.621084i 0.102740 0.0275291i −0.207083 0.978323i \(-0.566397\pi\)
0.309823 + 0.950794i \(0.399730\pi\)
\(510\) 0 0
\(511\) −9.60469 16.6358i −0.424887 0.735925i
\(512\) 0 0
\(513\) 9.15907 + 2.45417i 0.404383 + 0.108354i
\(514\) 0 0
\(515\) −9.39796 9.39796i −0.414123 0.414123i
\(516\) 0 0
\(517\) −13.8137 + 23.9260i −0.607526 + 1.05227i
\(518\) 0 0
\(519\) −2.50492 −0.109954
\(520\) 0 0
\(521\) 33.5565 1.47014 0.735069 0.677992i \(-0.237150\pi\)
0.735069 + 0.677992i \(0.237150\pi\)
\(522\) 0 0
\(523\) −10.9193 + 18.9129i −0.477469 + 0.827001i −0.999667 0.0258235i \(-0.991779\pi\)
0.522197 + 0.852825i \(0.325113\pi\)
\(524\) 0 0
\(525\) −2.78465 2.78465i −0.121532 0.121532i
\(526\) 0 0
\(527\) −11.7609 3.15132i −0.512312 0.137274i
\(528\) 0 0
\(529\) 6.62735 + 11.4789i 0.288146 + 0.499083i
\(530\) 0 0
\(531\) −17.5297 + 4.69707i −0.760725 + 0.203836i
\(532\) 0 0
\(533\) 0.570502 22.3243i 0.0247112 0.966974i
\(534\) 0 0
\(535\) −7.82701 + 2.09724i −0.338391 + 0.0906717i
\(536\) 0 0
\(537\) 5.98969 3.45815i 0.258474 0.149230i
\(538\) 0 0
\(539\) −8.17392 2.19020i −0.352076 0.0943384i
\(540\) 0 0
\(541\) −2.04526 + 2.04526i −0.0879326 + 0.0879326i −0.749705 0.661772i \(-0.769805\pi\)
0.661772 + 0.749705i \(0.269805\pi\)
\(542\) 0 0
\(543\) 5.52517 9.56988i 0.237108 0.410683i
\(544\) 0 0
\(545\) 9.31252i 0.398904i
\(546\) 0 0
\(547\) 43.0237 1.83956 0.919781 0.392432i \(-0.128366\pi\)
0.919781 + 0.392432i \(0.128366\pi\)
\(548\) 0 0
\(549\) 0.969649 + 0.559827i 0.0413836 + 0.0238928i
\(550\) 0 0
\(551\) 18.3616 + 18.3616i 0.782229 + 0.782229i
\(552\) 0 0
\(553\) −6.94440 + 25.9169i −0.295306 + 1.10210i
\(554\) 0 0
\(555\) 0.116186 + 0.201240i 0.00493183 + 0.00854217i
\(556\) 0 0
\(557\) −2.27626 8.49514i −0.0964484 0.359950i 0.900787 0.434262i \(-0.142991\pi\)
−0.997235 + 0.0743115i \(0.976324\pi\)
\(558\) 0 0
\(559\) 21.6192 5.20473i 0.914395 0.220136i
\(560\) 0 0
\(561\) −1.12967 4.21600i −0.0476949 0.178000i
\(562\) 0 0
\(563\) 14.9276 8.61848i 0.629125 0.363226i −0.151288 0.988490i \(-0.548342\pi\)
0.780413 + 0.625264i \(0.215009\pi\)
\(564\) 0 0
\(565\) 2.02278 7.54913i 0.0850991 0.317594i
\(566\) 0 0
\(567\) −10.6500 + 10.6500i −0.447258 + 0.447258i
\(568\) 0 0
\(569\) −2.01113 1.16112i −0.0843108 0.0486769i 0.457252 0.889337i \(-0.348834\pi\)
−0.541563 + 0.840660i \(0.682167\pi\)
\(570\) 0 0
\(571\) 19.3989i 0.811819i 0.913913 + 0.405909i \(0.133045\pi\)
−0.913913 + 0.405909i \(0.866955\pi\)
\(572\) 0 0
\(573\) 3.89723i 0.162809i
\(574\) 0 0
\(575\) −11.4873 6.63218i −0.479053 0.276581i
\(576\) 0 0
\(577\) 9.26086 9.26086i 0.385535 0.385535i −0.487557 0.873091i \(-0.662112\pi\)
0.873091 + 0.487557i \(0.162112\pi\)
\(578\) 0 0
\(579\) 0.908270 3.38971i 0.0377464 0.140872i
\(580\) 0 0
\(581\) −23.4833 + 13.5581i −0.974250 + 0.562484i
\(582\) 0 0
\(583\) 1.78997 + 6.68025i 0.0741329 + 0.276668i
\(584\) 0 0
\(585\) −4.56815 + 7.46510i −0.188870 + 0.308644i
\(586\) 0 0
\(587\) −4.05069 15.1174i −0.167190 0.623961i −0.997751 0.0670334i \(-0.978647\pi\)
0.830561 0.556928i \(-0.188020\pi\)
\(588\) 0 0
\(589\) −7.19116 12.4555i −0.296307 0.513218i
\(590\) 0 0
\(591\) 0.802381 2.99453i 0.0330056 0.123178i
\(592\) 0 0
\(593\) −1.40502 1.40502i −0.0576975 0.0576975i 0.677669 0.735367i \(-0.262990\pi\)
−0.735367 + 0.677669i \(0.762990\pi\)
\(594\) 0 0
\(595\) −4.83741 2.79288i −0.198314 0.114497i
\(596\) 0 0
\(597\) −5.45379 −0.223209
\(598\) 0 0
\(599\) 26.5849i 1.08623i 0.839658 + 0.543115i \(0.182755\pi\)
−0.839658 + 0.543115i \(0.817245\pi\)
\(600\) 0 0
\(601\) 12.4968 21.6452i 0.509757 0.882925i −0.490179 0.871622i \(-0.663069\pi\)
0.999936 0.0113032i \(-0.00359799\pi\)
\(602\) 0 0
\(603\) 18.4195 18.4195i 0.750100 0.750100i
\(604\) 0 0
\(605\) 0.879836 + 0.235751i 0.0357704 + 0.00958466i
\(606\) 0 0
\(607\) 38.1595 22.0314i 1.54885 0.894227i 0.550617 0.834758i \(-0.314392\pi\)
0.998230 0.0594694i \(-0.0189409\pi\)
\(608\) 0 0
\(609\) 6.34397 1.69986i 0.257071 0.0688819i
\(610\) 0 0
\(611\) 27.7443 15.0866i 1.12241 0.610338i
\(612\) 0 0
\(613\) −25.5592 + 6.84856i −1.03232 + 0.276611i −0.734929 0.678144i \(-0.762785\pi\)
−0.297396 + 0.954754i \(0.596118\pi\)
\(614\) 0 0
\(615\) −1.19710 2.07344i −0.0482718 0.0836091i
\(616\) 0 0
\(617\) 11.8300 + 3.16985i 0.476260 + 0.127613i 0.488960 0.872306i \(-0.337376\pi\)
−0.0127008 + 0.999919i \(0.504043\pi\)
\(618\) 0 0
\(619\) 20.6210 + 20.6210i 0.828828 + 0.828828i 0.987355 0.158526i \(-0.0506743\pi\)
−0.158526 + 0.987355i \(0.550674\pi\)
\(620\) 0 0
\(621\) 4.03897 6.99571i 0.162078 0.280728i
\(622\) 0 0
\(623\) −13.0814 −0.524095
\(624\) 0 0
\(625\) −14.2993 −0.571972
\(626\) 0 0
\(627\) 2.57787 4.46500i 0.102950 0.178315i
\(628\) 0 0
\(629\) −1.31865 1.31865i −0.0525778 0.0525778i
\(630\) 0 0
\(631\) 15.4030 + 4.12723i 0.613185 + 0.164302i 0.552028 0.833826i \(-0.313854\pi\)
0.0611571 + 0.998128i \(0.480521\pi\)
\(632\) 0 0
\(633\) −2.75898 4.77870i −0.109660 0.189936i
\(634\) 0 0
\(635\) 13.8615 3.71417i 0.550076 0.147392i
\(636\) 0 0
\(637\) 6.66302 + 7.01250i 0.263999 + 0.277846i
\(638\) 0 0
\(639\) 45.2993 12.1379i 1.79201 0.480168i
\(640\) 0 0
\(641\) −12.4266 + 7.17450i −0.490821 + 0.283376i −0.724915 0.688838i \(-0.758121\pi\)
0.234094 + 0.972214i \(0.424788\pi\)
\(642\) 0 0
\(643\) 4.87873 + 1.30725i 0.192398 + 0.0515529i 0.353731 0.935347i \(-0.384913\pi\)
−0.161333 + 0.986900i \(0.551579\pi\)
\(644\) 0 0
\(645\) 1.68577 1.68577i 0.0663773 0.0663773i
\(646\) 0 0
\(647\) 9.63239 16.6838i 0.378688 0.655907i −0.612183 0.790716i \(-0.709709\pi\)
0.990872 + 0.134809i \(0.0430419\pi\)
\(648\) 0 0
\(649\) 20.4363i 0.802194i
\(650\) 0 0
\(651\) −3.63766 −0.142571
\(652\) 0 0
\(653\) −8.45370 4.88075i −0.330819 0.190998i 0.325386 0.945581i \(-0.394506\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(654\) 0 0
\(655\) 4.13284 + 4.13284i 0.161483 + 0.161483i
\(656\) 0 0
\(657\) 6.70238 25.0136i 0.261485 0.975874i
\(658\) 0 0
\(659\) 18.8285 + 32.6119i 0.733454 + 1.27038i 0.955398 + 0.295320i \(0.0954262\pi\)
−0.221945 + 0.975059i \(0.571241\pi\)
\(660\) 0 0
\(661\) −9.10613 33.9845i −0.354187 1.32184i −0.881504 0.472176i \(-0.843469\pi\)
0.527317 0.849669i \(-0.323198\pi\)
\(662\) 0 0
\(663\) −1.41403 + 4.78475i −0.0549163 + 0.185824i
\(664\) 0 0
\(665\) −1.70770 6.37322i −0.0662218 0.247143i
\(666\) 0 0
\(667\) 19.1579 11.0608i 0.741799 0.428278i
\(668\) 0 0
\(669\) −2.13463 + 7.96656i −0.0825297 + 0.308005i
\(670\) 0 0
\(671\) 0.891537 0.891537i 0.0344174 0.0344174i
\(672\) 0 0
\(673\) 44.3178 + 25.5869i 1.70833 + 0.986303i 0.936635 + 0.350308i \(0.113923\pi\)
0.771693 + 0.635995i \(0.219410\pi\)
\(674\) 0 0
\(675\) 10.9949i 0.423195i
\(676\) 0 0
\(677\) 10.0607i 0.386664i 0.981133 + 0.193332i \(0.0619295\pi\)
−0.981133 + 0.193332i \(0.938070\pi\)
\(678\) 0 0
\(679\) −28.3106 16.3451i −1.08646 0.627269i
\(680\) 0 0
\(681\) 3.06433 3.06433i 0.117425 0.117425i
\(682\) 0 0
\(683\) 9.91535 37.0046i 0.379400 1.41594i −0.467407 0.884042i \(-0.654812\pi\)
0.846807 0.531900i \(-0.178522\pi\)
\(684\) 0 0
\(685\) −6.45140 + 3.72472i −0.246495 + 0.142314i
\(686\) 0 0
\(687\) 2.94287 + 10.9829i 0.112278 + 0.419025i
\(688\) 0 0
\(689\) 2.24053 7.58143i 0.0853572 0.288830i
\(690\) 0 0
\(691\) 5.45532 + 20.3595i 0.207530 + 0.774512i 0.988663 + 0.150148i \(0.0479752\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(692\) 0 0
\(693\) 9.17851 + 15.8976i 0.348663 + 0.603902i
\(694\) 0 0
\(695\) −3.06108 + 11.4241i −0.116113 + 0.433341i
\(696\) 0 0
\(697\) 13.5864 + 13.5864i 0.514622 + 0.514622i
\(698\) 0 0
\(699\) 0.0263027 + 0.0151859i 0.000994859 + 0.000574382i
\(700\) 0 0
\(701\) −10.2387 −0.386709 −0.193355 0.981129i \(-0.561937\pi\)
−0.193355 + 0.981129i \(0.561937\pi\)
\(702\) 0 0
\(703\) 2.20281i 0.0830804i
\(704\) 0 0
\(705\) 1.69291 2.93221i 0.0637588 0.110434i
\(706\) 0 0
\(707\) −24.5546 + 24.5546i −0.923469 + 0.923469i
\(708\) 0 0
\(709\) 5.65808 + 1.51608i 0.212494 + 0.0569375i 0.363495 0.931596i \(-0.381583\pi\)
−0.151002 + 0.988534i \(0.548250\pi\)
\(710\) 0 0
\(711\) −31.3248 + 18.0854i −1.17477 + 0.678255i
\(712\) 0 0
\(713\) −11.8349 + 3.17117i −0.443222 + 0.118761i
\(714\) 0 0
\(715\) 6.78849 + 7.14455i 0.253875 + 0.267191i
\(716\) 0 0
\(717\) −3.60034 + 0.964707i −0.134457 + 0.0360277i
\(718\) 0 0
\(719\) −8.07264 13.9822i −0.301059 0.521449i 0.675317 0.737527i \(-0.264007\pi\)
−0.976376 + 0.216078i \(0.930673\pi\)
\(720\) 0 0
\(721\) 30.7806 + 8.24763i 1.14633 + 0.307158i
\(722\) 0 0
\(723\) −1.17588 1.17588i −0.0437315 0.0437315i
\(724\) 0 0
\(725\) 15.0550 26.0760i 0.559127 0.968437i
\(726\) 0 0
\(727\) −36.8561 −1.36692 −0.683459 0.729989i \(-0.739525\pi\)
−0.683459 + 0.729989i \(0.739525\pi\)
\(728\) 0 0
\(729\) −16.8414 −0.623754
\(730\) 0 0
\(731\) −9.56628 + 16.5693i −0.353822 + 0.612837i
\(732\) 0 0
\(733\) 31.9929 + 31.9929i 1.18168 + 1.18168i 0.979308 + 0.202377i \(0.0648667\pi\)
0.202377 + 0.979308i \(0.435133\pi\)
\(734\) 0 0
\(735\) 1.00174 + 0.268416i 0.0369497 + 0.00990065i
\(736\) 0 0
\(737\) −14.6667 25.4035i −0.540256 0.935751i
\(738\) 0 0
\(739\) −18.9049 + 5.06556i −0.695429 + 0.186340i −0.589182 0.808000i \(-0.700550\pi\)
−0.106247 + 0.994340i \(0.533883\pi\)
\(740\) 0 0
\(741\) −5.17755 + 2.81541i −0.190202 + 0.103427i
\(742\) 0 0
\(743\) 2.10402 0.563770i 0.0771889 0.0206827i −0.220018 0.975496i \(-0.570612\pi\)
0.297207 + 0.954813i \(0.403945\pi\)
\(744\) 0 0
\(745\) −11.9307 + 6.88820i −0.437108 + 0.252364i
\(746\) 0 0
\(747\) −35.3095 9.46114i −1.29191 0.346165i
\(748\) 0 0
\(749\) 13.7379 13.7379i 0.501973 0.501973i
\(750\) 0 0
\(751\) 14.1395 24.4904i 0.515959 0.893667i −0.483869 0.875140i \(-0.660769\pi\)
0.999828 0.0185271i \(-0.00589770\pi\)
\(752\) 0 0
\(753\) 2.80119i 0.102081i
\(754\) 0 0
\(755\) −2.45165 −0.0892246
\(756\) 0 0
\(757\) 2.32506 + 1.34238i 0.0845058 + 0.0487895i 0.541657 0.840599i \(-0.317797\pi\)
−0.457152 + 0.889389i \(0.651130\pi\)
\(758\) 0 0
\(759\) −3.10577 3.10577i −0.112732 0.112732i
\(760\) 0 0
\(761\) −3.52566 + 13.1579i −0.127805 + 0.476975i −0.999924 0.0123189i \(-0.996079\pi\)
0.872119 + 0.489294i \(0.162745\pi\)
\(762\) 0 0
\(763\) −11.1640 19.3367i −0.404165 0.700035i
\(764\) 0 0
\(765\) −1.94894 7.27353i −0.0704639 0.262975i
\(766\) 0 0
\(767\) 12.1934 19.9260i 0.440277 0.719485i
\(768\) 0 0
\(769\) 1.32057 + 4.92844i 0.0476210 + 0.177724i 0.985640 0.168859i \(-0.0540084\pi\)
−0.938019 + 0.346584i \(0.887342\pi\)
\(770\) 0 0
\(771\) −2.59597 + 1.49878i −0.0934915 + 0.0539773i
\(772\) 0 0
\(773\) −10.1248 + 37.7861i −0.364162 + 1.35907i 0.504391 + 0.863475i \(0.331717\pi\)
−0.868553 + 0.495596i \(0.834950\pi\)
\(774\) 0 0
\(775\) −11.7923 + 11.7923i −0.423593 + 0.423593i
\(776\) 0 0
\(777\) −0.482502 0.278573i −0.0173097 0.00999374i
\(778\) 0 0
\(779\) 22.6962i 0.813175i
\(780\) 0 0
\(781\) 52.8102i 1.88970i
\(782\) 0 0
\(783\) 15.8802 + 9.16842i 0.567511 + 0.327652i
\(784\) 0 0
\(785\) 4.58555 4.58555i 0.163665 0.163665i
\(786\) 0 0
\(787\) −1.85344 + 6.91712i −0.0660679 + 0.246569i −0.991060 0.133418i \(-0.957405\pi\)
0.924992 + 0.379987i \(0.124071\pi\)
\(788\) 0 0
\(789\) 11.1958 6.46390i 0.398581 0.230121i
\(790\) 0 0
\(791\) 4.84991 + 18.1001i 0.172443 + 0.643566i
\(792\) 0 0
\(793\) −1.40121 + 0.337336i −0.0497585 + 0.0119791i
\(794\) 0 0
\(795\) −0.219366 0.818686i −0.00778012 0.0290358i
\(796\) 0 0
\(797\) 19.2443 + 33.3321i 0.681667 + 1.18068i 0.974472 + 0.224510i \(0.0720782\pi\)
−0.292804 + 0.956172i \(0.594588\pi\)
\(798\) 0 0
\(799\) −7.03266 + 26.2462i −0.248798 + 0.928526i
\(800\) 0 0
\(801\) −12.4698 12.4698i −0.440598 0.440598i
\(802\) 0 0
\(803\) −25.2542 14.5805i −0.891202 0.514536i
\(804\) 0 0
\(805\) −5.62094 −0.198112
\(806\) 0 0
\(807\) 8.19952i 0.288637i
\(808\) 0 0
\(809\) 15.1785 26.2900i 0.533648 0.924306i −0.465579 0.885006i \(-0.654154\pi\)
0.999227 0.0392997i \(-0.0125127\pi\)
\(810\) 0 0
\(811\) 14.3976 14.3976i 0.505568 0.505568i −0.407595 0.913163i \(-0.633632\pi\)
0.913163 + 0.407595i \(0.133632\pi\)
\(812\) 0 0
\(813\) −0.692260 0.185491i −0.0242786 0.00650544i
\(814\) 0 0
\(815\) −2.65567 + 1.53325i −0.0930241 + 0.0537075i
\(816\) 0 0
\(817\) −21.8298 + 5.84928i −0.763729 + 0.204641i
\(818\) 0 0
\(819\) 0.536072 20.9771i 0.0187319 0.732998i
\(820\) 0 0
\(821\) 20.7868 5.56981i 0.725465 0.194388i 0.122856 0.992425i \(-0.460795\pi\)
0.602609 + 0.798037i \(0.294128\pi\)
\(822\) 0 0
\(823\) 4.31762 + 7.47834i 0.150503 + 0.260679i 0.931412 0.363966i \(-0.118577\pi\)
−0.780910 + 0.624644i \(0.785244\pi\)
\(824\) 0 0
\(825\) −5.77456 1.54729i −0.201044 0.0538697i
\(826\) 0 0
\(827\) −0.967256 0.967256i −0.0336348 0.0336348i 0.690089 0.723724i \(-0.257571\pi\)
−0.723724 + 0.690089i \(0.757571\pi\)
\(828\) 0 0
\(829\) 8.27244 14.3283i 0.287314 0.497642i −0.685854 0.727739i \(-0.740571\pi\)
0.973168 + 0.230097i \(0.0739044\pi\)
\(830\) 0 0
\(831\) −13.1865 −0.457435
\(832\) 0 0
\(833\) −8.32281 −0.288368
\(834\) 0 0
\(835\) −1.11218 + 1.92635i −0.0384886 + 0.0666642i
\(836\) 0 0
\(837\) −7.18148 7.18148i −0.248228 0.248228i
\(838\) 0 0
\(839\) −26.2626 7.03704i −0.906686 0.242946i −0.224800 0.974405i \(-0.572173\pi\)
−0.681885 + 0.731459i \(0.738840\pi\)
\(840\) 0 0
\(841\) 10.6080 + 18.3735i 0.365792 + 0.633570i
\(842\) 0 0
\(843\) 8.70492 2.33248i 0.299813 0.0803348i
\(844\) 0 0
\(845\) −2.35615 11.0165i −0.0810541 0.378980i
\(846\) 0 0
\(847\) −2.10953 + 0.565248i −0.0724844 + 0.0194221i
\(848\) 0 0
\(849\) −0.771484 + 0.445416i −0.0264772 + 0.0152866i
\(850\) 0 0
\(851\) −1.81265 0.485697i −0.0621368 0.0166495i
\(852\) 0 0
\(853\) 23.3124 23.3124i 0.798201 0.798201i −0.184611 0.982812i \(-0.559102\pi\)
0.982812 + 0.184611i \(0.0591025\pi\)
\(854\) 0 0
\(855\) 4.44738 7.70309i 0.152097 0.263440i
\(856\) 0 0
\(857\) 15.0760i 0.514985i 0.966280 + 0.257493i \(0.0828963\pi\)
−0.966280 + 0.257493i \(0.917104\pi\)
\(858\) 0 0
\(859\) −23.0423 −0.786192 −0.393096 0.919497i \(-0.628596\pi\)
−0.393096 + 0.919497i \(0.628596\pi\)
\(860\) 0 0
\(861\) 4.97136 + 2.87022i 0.169424 + 0.0978168i
\(862\) 0 0
\(863\) −7.80375 7.80375i −0.265643 0.265643i 0.561699 0.827342i \(-0.310148\pi\)
−0.827342 + 0.561699i \(0.810148\pi\)
\(864\) 0 0
\(865\) −1.25952 + 4.70059i −0.0428249 + 0.159825i
\(866\) 0 0
\(867\) 1.64516 + 2.84950i 0.0558725 + 0.0967741i
\(868\) 0 0
\(869\) 10.5420 + 39.3434i 0.357614 + 1.33463i
\(870\) 0 0
\(871\) −0.856613 + 33.5201i −0.0290252 + 1.13579i
\(872\) 0 0
\(873\) −11.4060 42.5679i −0.386035 1.44070i
\(874\) 0 0
\(875\) −14.4224 + 8.32678i −0.487566 + 0.281496i
\(876\) 0 0
\(877\) −11.4299 + 42.6571i −0.385961 + 1.44043i 0.450685 + 0.892683i \(0.351180\pi\)
−0.836646 + 0.547744i \(0.815487\pi\)
\(878\) 0 0
\(879\) 2.71856 2.71856i 0.0916946 0.0916946i
\(880\) 0 0
\(881\) −39.3183 22.7004i −1.32467 0.764796i −0.340197 0.940354i \(-0.610494\pi\)
−0.984469 + 0.175558i \(0.943827\pi\)
\(882\) 0 0
\(883\) 11.5891i 0.390003i 0.980803 + 0.195001i \(0.0624711\pi\)
−0.980803 + 0.195001i \(0.937529\pi\)
\(884\) 0 0
\(885\) 2.50453i 0.0841889i
\(886\) 0 0
\(887\) −11.5755 6.68314i −0.388669 0.224398i 0.292915 0.956139i \(-0.405375\pi\)
−0.681583 + 0.731741i \(0.738708\pi\)
\(888\) 0 0
\(889\) −24.3296 + 24.3296i −0.815988 + 0.815988i
\(890\) 0 0
\(891\) −5.91767 + 22.0851i −0.198250 + 0.739877i
\(892\) 0 0
\(893\) −27.7963 + 16.0482i −0.930169 + 0.537033i
\(894\) 0 0
\(895\) −3.47764 12.9787i −0.116245 0.433831i
\(896\) 0 0
\(897\) 1.17515 + 4.88128i 0.0392370 + 0.162981i
\(898\) 0 0
\(899\) −7.19850 26.8652i −0.240083 0.896004i
\(900\) 0 0
\(901\) 3.40097 + 5.89065i 0.113303 + 0.196246i
\(902\) 0 0
\(903\) −1.47943 + 5.52132i −0.0492324 + 0.183738i
\(904\) 0 0
\(905\) −15.1801 15.1801i −0.504605 0.504605i
\(906\) 0 0
\(907\) 11.0043 + 6.35332i 0.365391 + 0.210959i 0.671443 0.741056i \(-0.265675\pi\)
−0.306052 + 0.952015i \(0.599008\pi\)
\(908\) 0 0
\(909\) −46.8130 −1.55269
\(910\) 0 0
\(911\) 38.0656i 1.26117i −0.776121 0.630585i \(-0.782815\pi\)
0.776121 0.630585i \(-0.217185\pi\)
\(912\) 0 0
\(913\) −20.5820 + 35.6491i −0.681165 + 1.17981i
\(914\) 0 0
\(915\) −0.109261 + 0.109261i −0.00361205 + 0.00361205i
\(916\) 0 0
\(917\) −13.5360 3.62697i −0.446999 0.119773i
\(918\) 0 0
\(919\) 4.00602 2.31288i 0.132146 0.0762948i −0.432469 0.901649i \(-0.642358\pi\)
0.564616 + 0.825354i \(0.309024\pi\)
\(920\) 0 0
\(921\) −12.5765 + 3.36986i −0.414409 + 0.111041i
\(922\) 0 0
\(923\) −31.5094 + 51.4915i −1.03714 + 1.69486i
\(924\) 0 0
\(925\) −2.46720 + 0.661085i −0.0811211 + 0.0217363i
\(926\) 0 0
\(927\) 21.4794 + 37.2034i 0.705476 + 1.22192i
\(928\) 0 0
\(929\) −28.2064 7.55789i −0.925423 0.247966i −0.235521 0.971869i \(-0.575680\pi\)
−0.689902 + 0.723903i \(0.742346\pi\)
\(930\) 0 0
\(931\) −6.95166 6.95166i −0.227831 0.227831i
\(932\) 0 0
\(933\) 4.05119 7.01686i 0.132630 0.229722i
\(934\) 0 0
\(935\) −8.47953 −0.277310
\(936\) 0 0
\(937\) −16.4032 −0.535870 −0.267935 0.963437i \(-0.586341\pi\)
−0.267935 + 0.963437i \(0.586341\pi\)
\(938\) 0 0
\(939\) −2.91981 + 5.05725i −0.0952843 + 0.165037i
\(940\) 0 0
\(941\) 14.6711 + 14.6711i 0.478264 + 0.478264i 0.904576 0.426312i \(-0.140187\pi\)
−0.426312 + 0.904576i \(0.640187\pi\)
\(942\) 0 0
\(943\) 18.6763 + 5.00429i 0.608183 + 0.162962i
\(944\) 0 0
\(945\) −2.32962 4.03502i −0.0757825 0.131259i
\(946\) 0 0
\(947\) −20.8148 + 5.57731i −0.676391 + 0.181238i −0.580632 0.814166i \(-0.697194\pi\)
−0.0957588 + 0.995405i \(0.530528\pi\)
\(948\) 0 0
\(949\) 15.9241 + 29.2845i 0.516917 + 0.950614i
\(950\) 0 0
\(951\) −10.1711 + 2.72533i −0.329820 + 0.0883750i
\(952\) 0 0
\(953\) 46.8688 27.0597i 1.51823 0.876550i 0.518459 0.855103i \(-0.326506\pi\)
0.999770 0.0214470i \(-0.00682733\pi\)
\(954\) 0 0
\(955\) 7.31331 + 1.95960i 0.236653 + 0.0634110i
\(956\) 0 0
\(957\) 7.05005 7.05005i 0.227896 0.227896i
\(958\) 0 0
\(959\) 8.93054 15.4682i 0.288382 0.499493i
\(960\) 0 0
\(961\) 15.5954i 0.503078i
\(962\) 0 0
\(963\) 26.1912 0.844001
\(964\) 0 0
\(965\) −5.90424 3.40882i −0.190064 0.109734i
\(966\) 0 0
\(967\) 6.56401 + 6.56401i 0.211084 + 0.211084i 0.804728 0.593644i \(-0.202311\pi\)
−0.593644 + 0.804728i \(0.702311\pi\)
\(968\) 0 0
\(969\) 1.31241 4.89799i 0.0421607 0.157346i
\(970\) 0 0
\(971\) −25.6280 44.3889i −0.822440 1.42451i −0.903860 0.427829i \(-0.859279\pi\)
0.0814193 0.996680i \(-0.474055\pi\)
\(972\) 0 0
\(973\) −7.33937 27.3909i −0.235289 0.878112i
\(974\) 0 0
\(975\) 4.70717 + 4.95407i 0.150750 + 0.158657i
\(976\) 0 0
\(977\) 11.3765 + 42.4576i 0.363966 + 1.35834i 0.868817 + 0.495133i \(0.164881\pi\)
−0.504851 + 0.863206i \(0.668453\pi\)
\(978\) 0 0
\(979\) −17.1979 + 9.92919i −0.549646 + 0.317338i
\(980\) 0 0
\(981\) 7.79053 29.0747i 0.248732 0.928282i
\(982\) 0 0
\(983\) 26.2621 26.2621i 0.837632 0.837632i −0.150915 0.988547i \(-0.548222\pi\)
0.988547 + 0.150915i \(0.0482219\pi\)
\(984\) 0 0
\(985\) −5.21591 3.01140i −0.166193 0.0959513i
\(986\) 0 0
\(987\) 8.11800i 0.258399i
\(988\) 0 0
\(989\) 19.2531i 0.612212i
\(990\) 0 0
\(991\) −2.40594 1.38907i −0.0764273 0.0441253i 0.461299 0.887245i \(-0.347383\pi\)
−0.537727 + 0.843119i \(0.680717\pi\)
\(992\) 0 0
\(993\) −7.54104 + 7.54104i −0.239308 + 0.239308i
\(994\) 0 0
\(995\) −2.74226 + 10.2343i −0.0869355 + 0.324448i
\(996\) 0 0
\(997\) 23.5492 13.5962i 0.745812 0.430595i −0.0783668 0.996925i \(-0.524971\pi\)
0.824179 + 0.566330i \(0.191637\pi\)
\(998\) 0 0
\(999\) −0.402598 1.50252i −0.0127376 0.0475375i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.bk.a.175.7 48
4.3 odd 2 104.2.u.a.19.12 yes 48
8.3 odd 2 inner 416.2.bk.a.175.8 48
8.5 even 2 104.2.u.a.19.2 yes 48
12.11 even 2 936.2.ed.d.19.1 48
13.11 odd 12 inner 416.2.bk.a.271.8 48
24.5 odd 2 936.2.ed.d.19.11 48
52.11 even 12 104.2.u.a.11.2 48
104.11 even 12 inner 416.2.bk.a.271.7 48
104.37 odd 12 104.2.u.a.11.12 yes 48
156.11 odd 12 936.2.ed.d.739.11 48
312.245 even 12 936.2.ed.d.739.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.u.a.11.2 48 52.11 even 12
104.2.u.a.11.12 yes 48 104.37 odd 12
104.2.u.a.19.2 yes 48 8.5 even 2
104.2.u.a.19.12 yes 48 4.3 odd 2
416.2.bk.a.175.7 48 1.1 even 1 trivial
416.2.bk.a.175.8 48 8.3 odd 2 inner
416.2.bk.a.271.7 48 104.11 even 12 inner
416.2.bk.a.271.8 48 13.11 odd 12 inner
936.2.ed.d.19.1 48 12.11 even 2
936.2.ed.d.19.11 48 24.5 odd 2
936.2.ed.d.739.1 48 312.245 even 12
936.2.ed.d.739.11 48 156.11 odd 12