Properties

Label 416.2.bk.a.175.5
Level $416$
Weight $2$
Character 416.175
Analytic conductor $3.322$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(15,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.15"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bk (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 175.5
Character \(\chi\) \(=\) 416.175
Dual form 416.2.bk.a.271.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0597334 + 0.103461i) q^{3} +(-2.08890 - 2.08890i) q^{5} +(-1.83497 - 0.491678i) q^{7} +(1.49286 + 2.58572i) q^{9} +(-5.53261 + 1.48246i) q^{11} +(0.0282216 + 3.60544i) q^{13} +(0.340898 - 0.0913433i) q^{15} +(-3.70190 + 2.13730i) q^{17} +(4.12503 + 1.10530i) q^{19} +(0.160478 - 0.160478i) q^{21} +(-1.56097 + 2.70367i) q^{23} +3.72704i q^{25} -0.715095 q^{27} +(-3.41586 - 1.97215i) q^{29} +(-5.91568 - 5.91568i) q^{31} +(0.177104 - 0.660963i) q^{33} +(2.80600 + 4.86014i) q^{35} +(-0.0218323 - 0.0814791i) q^{37} +(-0.374709 - 0.212445i) q^{39} +(-1.89625 - 7.07690i) q^{41} +(3.96129 - 2.28705i) q^{43} +(2.28286 - 8.51976i) q^{45} +(1.33607 - 1.33607i) q^{47} +(-2.93682 - 1.69557i) q^{49} -0.510672i q^{51} +7.65994i q^{53} +(14.6538 + 8.46037i) q^{55} +(-0.360758 + 0.360758i) q^{57} +(-0.332032 + 1.23916i) q^{59} +(-5.12445 + 2.95860i) q^{61} +(-1.46802 - 5.47871i) q^{63} +(7.47247 - 7.59037i) q^{65} +(-0.943589 - 3.52152i) q^{67} +(-0.186483 - 0.322999i) q^{69} +(-1.87184 + 6.98581i) q^{71} +(-2.35363 - 2.35363i) q^{73} +(-0.385604 - 0.222629i) q^{75} +10.8810 q^{77} +4.48211i q^{79} +(-4.43588 + 7.68316i) q^{81} +(-0.871274 + 0.871274i) q^{83} +(12.1975 + 3.26832i) q^{85} +(0.408082 - 0.235606i) q^{87} +(-0.761451 + 0.204030i) q^{89} +(1.72093 - 6.62974i) q^{91} +(0.965407 - 0.258680i) q^{93} +(-6.30793 - 10.9257i) q^{95} +(11.8738 + 3.18157i) q^{97} +(-12.0926 - 12.0926i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{3} - 20 q^{9} + 8 q^{11} - 12 q^{17} + 8 q^{19} - 8 q^{27} + 4 q^{33} + 4 q^{35} + 12 q^{43} - 60 q^{49} + 36 q^{57} + 64 q^{59} - 16 q^{65} + 8 q^{67} - 12 q^{73} - 24 q^{75} - 8 q^{81} + 48 q^{83}+ \cdots - 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0597334 + 0.103461i −0.0344871 + 0.0597334i −0.882754 0.469836i \(-0.844313\pi\)
0.848267 + 0.529569i \(0.177646\pi\)
\(4\) 0 0
\(5\) −2.08890 2.08890i −0.934186 0.934186i 0.0637779 0.997964i \(-0.479685\pi\)
−0.997964 + 0.0637779i \(0.979685\pi\)
\(6\) 0 0
\(7\) −1.83497 0.491678i −0.693552 0.185837i −0.105212 0.994450i \(-0.533552\pi\)
−0.588341 + 0.808613i \(0.700219\pi\)
\(8\) 0 0
\(9\) 1.49286 + 2.58572i 0.497621 + 0.861905i
\(10\) 0 0
\(11\) −5.53261 + 1.48246i −1.66814 + 0.446978i −0.964609 0.263683i \(-0.915063\pi\)
−0.703535 + 0.710661i \(0.748396\pi\)
\(12\) 0 0
\(13\) 0.0282216 + 3.60544i 0.00782726 + 0.999969i
\(14\) 0 0
\(15\) 0.340898 0.0913433i 0.0880194 0.0235847i
\(16\) 0 0
\(17\) −3.70190 + 2.13730i −0.897844 + 0.518370i −0.876500 0.481402i \(-0.840128\pi\)
−0.0213437 + 0.999772i \(0.506794\pi\)
\(18\) 0 0
\(19\) 4.12503 + 1.10530i 0.946347 + 0.253573i 0.698811 0.715306i \(-0.253713\pi\)
0.247535 + 0.968879i \(0.420379\pi\)
\(20\) 0 0
\(21\) 0.160478 0.160478i 0.0350193 0.0350193i
\(22\) 0 0
\(23\) −1.56097 + 2.70367i −0.325484 + 0.563755i −0.981610 0.190897i \(-0.938861\pi\)
0.656126 + 0.754651i \(0.272194\pi\)
\(24\) 0 0
\(25\) 3.72704i 0.745408i
\(26\) 0 0
\(27\) −0.715095 −0.137620
\(28\) 0 0
\(29\) −3.41586 1.97215i −0.634310 0.366219i 0.148110 0.988971i \(-0.452681\pi\)
−0.782419 + 0.622752i \(0.786015\pi\)
\(30\) 0 0
\(31\) −5.91568 5.91568i −1.06249 1.06249i −0.997913 0.0645742i \(-0.979431\pi\)
−0.0645742 0.997913i \(-0.520569\pi\)
\(32\) 0 0
\(33\) 0.177104 0.660963i 0.0308299 0.115059i
\(34\) 0 0
\(35\) 2.80600 + 4.86014i 0.474301 + 0.821513i
\(36\) 0 0
\(37\) −0.0218323 0.0814791i −0.00358920 0.0133951i 0.964108 0.265510i \(-0.0855405\pi\)
−0.967697 + 0.252115i \(0.918874\pi\)
\(38\) 0 0
\(39\) −0.374709 0.212445i −0.0600015 0.0340185i
\(40\) 0 0
\(41\) −1.89625 7.07690i −0.296144 1.10523i −0.940304 0.340335i \(-0.889460\pi\)
0.644160 0.764891i \(-0.277207\pi\)
\(42\) 0 0
\(43\) 3.96129 2.28705i 0.604091 0.348772i −0.166558 0.986032i \(-0.553265\pi\)
0.770649 + 0.637260i \(0.219932\pi\)
\(44\) 0 0
\(45\) 2.28286 8.51976i 0.340309 1.27005i
\(46\) 0 0
\(47\) 1.33607 1.33607i 0.194886 0.194886i −0.602917 0.797804i \(-0.705995\pi\)
0.797804 + 0.602917i \(0.205995\pi\)
\(48\) 0 0
\(49\) −2.93682 1.69557i −0.419546 0.242225i
\(50\) 0 0
\(51\) 0.510672i 0.0715083i
\(52\) 0 0
\(53\) 7.65994i 1.05217i 0.850431 + 0.526087i \(0.176341\pi\)
−0.850431 + 0.526087i \(0.823659\pi\)
\(54\) 0 0
\(55\) 14.6538 + 8.46037i 1.97592 + 1.14080i
\(56\) 0 0
\(57\) −0.360758 + 0.360758i −0.0477835 + 0.0477835i
\(58\) 0 0
\(59\) −0.332032 + 1.23916i −0.0432269 + 0.161325i −0.984165 0.177253i \(-0.943279\pi\)
0.940939 + 0.338577i \(0.109946\pi\)
\(60\) 0 0
\(61\) −5.12445 + 2.95860i −0.656118 + 0.378810i −0.790796 0.612079i \(-0.790333\pi\)
0.134678 + 0.990889i \(0.457000\pi\)
\(62\) 0 0
\(63\) −1.46802 5.47871i −0.184953 0.690253i
\(64\) 0 0
\(65\) 7.47247 7.59037i 0.926845 0.941470i
\(66\) 0 0
\(67\) −0.943589 3.52152i −0.115278 0.430222i 0.884030 0.467431i \(-0.154820\pi\)
−0.999308 + 0.0372082i \(0.988154\pi\)
\(68\) 0 0
\(69\) −0.186483 0.322999i −0.0224500 0.0388845i
\(70\) 0 0
\(71\) −1.87184 + 6.98581i −0.222147 + 0.829064i 0.761381 + 0.648305i \(0.224522\pi\)
−0.983528 + 0.180758i \(0.942145\pi\)
\(72\) 0 0
\(73\) −2.35363 2.35363i −0.275472 0.275472i 0.555827 0.831298i \(-0.312402\pi\)
−0.831298 + 0.555827i \(0.812402\pi\)
\(74\) 0 0
\(75\) −0.385604 0.222629i −0.0445257 0.0257069i
\(76\) 0 0
\(77\) 10.8810 1.24001
\(78\) 0 0
\(79\) 4.48211i 0.504277i 0.967691 + 0.252139i \(0.0811339\pi\)
−0.967691 + 0.252139i \(0.918866\pi\)
\(80\) 0 0
\(81\) −4.43588 + 7.68316i −0.492875 + 0.853685i
\(82\) 0 0
\(83\) −0.871274 + 0.871274i −0.0956347 + 0.0956347i −0.753305 0.657671i \(-0.771542\pi\)
0.657671 + 0.753305i \(0.271542\pi\)
\(84\) 0 0
\(85\) 12.1975 + 3.26832i 1.32301 + 0.354499i
\(86\) 0 0
\(87\) 0.408082 0.235606i 0.0437510 0.0252596i
\(88\) 0 0
\(89\) −0.761451 + 0.204030i −0.0807137 + 0.0216272i −0.298950 0.954269i \(-0.596636\pi\)
0.218236 + 0.975896i \(0.429970\pi\)
\(90\) 0 0
\(91\) 1.72093 6.62974i 0.180403 0.694986i
\(92\) 0 0
\(93\) 0.965407 0.258680i 0.100108 0.0268239i
\(94\) 0 0
\(95\) −6.30793 10.9257i −0.647180 1.12095i
\(96\) 0 0
\(97\) 11.8738 + 3.18157i 1.20560 + 0.323039i 0.805034 0.593229i \(-0.202147\pi\)
0.400566 + 0.916268i \(0.368814\pi\)
\(98\) 0 0
\(99\) −12.0926 12.0926i −1.21536 1.21536i
\(100\) 0 0
\(101\) 2.64360 4.57885i 0.263048 0.455613i −0.704002 0.710198i \(-0.748606\pi\)
0.967050 + 0.254585i \(0.0819389\pi\)
\(102\) 0 0
\(103\) 15.1762 1.49535 0.747676 0.664064i \(-0.231170\pi\)
0.747676 + 0.664064i \(0.231170\pi\)
\(104\) 0 0
\(105\) −0.670448 −0.0654290
\(106\) 0 0
\(107\) 3.13866 5.43632i 0.303426 0.525549i −0.673484 0.739202i \(-0.735203\pi\)
0.976910 + 0.213653i \(0.0685361\pi\)
\(108\) 0 0
\(109\) 2.77694 + 2.77694i 0.265983 + 0.265983i 0.827479 0.561497i \(-0.189774\pi\)
−0.561497 + 0.827479i \(0.689774\pi\)
\(110\) 0 0
\(111\) 0.00973405 + 0.00260823i 0.000923915 + 0.000247562i
\(112\) 0 0
\(113\) −4.95084 8.57511i −0.465736 0.806678i 0.533499 0.845801i \(-0.320877\pi\)
−0.999234 + 0.0391228i \(0.987544\pi\)
\(114\) 0 0
\(115\) 8.90842 2.38700i 0.830714 0.222589i
\(116\) 0 0
\(117\) −9.28052 + 5.45541i −0.857984 + 0.504352i
\(118\) 0 0
\(119\) 7.84373 2.10172i 0.719034 0.192665i
\(120\) 0 0
\(121\) 18.8858 10.9037i 1.71689 0.991247i
\(122\) 0 0
\(123\) 0.845454 + 0.226539i 0.0762320 + 0.0204263i
\(124\) 0 0
\(125\) −2.65909 + 2.65909i −0.237837 + 0.237837i
\(126\) 0 0
\(127\) −4.55719 + 7.89328i −0.404385 + 0.700416i −0.994250 0.107087i \(-0.965848\pi\)
0.589865 + 0.807502i \(0.299181\pi\)
\(128\) 0 0
\(129\) 0.546453i 0.0481125i
\(130\) 0 0
\(131\) −9.19603 −0.803461 −0.401730 0.915758i \(-0.631591\pi\)
−0.401730 + 0.915758i \(0.631591\pi\)
\(132\) 0 0
\(133\) −7.02584 4.05637i −0.609218 0.351732i
\(134\) 0 0
\(135\) 1.49377 + 1.49377i 0.128563 + 0.128563i
\(136\) 0 0
\(137\) −2.93822 + 10.9656i −0.251029 + 0.936852i 0.719228 + 0.694774i \(0.244496\pi\)
−0.970257 + 0.242078i \(0.922171\pi\)
\(138\) 0 0
\(139\) −1.53429 2.65747i −0.130137 0.225404i 0.793592 0.608450i \(-0.208208\pi\)
−0.923729 + 0.383046i \(0.874875\pi\)
\(140\) 0 0
\(141\) 0.0584236 + 0.218040i 0.00492015 + 0.0183623i
\(142\) 0 0
\(143\) −5.50105 19.9057i −0.460021 1.66459i
\(144\) 0 0
\(145\) 3.01578 + 11.2550i 0.250447 + 0.934680i
\(146\) 0 0
\(147\) 0.350852 0.202565i 0.0289378 0.0167073i
\(148\) 0 0
\(149\) 4.78484 17.8573i 0.391990 1.46292i −0.434858 0.900499i \(-0.643201\pi\)
0.826848 0.562426i \(-0.190132\pi\)
\(150\) 0 0
\(151\) −16.0837 + 16.0837i −1.30887 + 1.30887i −0.386643 + 0.922229i \(0.626365\pi\)
−0.922229 + 0.386643i \(0.873635\pi\)
\(152\) 0 0
\(153\) −11.0529 6.38138i −0.893572 0.515904i
\(154\) 0 0
\(155\) 24.7146i 1.98512i
\(156\) 0 0
\(157\) 7.07494i 0.564641i 0.959320 + 0.282321i \(0.0911042\pi\)
−0.959320 + 0.282321i \(0.908896\pi\)
\(158\) 0 0
\(159\) −0.792507 0.457554i −0.0628499 0.0362864i
\(160\) 0 0
\(161\) 4.19366 4.19366i 0.330506 0.330506i
\(162\) 0 0
\(163\) −1.63996 + 6.12043i −0.128452 + 0.479389i −0.999939 0.0110292i \(-0.996489\pi\)
0.871487 + 0.490418i \(0.163156\pi\)
\(164\) 0 0
\(165\) −1.75064 + 1.01073i −0.136287 + 0.0786855i
\(166\) 0 0
\(167\) 4.89526 + 18.2694i 0.378806 + 1.41372i 0.847703 + 0.530472i \(0.177985\pi\)
−0.468896 + 0.883253i \(0.655348\pi\)
\(168\) 0 0
\(169\) −12.9984 + 0.203502i −0.999877 + 0.0156540i
\(170\) 0 0
\(171\) 3.30012 + 12.3162i 0.252366 + 0.941845i
\(172\) 0 0
\(173\) −2.93213 5.07860i −0.222926 0.386119i 0.732769 0.680477i \(-0.238227\pi\)
−0.955695 + 0.294358i \(0.904894\pi\)
\(174\) 0 0
\(175\) 1.83250 6.83899i 0.138524 0.516979i
\(176\) 0 0
\(177\) −0.108372 0.108372i −0.00814571 0.00814571i
\(178\) 0 0
\(179\) −7.92052 4.57292i −0.592008 0.341796i 0.173883 0.984766i \(-0.444368\pi\)
−0.765891 + 0.642970i \(0.777702\pi\)
\(180\) 0 0
\(181\) 11.5513 0.858599 0.429300 0.903162i \(-0.358760\pi\)
0.429300 + 0.903162i \(0.358760\pi\)
\(182\) 0 0
\(183\) 0.706909i 0.0522562i
\(184\) 0 0
\(185\) −0.124597 + 0.215808i −0.00916052 + 0.0158665i
\(186\) 0 0
\(187\) 17.3127 17.3127i 1.26603 1.26603i
\(188\) 0 0
\(189\) 1.31218 + 0.351597i 0.0954468 + 0.0255749i
\(190\) 0 0
\(191\) 18.0500 10.4212i 1.30605 0.754048i 0.324615 0.945846i \(-0.394765\pi\)
0.981434 + 0.191798i \(0.0614318\pi\)
\(192\) 0 0
\(193\) −2.91871 + 0.782065i −0.210093 + 0.0562943i −0.362331 0.932050i \(-0.618019\pi\)
0.152237 + 0.988344i \(0.451352\pi\)
\(194\) 0 0
\(195\) 0.338954 + 1.22651i 0.0242730 + 0.0878321i
\(196\) 0 0
\(197\) −20.3251 + 5.44609i −1.44810 + 0.388018i −0.895363 0.445337i \(-0.853084\pi\)
−0.552738 + 0.833355i \(0.686417\pi\)
\(198\) 0 0
\(199\) −2.68040 4.64259i −0.190009 0.329105i 0.755244 0.655443i \(-0.227518\pi\)
−0.945253 + 0.326339i \(0.894185\pi\)
\(200\) 0 0
\(201\) 0.420705 + 0.112727i 0.0296742 + 0.00795118i
\(202\) 0 0
\(203\) 5.29833 + 5.29833i 0.371870 + 0.371870i
\(204\) 0 0
\(205\) −10.8219 + 18.7440i −0.755833 + 1.30914i
\(206\) 0 0
\(207\) −9.32124 −0.647871
\(208\) 0 0
\(209\) −24.4607 −1.69198
\(210\) 0 0
\(211\) −12.8300 + 22.2223i −0.883256 + 1.52984i −0.0355568 + 0.999368i \(0.511320\pi\)
−0.847699 + 0.530477i \(0.822013\pi\)
\(212\) 0 0
\(213\) −0.610950 0.610950i −0.0418616 0.0418616i
\(214\) 0 0
\(215\) −13.0522 3.49732i −0.890151 0.238515i
\(216\) 0 0
\(217\) 7.94647 + 13.7637i 0.539441 + 0.934340i
\(218\) 0 0
\(219\) 0.384100 0.102919i 0.0259551 0.00695464i
\(220\) 0 0
\(221\) −7.81037 13.2867i −0.525382 0.893759i
\(222\) 0 0
\(223\) −12.6427 + 3.38761i −0.846621 + 0.226851i −0.655952 0.754803i \(-0.727732\pi\)
−0.190669 + 0.981654i \(0.561066\pi\)
\(224\) 0 0
\(225\) −9.63706 + 5.56396i −0.642471 + 0.370931i
\(226\) 0 0
\(227\) 26.0325 + 6.97540i 1.72784 + 0.462973i 0.979684 0.200549i \(-0.0642725\pi\)
0.748157 + 0.663522i \(0.230939\pi\)
\(228\) 0 0
\(229\) 0.157142 0.157142i 0.0103842 0.0103842i −0.701896 0.712280i \(-0.747663\pi\)
0.712280 + 0.701896i \(0.247663\pi\)
\(230\) 0 0
\(231\) −0.649962 + 1.12577i −0.0427643 + 0.0740700i
\(232\) 0 0
\(233\) 24.0418i 1.57503i 0.616297 + 0.787514i \(0.288632\pi\)
−0.616297 + 0.787514i \(0.711368\pi\)
\(234\) 0 0
\(235\) −5.58185 −0.364120
\(236\) 0 0
\(237\) −0.463725 0.267732i −0.0301222 0.0173910i
\(238\) 0 0
\(239\) −19.4668 19.4668i −1.25920 1.25920i −0.951474 0.307729i \(-0.900431\pi\)
−0.307729 0.951474i \(-0.599569\pi\)
\(240\) 0 0
\(241\) 3.69069 13.7738i 0.237738 0.887251i −0.739157 0.673533i \(-0.764776\pi\)
0.976895 0.213718i \(-0.0685573\pi\)
\(242\) 0 0
\(243\) −1.60258 2.77576i −0.102806 0.178065i
\(244\) 0 0
\(245\) 2.59284 + 9.67663i 0.165651 + 0.618217i
\(246\) 0 0
\(247\) −3.86867 + 14.9037i −0.246158 + 0.948303i
\(248\) 0 0
\(249\) −0.0380989 0.142187i −0.00241442 0.00901075i
\(250\) 0 0
\(251\) −1.40119 + 0.808976i −0.0884422 + 0.0510621i −0.543569 0.839365i \(-0.682927\pi\)
0.455127 + 0.890427i \(0.349594\pi\)
\(252\) 0 0
\(253\) 4.62813 17.2724i 0.290968 1.08591i
\(254\) 0 0
\(255\) −1.06674 + 1.06674i −0.0668021 + 0.0668021i
\(256\) 0 0
\(257\) 9.69476 + 5.59727i 0.604743 + 0.349148i 0.770905 0.636950i \(-0.219804\pi\)
−0.166162 + 0.986098i \(0.553138\pi\)
\(258\) 0 0
\(259\) 0.160246i 0.00995720i
\(260\) 0 0
\(261\) 11.7766i 0.728953i
\(262\) 0 0
\(263\) 7.02915 + 4.05828i 0.433436 + 0.250245i 0.700809 0.713349i \(-0.252822\pi\)
−0.267373 + 0.963593i \(0.586156\pi\)
\(264\) 0 0
\(265\) 16.0009 16.0009i 0.982927 0.982927i
\(266\) 0 0
\(267\) 0.0243748 0.0909681i 0.00149172 0.00556716i
\(268\) 0 0
\(269\) 7.47014 4.31289i 0.455462 0.262961i −0.254672 0.967028i \(-0.581967\pi\)
0.710134 + 0.704066i \(0.248634\pi\)
\(270\) 0 0
\(271\) 0.638081 + 2.38135i 0.0387607 + 0.144657i 0.982594 0.185764i \(-0.0594760\pi\)
−0.943834 + 0.330421i \(0.892809\pi\)
\(272\) 0 0
\(273\) 0.583124 + 0.574066i 0.0352923 + 0.0347441i
\(274\) 0 0
\(275\) −5.52518 20.6202i −0.333181 1.24345i
\(276\) 0 0
\(277\) 7.30805 + 12.6579i 0.439098 + 0.760540i 0.997620 0.0689494i \(-0.0219647\pi\)
−0.558522 + 0.829490i \(0.688631\pi\)
\(278\) 0 0
\(279\) 6.46496 24.1276i 0.387047 1.44448i
\(280\) 0 0
\(281\) −3.44904 3.44904i −0.205753 0.205753i 0.596707 0.802459i \(-0.296476\pi\)
−0.802459 + 0.596707i \(0.796476\pi\)
\(282\) 0 0
\(283\) −16.0402 9.26082i −0.953492 0.550499i −0.0593279 0.998239i \(-0.518896\pi\)
−0.894164 + 0.447740i \(0.852229\pi\)
\(284\) 0 0
\(285\) 1.50718 0.0892774
\(286\) 0 0
\(287\) 13.9182i 0.821566i
\(288\) 0 0
\(289\) 0.636064 1.10170i 0.0374155 0.0648056i
\(290\) 0 0
\(291\) −1.03843 + 1.03843i −0.0608738 + 0.0608738i
\(292\) 0 0
\(293\) −16.3695 4.38618i −0.956314 0.256244i −0.253275 0.967394i \(-0.581508\pi\)
−0.703039 + 0.711151i \(0.748174\pi\)
\(294\) 0 0
\(295\) 3.28207 1.89490i 0.191089 0.110326i
\(296\) 0 0
\(297\) 3.95634 1.06010i 0.229570 0.0615132i
\(298\) 0 0
\(299\) −9.79198 5.55167i −0.566285 0.321061i
\(300\) 0 0
\(301\) −8.39333 + 2.24899i −0.483783 + 0.129629i
\(302\) 0 0
\(303\) 0.315822 + 0.547020i 0.0181435 + 0.0314255i
\(304\) 0 0
\(305\) 16.8847 + 4.52424i 0.966815 + 0.259057i
\(306\) 0 0
\(307\) 14.6326 + 14.6326i 0.835125 + 0.835125i 0.988213 0.153087i \(-0.0489216\pi\)
−0.153087 + 0.988213i \(0.548922\pi\)
\(308\) 0 0
\(309\) −0.906524 + 1.57014i −0.0515703 + 0.0893224i
\(310\) 0 0
\(311\) 19.2142 1.08954 0.544768 0.838587i \(-0.316618\pi\)
0.544768 + 0.838587i \(0.316618\pi\)
\(312\) 0 0
\(313\) −1.56387 −0.0883950 −0.0441975 0.999023i \(-0.514073\pi\)
−0.0441975 + 0.999023i \(0.514073\pi\)
\(314\) 0 0
\(315\) −8.37796 + 14.5110i −0.472044 + 0.817605i
\(316\) 0 0
\(317\) −0.129483 0.129483i −0.00727249 0.00727249i 0.703461 0.710734i \(-0.251637\pi\)
−0.710734 + 0.703461i \(0.751637\pi\)
\(318\) 0 0
\(319\) 21.8223 + 5.84726i 1.22181 + 0.327383i
\(320\) 0 0
\(321\) 0.374966 + 0.649460i 0.0209286 + 0.0362493i
\(322\) 0 0
\(323\) −17.6328 + 4.72470i −0.981116 + 0.262889i
\(324\) 0 0
\(325\) −13.4376 + 0.105183i −0.745385 + 0.00583450i
\(326\) 0 0
\(327\) −0.453182 + 0.121430i −0.0250610 + 0.00671507i
\(328\) 0 0
\(329\) −3.10857 + 1.79473i −0.171381 + 0.0989468i
\(330\) 0 0
\(331\) −12.4428 3.33403i −0.683917 0.183255i −0.0999013 0.994997i \(-0.531853\pi\)
−0.584016 + 0.811742i \(0.698519\pi\)
\(332\) 0 0
\(333\) 0.178089 0.178089i 0.00975923 0.00975923i
\(334\) 0 0
\(335\) −5.38505 + 9.32719i −0.294217 + 0.509599i
\(336\) 0 0
\(337\) 13.4906i 0.734881i 0.930047 + 0.367441i \(0.119766\pi\)
−0.930047 + 0.367441i \(0.880234\pi\)
\(338\) 0 0
\(339\) 1.18292 0.0642475
\(340\) 0 0
\(341\) 41.4989 + 23.9594i 2.24729 + 1.29747i
\(342\) 0 0
\(343\) 13.9583 + 13.9583i 0.753678 + 0.753678i
\(344\) 0 0
\(345\) −0.285168 + 1.06426i −0.0153529 + 0.0572978i
\(346\) 0 0
\(347\) −12.7983 22.1673i −0.687049 1.19000i −0.972788 0.231696i \(-0.925572\pi\)
0.285739 0.958307i \(-0.407761\pi\)
\(348\) 0 0
\(349\) −2.09309 7.81152i −0.112041 0.418141i 0.887008 0.461754i \(-0.152780\pi\)
−0.999048 + 0.0436131i \(0.986113\pi\)
\(350\) 0 0
\(351\) −0.0201811 2.57823i −0.00107719 0.137616i
\(352\) 0 0
\(353\) −0.526505 1.96494i −0.0280230 0.104583i 0.950498 0.310731i \(-0.100574\pi\)
−0.978521 + 0.206148i \(0.933907\pi\)
\(354\) 0 0
\(355\) 18.5028 10.6826i 0.982026 0.566973i
\(356\) 0 0
\(357\) −0.251086 + 0.937065i −0.0132889 + 0.0495948i
\(358\) 0 0
\(359\) −9.92523 + 9.92523i −0.523833 + 0.523833i −0.918727 0.394894i \(-0.870781\pi\)
0.394894 + 0.918727i \(0.370781\pi\)
\(360\) 0 0
\(361\) −0.660296 0.381222i −0.0347524 0.0200643i
\(362\) 0 0
\(363\) 2.60526i 0.136741i
\(364\) 0 0
\(365\) 9.83302i 0.514684i
\(366\) 0 0
\(367\) −12.9829 7.49570i −0.677703 0.391272i 0.121286 0.992618i \(-0.461298\pi\)
−0.798989 + 0.601345i \(0.794632\pi\)
\(368\) 0 0
\(369\) 15.4680 15.4680i 0.805232 0.805232i
\(370\) 0 0
\(371\) 3.76623 14.0557i 0.195533 0.729738i
\(372\) 0 0
\(373\) 13.3903 7.73087i 0.693322 0.400289i −0.111534 0.993761i \(-0.535576\pi\)
0.804855 + 0.593471i \(0.202243\pi\)
\(374\) 0 0
\(375\) −0.116277 0.433950i −0.00600449 0.0224091i
\(376\) 0 0
\(377\) 7.01406 12.3713i 0.361243 0.637157i
\(378\) 0 0
\(379\) 0.572393 + 2.13620i 0.0294018 + 0.109729i 0.979067 0.203537i \(-0.0652436\pi\)
−0.949665 + 0.313266i \(0.898577\pi\)
\(380\) 0 0
\(381\) −0.544433 0.942985i −0.0278921 0.0483106i
\(382\) 0 0
\(383\) 0.253448 0.945882i 0.0129506 0.0483323i −0.959148 0.282904i \(-0.908702\pi\)
0.972099 + 0.234572i \(0.0753688\pi\)
\(384\) 0 0
\(385\) −22.7295 22.7295i −1.15840 1.15840i
\(386\) 0 0
\(387\) 11.8273 + 6.82851i 0.601217 + 0.347113i
\(388\) 0 0
\(389\) −3.51480 −0.178208 −0.0891038 0.996022i \(-0.528400\pi\)
−0.0891038 + 0.996022i \(0.528400\pi\)
\(390\) 0 0
\(391\) 13.3450i 0.674885i
\(392\) 0 0
\(393\) 0.549310 0.951432i 0.0277090 0.0479934i
\(394\) 0 0
\(395\) 9.36270 9.36270i 0.471089 0.471089i
\(396\) 0 0
\(397\) 28.1611 + 7.54575i 1.41337 + 0.378710i 0.883126 0.469137i \(-0.155435\pi\)
0.530241 + 0.847847i \(0.322102\pi\)
\(398\) 0 0
\(399\) 0.839355 0.484602i 0.0420203 0.0242604i
\(400\) 0 0
\(401\) −8.07154 + 2.16276i −0.403073 + 0.108003i −0.454659 0.890665i \(-0.650239\pi\)
0.0515861 + 0.998669i \(0.483572\pi\)
\(402\) 0 0
\(403\) 21.1617 21.4956i 1.05414 1.07077i
\(404\) 0 0
\(405\) 25.3155 6.78327i 1.25794 0.337063i
\(406\) 0 0
\(407\) 0.241579 + 0.418427i 0.0119746 + 0.0207406i
\(408\) 0 0
\(409\) −3.07670 0.824398i −0.152133 0.0407639i 0.181949 0.983308i \(-0.441759\pi\)
−0.334082 + 0.942544i \(0.608426\pi\)
\(410\) 0 0
\(411\) −0.959002 0.959002i −0.0473041 0.0473041i
\(412\) 0 0
\(413\) 1.21854 2.11056i 0.0599602 0.103854i
\(414\) 0 0
\(415\) 3.64001 0.178681
\(416\) 0 0
\(417\) 0.366594 0.0179522
\(418\) 0 0
\(419\) 10.5630 18.2957i 0.516038 0.893804i −0.483789 0.875185i \(-0.660740\pi\)
0.999827 0.0186190i \(-0.00592695\pi\)
\(420\) 0 0
\(421\) −22.8080 22.8080i −1.11159 1.11159i −0.992935 0.118658i \(-0.962141\pi\)
−0.118658 0.992935i \(-0.537859\pi\)
\(422\) 0 0
\(423\) 5.44928 + 1.46013i 0.264953 + 0.0709939i
\(424\) 0 0
\(425\) −7.96578 13.7971i −0.386397 0.669260i
\(426\) 0 0
\(427\) 10.8579 2.90936i 0.525449 0.140794i
\(428\) 0 0
\(429\) 2.38806 + 0.619886i 0.115297 + 0.0299284i
\(430\) 0 0
\(431\) 19.4340 5.20732i 0.936101 0.250828i 0.241647 0.970364i \(-0.422312\pi\)
0.694454 + 0.719537i \(0.255646\pi\)
\(432\) 0 0
\(433\) 19.6101 11.3219i 0.942402 0.544096i 0.0516897 0.998663i \(-0.483539\pi\)
0.890713 + 0.454567i \(0.150206\pi\)
\(434\) 0 0
\(435\) −1.34460 0.360285i −0.0644688 0.0172744i
\(436\) 0 0
\(437\) −9.42739 + 9.42739i −0.450973 + 0.450973i
\(438\) 0 0
\(439\) 13.2654 22.9763i 0.633122 1.09660i −0.353788 0.935326i \(-0.615106\pi\)
0.986910 0.161274i \(-0.0515603\pi\)
\(440\) 0 0
\(441\) 10.1250i 0.482145i
\(442\) 0 0
\(443\) −6.75908 −0.321134 −0.160567 0.987025i \(-0.551332\pi\)
−0.160567 + 0.987025i \(0.551332\pi\)
\(444\) 0 0
\(445\) 2.01680 + 1.16440i 0.0956054 + 0.0551978i
\(446\) 0 0
\(447\) 1.56172 + 1.56172i 0.0738669 + 0.0738669i
\(448\) 0 0
\(449\) −7.53276 + 28.1126i −0.355493 + 1.32672i 0.524370 + 0.851490i \(0.324301\pi\)
−0.879863 + 0.475227i \(0.842366\pi\)
\(450\) 0 0
\(451\) 20.9824 + 36.3426i 0.988023 + 1.71131i
\(452\) 0 0
\(453\) −0.703306 2.62477i −0.0330442 0.123323i
\(454\) 0 0
\(455\) −17.4438 + 10.2540i −0.817776 + 0.480717i
\(456\) 0 0
\(457\) −4.46465 16.6623i −0.208848 0.779430i −0.988242 0.152896i \(-0.951140\pi\)
0.779395 0.626533i \(-0.215527\pi\)
\(458\) 0 0
\(459\) 2.64722 1.52837i 0.123561 0.0713382i
\(460\) 0 0
\(461\) −7.40872 + 27.6497i −0.345058 + 1.28778i 0.547485 + 0.836815i \(0.315585\pi\)
−0.892544 + 0.450961i \(0.851081\pi\)
\(462\) 0 0
\(463\) 8.53804 8.53804i 0.396796 0.396796i −0.480305 0.877101i \(-0.659474\pi\)
0.877101 + 0.480305i \(0.159474\pi\)
\(464\) 0 0
\(465\) −2.55700 1.47628i −0.118578 0.0684610i
\(466\) 0 0
\(467\) 1.47727i 0.0683599i 0.999416 + 0.0341799i \(0.0108819\pi\)
−0.999416 + 0.0341799i \(0.989118\pi\)
\(468\) 0 0
\(469\) 6.92582i 0.319805i
\(470\) 0 0
\(471\) −0.731982 0.422610i −0.0337279 0.0194728i
\(472\) 0 0
\(473\) −18.5258 + 18.5258i −0.851817 + 0.851817i
\(474\) 0 0
\(475\) −4.11949 + 15.3741i −0.189015 + 0.705414i
\(476\) 0 0
\(477\) −19.8064 + 11.4353i −0.906874 + 0.523584i
\(478\) 0 0
\(479\) 0.0258024 + 0.0962960i 0.00117894 + 0.00439988i 0.966513 0.256618i \(-0.0826084\pi\)
−0.965334 + 0.261018i \(0.915942\pi\)
\(480\) 0 0
\(481\) 0.293152 0.0810144i 0.0133666 0.00369394i
\(482\) 0 0
\(483\) 0.183380 + 0.684382i 0.00834406 + 0.0311405i
\(484\) 0 0
\(485\) −18.1572 31.4492i −0.824475 1.42803i
\(486\) 0 0
\(487\) 6.05385 22.5933i 0.274326 1.02380i −0.681966 0.731384i \(-0.738875\pi\)
0.956292 0.292414i \(-0.0944586\pi\)
\(488\) 0 0
\(489\) −0.535266 0.535266i −0.0242056 0.0242056i
\(490\) 0 0
\(491\) 12.4224 + 7.17210i 0.560617 + 0.323672i 0.753393 0.657570i \(-0.228416\pi\)
−0.192776 + 0.981243i \(0.561749\pi\)
\(492\) 0 0
\(493\) 16.8603 0.759348
\(494\) 0 0
\(495\) 50.5208i 2.27074i
\(496\) 0 0
\(497\) 6.86954 11.8984i 0.308141 0.533716i
\(498\) 0 0
\(499\) −29.9556 + 29.9556i −1.34100 + 1.34100i −0.445932 + 0.895067i \(0.647128\pi\)
−0.895067 + 0.445932i \(0.852872\pi\)
\(500\) 0 0
\(501\) −2.18258 0.584821i −0.0975105 0.0261279i
\(502\) 0 0
\(503\) −36.4031 + 21.0173i −1.62313 + 0.937116i −0.637057 + 0.770817i \(0.719848\pi\)
−0.986075 + 0.166299i \(0.946818\pi\)
\(504\) 0 0
\(505\) −15.0870 + 4.04255i −0.671363 + 0.179891i
\(506\) 0 0
\(507\) 0.755384 1.35699i 0.0335478 0.0602659i
\(508\) 0 0
\(509\) 29.4691 7.89622i 1.30619 0.349994i 0.462406 0.886668i \(-0.346986\pi\)
0.843789 + 0.536675i \(0.180320\pi\)
\(510\) 0 0
\(511\) 3.16161 + 5.47607i 0.139861 + 0.242247i
\(512\) 0 0
\(513\) −2.94979 0.790394i −0.130236 0.0348967i
\(514\) 0 0
\(515\) −31.7015 31.7015i −1.39694 1.39694i
\(516\) 0 0
\(517\) −5.41129 + 9.37264i −0.237988 + 0.412208i
\(518\) 0 0
\(519\) 0.700584 0.0307522
\(520\) 0 0
\(521\) 7.97376 0.349337 0.174668 0.984627i \(-0.444115\pi\)
0.174668 + 0.984627i \(0.444115\pi\)
\(522\) 0 0
\(523\) 4.99132 8.64522i 0.218255 0.378029i −0.736019 0.676960i \(-0.763297\pi\)
0.954275 + 0.298931i \(0.0966301\pi\)
\(524\) 0 0
\(525\) 0.598109 + 0.598109i 0.0261036 + 0.0261036i
\(526\) 0 0
\(527\) 34.5428 + 9.25572i 1.50471 + 0.403186i
\(528\) 0 0
\(529\) 6.62677 + 11.4779i 0.288121 + 0.499039i
\(530\) 0 0
\(531\) −3.69979 + 0.991357i −0.160557 + 0.0430212i
\(532\) 0 0
\(533\) 25.4618 7.03653i 1.10287 0.304786i
\(534\) 0 0
\(535\) −17.9123 + 4.79959i −0.774417 + 0.207504i
\(536\) 0 0
\(537\) 0.946239 0.546312i 0.0408332 0.0235751i
\(538\) 0 0
\(539\) 18.7619 + 5.02723i 0.808132 + 0.216538i
\(540\) 0 0
\(541\) −9.11401 + 9.11401i −0.391842 + 0.391842i −0.875343 0.483502i \(-0.839365\pi\)
0.483502 + 0.875343i \(0.339365\pi\)
\(542\) 0 0
\(543\) −0.689996 + 1.19511i −0.0296106 + 0.0512870i
\(544\) 0 0
\(545\) 11.6015i 0.496954i
\(546\) 0 0
\(547\) −4.62739 −0.197853 −0.0989264 0.995095i \(-0.531541\pi\)
−0.0989264 + 0.995095i \(0.531541\pi\)
\(548\) 0 0
\(549\) −15.3002 8.83357i −0.652997 0.377008i
\(550\) 0 0
\(551\) −11.9107 11.9107i −0.507414 0.507414i
\(552\) 0 0
\(553\) 2.20376 8.22453i 0.0937133 0.349743i
\(554\) 0 0
\(555\) −0.0148851 0.0257818i −0.000631839 0.00109438i
\(556\) 0 0
\(557\) −3.05265 11.3926i −0.129345 0.482721i 0.870612 0.491970i \(-0.163723\pi\)
−0.999957 + 0.00924808i \(0.997056\pi\)
\(558\) 0 0
\(559\) 8.35762 + 14.2176i 0.353490 + 0.601343i
\(560\) 0 0
\(561\) 0.757049 + 2.82535i 0.0319626 + 0.119286i
\(562\) 0 0
\(563\) −32.8669 + 18.9757i −1.38517 + 0.799730i −0.992766 0.120062i \(-0.961691\pi\)
−0.392407 + 0.919792i \(0.628357\pi\)
\(564\) 0 0
\(565\) −7.57074 + 28.2544i −0.318504 + 1.18867i
\(566\) 0 0
\(567\) 11.9173 11.9173i 0.500481 0.500481i
\(568\) 0 0
\(569\) 0.0489692 + 0.0282724i 0.00205290 + 0.00118524i 0.501026 0.865432i \(-0.332956\pi\)
−0.498973 + 0.866617i \(0.666289\pi\)
\(570\) 0 0
\(571\) 7.98125i 0.334005i 0.985956 + 0.167002i \(0.0534088\pi\)
−0.985956 + 0.167002i \(0.946591\pi\)
\(572\) 0 0
\(573\) 2.48996i 0.104020i
\(574\) 0 0
\(575\) −10.0767 5.81778i −0.420227 0.242618i
\(576\) 0 0
\(577\) −31.6179 + 31.6179i −1.31627 + 1.31627i −0.399564 + 0.916705i \(0.630839\pi\)
−0.916705 + 0.399564i \(0.869161\pi\)
\(578\) 0 0
\(579\) 0.0934308 0.348688i 0.00388285 0.0144910i
\(580\) 0 0
\(581\) 2.02714 1.17037i 0.0841001 0.0485552i
\(582\) 0 0
\(583\) −11.3555 42.3795i −0.470299 1.75518i
\(584\) 0 0
\(585\) 30.7819 + 7.99029i 1.27268 + 0.330358i
\(586\) 0 0
\(587\) 5.85120 + 21.8370i 0.241505 + 0.901308i 0.975108 + 0.221730i \(0.0711704\pi\)
−0.733603 + 0.679578i \(0.762163\pi\)
\(588\) 0 0
\(589\) −17.8638 30.9409i −0.736063 1.27490i
\(590\) 0 0
\(591\) 0.650626 2.42817i 0.0267632 0.0998816i
\(592\) 0 0
\(593\) 22.6590 + 22.6590i 0.930492 + 0.930492i 0.997737 0.0672444i \(-0.0214207\pi\)
−0.0672444 + 0.997737i \(0.521421\pi\)
\(594\) 0 0
\(595\) −20.7751 11.9945i −0.851696 0.491727i
\(596\) 0 0
\(597\) 0.640438 0.0262114
\(598\) 0 0
\(599\) 35.5478i 1.45244i −0.687461 0.726221i \(-0.741275\pi\)
0.687461 0.726221i \(-0.258725\pi\)
\(600\) 0 0
\(601\) −19.3542 + 33.5225i −0.789476 + 1.36741i 0.136813 + 0.990597i \(0.456314\pi\)
−0.926288 + 0.376815i \(0.877019\pi\)
\(602\) 0 0
\(603\) 7.69701 7.69701i 0.313446 0.313446i
\(604\) 0 0
\(605\) −62.2274 16.6738i −2.52990 0.677886i
\(606\) 0 0
\(607\) −24.5142 + 14.1533i −0.994999 + 0.574463i −0.906765 0.421637i \(-0.861456\pi\)
−0.0882341 + 0.996100i \(0.528122\pi\)
\(608\) 0 0
\(609\) −0.864659 + 0.231685i −0.0350378 + 0.00938834i
\(610\) 0 0
\(611\) 4.85484 + 4.77942i 0.196406 + 0.193355i
\(612\) 0 0
\(613\) −15.9165 + 4.26482i −0.642863 + 0.172255i −0.565500 0.824748i \(-0.691317\pi\)
−0.0773631 + 0.997003i \(0.524650\pi\)
\(614\) 0 0
\(615\) −1.29285 2.23929i −0.0521329 0.0902969i
\(616\) 0 0
\(617\) 24.3342 + 6.52032i 0.979656 + 0.262498i 0.712900 0.701266i \(-0.247381\pi\)
0.266756 + 0.963764i \(0.414048\pi\)
\(618\) 0 0
\(619\) −8.60779 8.60779i −0.345976 0.345976i 0.512632 0.858608i \(-0.328671\pi\)
−0.858608 + 0.512632i \(0.828671\pi\)
\(620\) 0 0
\(621\) 1.11624 1.93338i 0.0447931 0.0775840i
\(622\) 0 0
\(623\) 1.49756 0.0599983
\(624\) 0 0
\(625\) 29.7444 1.18978
\(626\) 0 0
\(627\) 1.46112 2.53074i 0.0583516 0.101068i
\(628\) 0 0
\(629\) 0.254966 + 0.254966i 0.0101662 + 0.0101662i
\(630\) 0 0
\(631\) −46.9973 12.5929i −1.87093 0.501315i −0.999950 0.0100000i \(-0.996817\pi\)
−0.870982 0.491315i \(-0.836516\pi\)
\(632\) 0 0
\(633\) −1.53276 2.65482i −0.0609219 0.105520i
\(634\) 0 0
\(635\) 26.0078 6.96878i 1.03209 0.276548i
\(636\) 0 0
\(637\) 6.03041 10.6364i 0.238934 0.421429i
\(638\) 0 0
\(639\) −20.8577 + 5.58881i −0.825119 + 0.221090i
\(640\) 0 0
\(641\) 2.37058 1.36865i 0.0936322 0.0540586i −0.452453 0.891788i \(-0.649451\pi\)
0.546085 + 0.837730i \(0.316118\pi\)
\(642\) 0 0
\(643\) −4.87893 1.30730i −0.192406 0.0515550i 0.161329 0.986901i \(-0.448422\pi\)
−0.353735 + 0.935346i \(0.615089\pi\)
\(644\) 0 0
\(645\) 1.14149 1.14149i 0.0449461 0.0449461i
\(646\) 0 0
\(647\) −9.09928 + 15.7604i −0.357730 + 0.619606i −0.987581 0.157109i \(-0.949782\pi\)
0.629851 + 0.776716i \(0.283116\pi\)
\(648\) 0 0
\(649\) 7.34801i 0.288435i
\(650\) 0 0
\(651\) −1.89868 −0.0744150
\(652\) 0 0
\(653\) 23.1046 + 13.3394i 0.904151 + 0.522012i 0.878545 0.477660i \(-0.158515\pi\)
0.0256065 + 0.999672i \(0.491848\pi\)
\(654\) 0 0
\(655\) 19.2096 + 19.2096i 0.750582 + 0.750582i
\(656\) 0 0
\(657\) 2.57217 9.59948i 0.100350 0.374511i
\(658\) 0 0
\(659\) 5.86022 + 10.1502i 0.228282 + 0.395396i 0.957299 0.289100i \(-0.0933559\pi\)
−0.729017 + 0.684495i \(0.760023\pi\)
\(660\) 0 0
\(661\) 4.42914 + 16.5298i 0.172273 + 0.642933i 0.997000 + 0.0774016i \(0.0246623\pi\)
−0.824727 + 0.565532i \(0.808671\pi\)
\(662\) 0 0
\(663\) 1.84120 0.0144120i 0.0715061 0.000559714i
\(664\) 0 0
\(665\) 6.20294 + 23.1497i 0.240540 + 0.897706i
\(666\) 0 0
\(667\) 10.6641 6.15691i 0.412915 0.238397i
\(668\) 0 0
\(669\) 0.404707 1.51039i 0.0156469 0.0583950i
\(670\) 0 0
\(671\) 23.9656 23.9656i 0.925180 0.925180i
\(672\) 0 0
\(673\) −22.5318 13.0088i −0.868538 0.501451i −0.00167601 0.999999i \(-0.500533\pi\)
−0.866862 + 0.498548i \(0.833867\pi\)
\(674\) 0 0
\(675\) 2.66519i 0.102583i
\(676\) 0 0
\(677\) 15.2979i 0.587945i 0.955814 + 0.293972i \(0.0949774\pi\)
−0.955814 + 0.293972i \(0.905023\pi\)
\(678\) 0 0
\(679\) −20.2237 11.6762i −0.776114 0.448090i
\(680\) 0 0
\(681\) −2.27669 + 2.27669i −0.0872431 + 0.0872431i
\(682\) 0 0
\(683\) 0.214029 0.798768i 0.00818960 0.0305640i −0.961710 0.274069i \(-0.911630\pi\)
0.969900 + 0.243505i \(0.0782971\pi\)
\(684\) 0 0
\(685\) 29.0437 16.7684i 1.10970 0.640686i
\(686\) 0 0
\(687\) 0.00687147 + 0.0256447i 0.000262163 + 0.000978406i
\(688\) 0 0
\(689\) −27.6175 + 0.216176i −1.05214 + 0.00823564i
\(690\) 0 0
\(691\) −7.77196 29.0054i −0.295659 1.10342i −0.940692 0.339261i \(-0.889823\pi\)
0.645033 0.764155i \(-0.276844\pi\)
\(692\) 0 0
\(693\) 16.2439 + 28.1353i 0.617056 + 1.06877i
\(694\) 0 0
\(695\) −2.34621 + 8.75619i −0.0889970 + 0.332141i
\(696\) 0 0
\(697\) 22.1452 + 22.1452i 0.838807 + 0.838807i
\(698\) 0 0
\(699\) −2.48739 1.43610i −0.0940817 0.0543181i
\(700\) 0 0
\(701\) −28.6732 −1.08297 −0.541486 0.840710i \(-0.682138\pi\)
−0.541486 + 0.840710i \(0.682138\pi\)
\(702\) 0 0
\(703\) 0.360235i 0.0135865i
\(704\) 0 0
\(705\) 0.333423 0.577505i 0.0125574 0.0217501i
\(706\) 0 0
\(707\) −7.10224 + 7.10224i −0.267107 + 0.267107i
\(708\) 0 0
\(709\) 5.49446 + 1.47224i 0.206349 + 0.0552910i 0.360513 0.932754i \(-0.382602\pi\)
−0.154164 + 0.988045i \(0.549268\pi\)
\(710\) 0 0
\(711\) −11.5895 + 6.69119i −0.434639 + 0.250939i
\(712\) 0 0
\(713\) 25.2282 6.75988i 0.944804 0.253160i
\(714\) 0 0
\(715\) −30.0898 + 53.0722i −1.12530 + 1.98479i
\(716\) 0 0
\(717\) 3.17688 0.851242i 0.118643 0.0317902i
\(718\) 0 0
\(719\) 22.7206 + 39.3533i 0.847337 + 1.46763i 0.883576 + 0.468287i \(0.155129\pi\)
−0.0362397 + 0.999343i \(0.511538\pi\)
\(720\) 0 0
\(721\) −27.8478 7.46179i −1.03710 0.277891i
\(722\) 0 0
\(723\) 1.20460 + 1.20460i 0.0447996 + 0.0447996i
\(724\) 0 0
\(725\) 7.35027 12.7310i 0.272982 0.472819i
\(726\) 0 0
\(727\) 21.0650 0.781256 0.390628 0.920549i \(-0.372258\pi\)
0.390628 + 0.920549i \(0.372258\pi\)
\(728\) 0 0
\(729\) −26.2323 −0.971568
\(730\) 0 0
\(731\) −9.77621 + 16.9329i −0.361586 + 0.626286i
\(732\) 0 0
\(733\) −22.0025 22.0025i −0.812682 0.812682i 0.172353 0.985035i \(-0.444863\pi\)
−0.985035 + 0.172353i \(0.944863\pi\)
\(734\) 0 0
\(735\) −1.15604 0.309759i −0.0426410 0.0114256i
\(736\) 0 0
\(737\) 10.4410 + 18.0844i 0.384600 + 0.666146i
\(738\) 0 0
\(739\) −48.4788 + 12.9899i −1.78332 + 0.477840i −0.991183 0.132501i \(-0.957699\pi\)
−0.792139 + 0.610341i \(0.791033\pi\)
\(740\) 0 0
\(741\) −1.31087 1.29051i −0.0481560 0.0474080i
\(742\) 0 0
\(743\) 14.6170 3.91663i 0.536247 0.143687i 0.0194758 0.999810i \(-0.493800\pi\)
0.516772 + 0.856123i \(0.327134\pi\)
\(744\) 0 0
\(745\) −47.2972 + 27.3071i −1.73284 + 1.00045i
\(746\) 0 0
\(747\) −3.55356 0.952173i −0.130018 0.0348382i
\(748\) 0 0
\(749\) −8.43226 + 8.43226i −0.308108 + 0.308108i
\(750\) 0 0
\(751\) −8.03320 + 13.9139i −0.293136 + 0.507726i −0.974549 0.224173i \(-0.928032\pi\)
0.681414 + 0.731898i \(0.261365\pi\)
\(752\) 0 0
\(753\) 0.193292i 0.00704393i
\(754\) 0 0
\(755\) 67.1946 2.44546
\(756\) 0 0
\(757\) −23.8711 13.7820i −0.867609 0.500914i −0.00105597 0.999999i \(-0.500336\pi\)
−0.866553 + 0.499085i \(0.833669\pi\)
\(758\) 0 0
\(759\) 1.51057 + 1.51057i 0.0548303 + 0.0548303i
\(760\) 0 0
\(761\) 8.71969 32.5423i 0.316089 1.17966i −0.606883 0.794791i \(-0.707580\pi\)
0.922972 0.384868i \(-0.125753\pi\)
\(762\) 0 0
\(763\) −3.73023 6.46095i −0.135043 0.233902i
\(764\) 0 0
\(765\) 9.75831 + 36.4185i 0.352812 + 1.31671i
\(766\) 0 0
\(767\) −4.47709 1.16215i −0.161658 0.0419628i
\(768\) 0 0
\(769\) −9.16888 34.2187i −0.330638 1.23396i −0.908521 0.417839i \(-0.862788\pi\)
0.577883 0.816120i \(-0.303879\pi\)
\(770\) 0 0
\(771\) −1.15820 + 0.668688i −0.0417116 + 0.0240822i
\(772\) 0 0
\(773\) 0.801104 2.98976i 0.0288137 0.107534i −0.950021 0.312185i \(-0.898939\pi\)
0.978835 + 0.204651i \(0.0656058\pi\)
\(774\) 0 0
\(775\) 22.0480 22.0480i 0.791986 0.791986i
\(776\) 0 0
\(777\) −0.0165793 0.00957204i −0.000594777 0.000343395i
\(778\) 0 0
\(779\) 31.2883i 1.12102i
\(780\) 0 0
\(781\) 41.4247i 1.48229i
\(782\) 0 0
\(783\) 2.44267 + 1.41027i 0.0872938 + 0.0503991i
\(784\) 0 0
\(785\) 14.7789 14.7789i 0.527480 0.527480i
\(786\) 0 0
\(787\) −6.65435 + 24.8344i −0.237202 + 0.885250i 0.739942 + 0.672671i \(0.234853\pi\)
−0.977144 + 0.212579i \(0.931814\pi\)
\(788\) 0 0
\(789\) −0.839750 + 0.484830i −0.0298959 + 0.0172604i
\(790\) 0 0
\(791\) 4.86844 + 18.1693i 0.173102 + 0.646025i
\(792\) 0 0
\(793\) −10.8117 18.3924i −0.383934 0.653133i
\(794\) 0 0
\(795\) 0.699685 + 2.61126i 0.0248153 + 0.0926118i
\(796\) 0 0
\(797\) 18.1005 + 31.3510i 0.641152 + 1.11051i 0.985176 + 0.171547i \(0.0548766\pi\)
−0.344024 + 0.938961i \(0.611790\pi\)
\(798\) 0 0
\(799\) −2.09043 + 7.80159i −0.0739541 + 0.276001i
\(800\) 0 0
\(801\) −1.66431 1.66431i −0.0588054 0.0588054i
\(802\) 0 0
\(803\) 16.5109 + 9.53256i 0.582656 + 0.336397i
\(804\) 0 0
\(805\) −17.5203 −0.617509
\(806\) 0 0
\(807\) 1.03049i 0.0362751i
\(808\) 0 0
\(809\) 7.49504 12.9818i 0.263512 0.456415i −0.703661 0.710536i \(-0.748453\pi\)
0.967173 + 0.254120i \(0.0817859\pi\)
\(810\) 0 0
\(811\) 22.2096 22.2096i 0.779883 0.779883i −0.199928 0.979811i \(-0.564071\pi\)
0.979811 + 0.199928i \(0.0640707\pi\)
\(812\) 0 0
\(813\) −0.284492 0.0762295i −0.00997758 0.00267348i
\(814\) 0 0
\(815\) 16.2107 9.35926i 0.567836 0.327840i
\(816\) 0 0
\(817\) 18.8683 5.05575i 0.660119 0.176878i
\(818\) 0 0
\(819\) 19.7117 5.44746i 0.688784 0.190350i
\(820\) 0 0
\(821\) 17.6660 4.73358i 0.616547 0.165203i 0.0629893 0.998014i \(-0.479937\pi\)
0.553557 + 0.832811i \(0.313270\pi\)
\(822\) 0 0
\(823\) −12.2951 21.2957i −0.428580 0.742323i 0.568167 0.822913i \(-0.307653\pi\)
−0.996747 + 0.0805905i \(0.974319\pi\)
\(824\) 0 0
\(825\) 2.46343 + 0.660075i 0.0857657 + 0.0229809i
\(826\) 0 0
\(827\) 35.8846 + 35.8846i 1.24783 + 1.24783i 0.956677 + 0.291152i \(0.0940386\pi\)
0.291152 + 0.956677i \(0.405961\pi\)
\(828\) 0 0
\(829\) 6.84382 11.8539i 0.237696 0.411701i −0.722357 0.691520i \(-0.756941\pi\)
0.960053 + 0.279819i \(0.0902745\pi\)
\(830\) 0 0
\(831\) −1.74614 −0.0605728
\(832\) 0 0
\(833\) 14.4958 0.502249
\(834\) 0 0
\(835\) 27.9372 48.3886i 0.966807 1.67456i
\(836\) 0 0
\(837\) 4.23027 + 4.23027i 0.146220 + 0.146220i
\(838\) 0 0
\(839\) 14.7393 + 3.94939i 0.508858 + 0.136348i 0.504108 0.863641i \(-0.331821\pi\)
0.00474988 + 0.999989i \(0.498488\pi\)
\(840\) 0 0
\(841\) −6.72126 11.6416i −0.231768 0.401433i
\(842\) 0 0
\(843\) 0.562865 0.150819i 0.0193861 0.00519449i
\(844\) 0 0
\(845\) 27.5775 + 26.7273i 0.948695 + 0.919448i
\(846\) 0 0
\(847\) −40.0159 + 10.7222i −1.37496 + 0.368420i
\(848\) 0 0
\(849\) 1.91627 1.10636i 0.0657663 0.0379702i
\(850\) 0 0
\(851\) 0.254372 + 0.0681588i 0.00871977 + 0.00233646i
\(852\) 0 0
\(853\) 23.2454 23.2454i 0.795909 0.795909i −0.186539 0.982448i \(-0.559727\pi\)
0.982448 + 0.186539i \(0.0597271\pi\)
\(854\) 0 0
\(855\) 18.8338 32.6210i 0.644101 1.11562i
\(856\) 0 0
\(857\) 46.4375i 1.58627i −0.609043 0.793137i \(-0.708446\pi\)
0.609043 0.793137i \(-0.291554\pi\)
\(858\) 0 0
\(859\) −37.0596 −1.26446 −0.632228 0.774782i \(-0.717859\pi\)
−0.632228 + 0.774782i \(0.717859\pi\)
\(860\) 0 0
\(861\) −1.44000 0.831382i −0.0490749 0.0283334i
\(862\) 0 0
\(863\) 17.2801 + 17.2801i 0.588220 + 0.588220i 0.937149 0.348929i \(-0.113455\pi\)
−0.348929 + 0.937149i \(0.613455\pi\)
\(864\) 0 0
\(865\) −4.48377 + 16.7336i −0.152453 + 0.568961i
\(866\) 0 0
\(867\) 0.0759885 + 0.131616i 0.00258071 + 0.00446991i
\(868\) 0 0
\(869\) −6.64454 24.7978i −0.225401 0.841207i
\(870\) 0 0
\(871\) 12.6700 3.50144i 0.429307 0.118642i
\(872\) 0 0
\(873\) 9.49930 + 35.4519i 0.321503 + 1.19986i
\(874\) 0 0
\(875\) 6.18677 3.57193i 0.209151 0.120753i
\(876\) 0 0
\(877\) −11.1473 + 41.6023i −0.376417 + 1.40481i 0.474845 + 0.880069i \(0.342504\pi\)
−0.851263 + 0.524740i \(0.824163\pi\)
\(878\) 0 0
\(879\) 1.43160 1.43160i 0.0482868 0.0482868i
\(880\) 0 0
\(881\) −7.04095 4.06510i −0.237216 0.136957i 0.376681 0.926343i \(-0.377065\pi\)
−0.613896 + 0.789387i \(0.710399\pi\)
\(882\) 0 0
\(883\) 38.1442i 1.28365i −0.766850 0.641827i \(-0.778177\pi\)
0.766850 0.641827i \(-0.221823\pi\)
\(884\) 0 0
\(885\) 0.452756i 0.0152192i
\(886\) 0 0
\(887\) −11.1078 6.41307i −0.372962 0.215330i 0.301790 0.953375i \(-0.402416\pi\)
−0.674752 + 0.738045i \(0.735749\pi\)
\(888\) 0 0
\(889\) 12.2432 12.2432i 0.410625 0.410625i
\(890\) 0 0
\(891\) 13.1520 49.0839i 0.440609 1.64437i
\(892\) 0 0
\(893\) 6.98810 4.03458i 0.233848 0.135012i
\(894\) 0 0
\(895\) 6.99283 + 26.0976i 0.233745 + 0.872347i
\(896\) 0 0
\(897\) 1.15929 0.681471i 0.0387076 0.0227536i
\(898\) 0 0
\(899\) 8.54054 + 31.8737i 0.284843 + 1.06305i
\(900\) 0 0
\(901\) −16.3716 28.3564i −0.545416 0.944688i
\(902\) 0 0
\(903\) 0.268679 1.00272i 0.00894108 0.0333686i
\(904\) 0 0
\(905\) −24.1295 24.1295i −0.802091 0.802091i
\(906\) 0 0
\(907\) 26.6269 + 15.3730i 0.884132 + 0.510454i 0.872018 0.489473i \(-0.162811\pi\)
0.0121133 + 0.999927i \(0.496144\pi\)
\(908\) 0 0
\(909\) 15.7861 0.523593
\(910\) 0 0
\(911\) 41.5292i 1.37593i −0.725746 0.687963i \(-0.758505\pi\)
0.725746 0.687963i \(-0.241495\pi\)
\(912\) 0 0
\(913\) 3.52879 6.11204i 0.116786 0.202279i
\(914\) 0 0
\(915\) −1.47666 + 1.47666i −0.0488170 + 0.0488170i
\(916\) 0 0
\(917\) 16.8744 + 4.52148i 0.557242 + 0.149313i
\(918\) 0 0
\(919\) 36.7323 21.2074i 1.21169 0.699567i 0.248560 0.968617i \(-0.420043\pi\)
0.963126 + 0.269049i \(0.0867095\pi\)
\(920\) 0 0
\(921\) −2.38796 + 0.639851i −0.0786859 + 0.0210838i
\(922\) 0 0
\(923\) −25.2398 6.55167i −0.830777 0.215651i
\(924\) 0 0
\(925\) 0.303676 0.0813697i 0.00998480 0.00267542i
\(926\) 0 0
\(927\) 22.6559 + 39.2413i 0.744119 + 1.28885i
\(928\) 0 0
\(929\) −39.6233 10.6170i −1.30000 0.348334i −0.458549 0.888669i \(-0.651631\pi\)
−0.841450 + 0.540335i \(0.818297\pi\)
\(930\) 0 0
\(931\) −10.2404 10.2404i −0.335614 0.335614i
\(932\) 0 0
\(933\) −1.14773 + 1.98792i −0.0375749 + 0.0650816i
\(934\) 0 0
\(935\) −72.3293 −2.36542
\(936\) 0 0
\(937\) 14.4265 0.471292 0.235646 0.971839i \(-0.424279\pi\)
0.235646 + 0.971839i \(0.424279\pi\)
\(938\) 0 0
\(939\) 0.0934150 0.161800i 0.00304848 0.00528013i
\(940\) 0 0
\(941\) 29.8298 + 29.8298i 0.972423 + 0.972423i 0.999630 0.0272066i \(-0.00866119\pi\)
−0.0272066 + 0.999630i \(0.508661\pi\)
\(942\) 0 0
\(943\) 22.0936 + 5.91996i 0.719466 + 0.192780i
\(944\) 0 0
\(945\) −2.00656 3.47546i −0.0652734 0.113057i
\(946\) 0 0
\(947\) 11.4406 3.06549i 0.371769 0.0996152i −0.0680969 0.997679i \(-0.521693\pi\)
0.439866 + 0.898064i \(0.355026\pi\)
\(948\) 0 0
\(949\) 8.41946 8.55230i 0.273307 0.277620i
\(950\) 0 0
\(951\) 0.0211309 0.00566201i 0.000685217 0.000183603i
\(952\) 0 0
\(953\) −8.77779 + 5.06786i −0.284341 + 0.164164i −0.635387 0.772194i \(-0.719159\pi\)
0.351046 + 0.936358i \(0.385826\pi\)
\(954\) 0 0
\(955\) −59.4734 15.9359i −1.92451 0.515672i
\(956\) 0 0
\(957\) −1.90848 + 1.90848i −0.0616924 + 0.0616924i
\(958\) 0 0
\(959\) 10.7831 18.6768i 0.348203 0.603105i
\(960\) 0 0
\(961\) 38.9905i 1.25776i
\(962\) 0 0
\(963\) 18.7424 0.603965
\(964\) 0 0
\(965\) 7.73056 + 4.46324i 0.248855 + 0.143677i
\(966\) 0 0
\(967\) 4.34955 + 4.34955i 0.139872 + 0.139872i 0.773576 0.633704i \(-0.218466\pi\)
−0.633704 + 0.773576i \(0.718466\pi\)
\(968\) 0 0
\(969\) 0.564444 2.10654i 0.0181326 0.0676717i
\(970\) 0 0
\(971\) −27.9858 48.4728i −0.898107 1.55557i −0.829912 0.557894i \(-0.811609\pi\)
−0.0681947 0.997672i \(-0.521724\pi\)
\(972\) 0 0
\(973\) 1.50876 + 5.63075i 0.0483685 + 0.180514i
\(974\) 0 0
\(975\) 0.791792 1.39656i 0.0253576 0.0447256i
\(976\) 0 0
\(977\) −7.62905 28.4720i −0.244075 0.910899i −0.973846 0.227208i \(-0.927040\pi\)
0.729771 0.683691i \(-0.239626\pi\)
\(978\) 0 0
\(979\) 3.91034 2.25764i 0.124975 0.0721544i
\(980\) 0 0
\(981\) −3.03478 + 11.3260i −0.0968932 + 0.361610i
\(982\) 0 0
\(983\) −25.7045 + 25.7045i −0.819846 + 0.819846i −0.986085 0.166240i \(-0.946838\pi\)
0.166240 + 0.986085i \(0.446838\pi\)
\(984\) 0 0
\(985\) 53.8335 + 31.0808i 1.71528 + 0.990316i
\(986\) 0 0
\(987\) 0.428821i 0.0136495i
\(988\) 0 0
\(989\) 14.2800i 0.454079i
\(990\) 0 0
\(991\) 25.7808 + 14.8846i 0.818955 + 0.472824i 0.850056 0.526693i \(-0.176568\pi\)
−0.0311012 + 0.999516i \(0.509901\pi\)
\(992\) 0 0
\(993\) 1.08819 1.08819i 0.0345327 0.0345327i
\(994\) 0 0
\(995\) −4.09883 + 15.2970i −0.129942 + 0.484948i
\(996\) 0 0
\(997\) 4.35409 2.51384i 0.137895 0.0796140i −0.429465 0.903083i \(-0.641298\pi\)
0.567361 + 0.823469i \(0.307965\pi\)
\(998\) 0 0
\(999\) 0.0156122 + 0.0582654i 0.000493947 + 0.00184343i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.bk.a.175.5 48
4.3 odd 2 104.2.u.a.19.8 yes 48
8.3 odd 2 inner 416.2.bk.a.175.6 48
8.5 even 2 104.2.u.a.19.3 yes 48
12.11 even 2 936.2.ed.d.19.5 48
13.11 odd 12 inner 416.2.bk.a.271.6 48
24.5 odd 2 936.2.ed.d.19.10 48
52.11 even 12 104.2.u.a.11.3 48
104.11 even 12 inner 416.2.bk.a.271.5 48
104.37 odd 12 104.2.u.a.11.8 yes 48
156.11 odd 12 936.2.ed.d.739.10 48
312.245 even 12 936.2.ed.d.739.5 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.u.a.11.3 48 52.11 even 12
104.2.u.a.11.8 yes 48 104.37 odd 12
104.2.u.a.19.3 yes 48 8.5 even 2
104.2.u.a.19.8 yes 48 4.3 odd 2
416.2.bk.a.175.5 48 1.1 even 1 trivial
416.2.bk.a.175.6 48 8.3 odd 2 inner
416.2.bk.a.271.5 48 104.11 even 12 inner
416.2.bk.a.271.6 48 13.11 odd 12 inner
936.2.ed.d.19.5 48 12.11 even 2
936.2.ed.d.19.10 48 24.5 odd 2
936.2.ed.d.739.5 48 312.245 even 12
936.2.ed.d.739.10 48 156.11 odd 12