Properties

Label 416.2.bk.a.175.10
Level $416$
Weight $2$
Character 416.175
Analytic conductor $3.322$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(15,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.15"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 6, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bk (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 175.10
Character \(\chi\) \(=\) 416.175
Dual form 416.2.bk.a.271.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.928193 - 1.60768i) q^{3} +(1.51817 + 1.51817i) q^{5} +(2.97768 + 0.797866i) q^{7} +(-0.223086 - 0.386396i) q^{9} +(-0.865440 + 0.231894i) q^{11} +(-0.159516 + 3.60202i) q^{13} +(3.84988 - 1.03157i) q^{15} +(1.05666 - 0.610061i) q^{17} +(-6.68538 - 1.79134i) q^{19} +(4.04657 - 4.04657i) q^{21} +(-0.433955 + 0.751632i) q^{23} -0.390340i q^{25} +4.74089 q^{27} +(3.26808 + 1.88683i) q^{29} +(-5.06168 - 5.06168i) q^{31} +(-0.430485 + 1.60659i) q^{33} +(3.30932 + 5.73191i) q^{35} +(-2.52764 - 9.43328i) q^{37} +(5.64283 + 3.59982i) q^{39} +(-3.12278 - 11.6544i) q^{41} +(4.22972 - 2.44203i) q^{43} +(0.247932 - 0.925296i) q^{45} +(-4.24871 + 4.24871i) q^{47} +(2.16780 + 1.25158i) q^{49} -2.26502i q^{51} +2.16454i q^{53} +(-1.66594 - 0.961829i) q^{55} +(-9.08523 + 9.08523i) q^{57} +(-0.0382345 + 0.142693i) q^{59} +(-7.26272 + 4.19313i) q^{61} +(-0.355986 - 1.32856i) q^{63} +(-5.71064 + 5.22630i) q^{65} +(-0.422505 - 1.57681i) q^{67} +(0.805588 + 1.39532i) q^{69} +(-4.27941 + 15.9710i) q^{71} +(9.55184 + 9.55184i) q^{73} +(-0.627540 - 0.362311i) q^{75} -2.76202 q^{77} -6.37555i q^{79} +(5.06972 - 8.78102i) q^{81} +(-3.53261 + 3.53261i) q^{83} +(2.53035 + 0.678006i) q^{85} +(6.06683 - 3.50268i) q^{87} +(9.33624 - 2.50164i) q^{89} +(-3.34892 + 10.5984i) q^{91} +(-12.8358 + 3.43933i) q^{93} +(-7.42997 - 12.8691i) q^{95} +(-10.6893 - 2.86418i) q^{97} +(0.282671 + 0.282671i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{3} - 20 q^{9} + 8 q^{11} - 12 q^{17} + 8 q^{19} - 8 q^{27} + 4 q^{33} + 4 q^{35} + 12 q^{43} - 60 q^{49} + 36 q^{57} + 64 q^{59} - 16 q^{65} + 8 q^{67} - 12 q^{73} - 24 q^{75} - 8 q^{81} + 48 q^{83}+ \cdots - 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.928193 1.60768i 0.535893 0.928193i −0.463227 0.886240i \(-0.653308\pi\)
0.999120 0.0419537i \(-0.0133582\pi\)
\(4\) 0 0
\(5\) 1.51817 + 1.51817i 0.678945 + 0.678945i 0.959761 0.280817i \(-0.0906053\pi\)
−0.280817 + 0.959761i \(0.590605\pi\)
\(6\) 0 0
\(7\) 2.97768 + 0.797866i 1.12546 + 0.301565i 0.773090 0.634297i \(-0.218710\pi\)
0.352367 + 0.935862i \(0.385377\pi\)
\(8\) 0 0
\(9\) −0.223086 0.386396i −0.0743620 0.128799i
\(10\) 0 0
\(11\) −0.865440 + 0.231894i −0.260940 + 0.0699187i −0.386917 0.922114i \(-0.626460\pi\)
0.125977 + 0.992033i \(0.459793\pi\)
\(12\) 0 0
\(13\) −0.159516 + 3.60202i −0.0442419 + 0.999021i
\(14\) 0 0
\(15\) 3.84988 1.03157i 0.994034 0.266351i
\(16\) 0 0
\(17\) 1.05666 0.610061i 0.256277 0.147961i −0.366358 0.930474i \(-0.619396\pi\)
0.622635 + 0.782512i \(0.286062\pi\)
\(18\) 0 0
\(19\) −6.68538 1.79134i −1.53373 0.410962i −0.609498 0.792788i \(-0.708629\pi\)
−0.924235 + 0.381825i \(0.875296\pi\)
\(20\) 0 0
\(21\) 4.04657 4.04657i 0.883035 0.883035i
\(22\) 0 0
\(23\) −0.433955 + 0.751632i −0.0904858 + 0.156726i −0.907716 0.419586i \(-0.862175\pi\)
0.817230 + 0.576312i \(0.195509\pi\)
\(24\) 0 0
\(25\) 0.390340i 0.0780679i
\(26\) 0 0
\(27\) 4.74089 0.912385
\(28\) 0 0
\(29\) 3.26808 + 1.88683i 0.606868 + 0.350375i 0.771739 0.635940i \(-0.219387\pi\)
−0.164871 + 0.986315i \(0.552721\pi\)
\(30\) 0 0
\(31\) −5.06168 5.06168i −0.909104 0.909104i 0.0870962 0.996200i \(-0.472241\pi\)
−0.996200 + 0.0870962i \(0.972241\pi\)
\(32\) 0 0
\(33\) −0.430485 + 1.60659i −0.0749378 + 0.279672i
\(34\) 0 0
\(35\) 3.30932 + 5.73191i 0.559377 + 0.968869i
\(36\) 0 0
\(37\) −2.52764 9.43328i −0.415542 1.55082i −0.783749 0.621078i \(-0.786695\pi\)
0.368207 0.929744i \(-0.379972\pi\)
\(38\) 0 0
\(39\) 5.64283 + 3.59982i 0.903576 + 0.576433i
\(40\) 0 0
\(41\) −3.12278 11.6544i −0.487696 1.82011i −0.567602 0.823303i \(-0.692129\pi\)
0.0799065 0.996802i \(-0.474538\pi\)
\(42\) 0 0
\(43\) 4.22972 2.44203i 0.645026 0.372406i −0.141522 0.989935i \(-0.545200\pi\)
0.786548 + 0.617529i \(0.211866\pi\)
\(44\) 0 0
\(45\) 0.247932 0.925296i 0.0369596 0.137935i
\(46\) 0 0
\(47\) −4.24871 + 4.24871i −0.619738 + 0.619738i −0.945464 0.325726i \(-0.894391\pi\)
0.325726 + 0.945464i \(0.394391\pi\)
\(48\) 0 0
\(49\) 2.16780 + 1.25158i 0.309685 + 0.178797i
\(50\) 0 0
\(51\) 2.26502i 0.317166i
\(52\) 0 0
\(53\) 2.16454i 0.297323i 0.988888 + 0.148662i \(0.0474965\pi\)
−0.988888 + 0.148662i \(0.952504\pi\)
\(54\) 0 0
\(55\) −1.66594 0.961829i −0.224635 0.129693i
\(56\) 0 0
\(57\) −9.08523 + 9.08523i −1.20337 + 1.20337i
\(58\) 0 0
\(59\) −0.0382345 + 0.142693i −0.00497771 + 0.0185771i −0.968370 0.249519i \(-0.919728\pi\)
0.963392 + 0.268096i \(0.0863943\pi\)
\(60\) 0 0
\(61\) −7.26272 + 4.19313i −0.929895 + 0.536875i −0.886778 0.462195i \(-0.847062\pi\)
−0.0431169 + 0.999070i \(0.513729\pi\)
\(62\) 0 0
\(63\) −0.355986 1.32856i −0.0448500 0.167382i
\(64\) 0 0
\(65\) −5.71064 + 5.22630i −0.708318 + 0.648242i
\(66\) 0 0
\(67\) −0.422505 1.57681i −0.0516172 0.192638i 0.935303 0.353848i \(-0.115127\pi\)
−0.986920 + 0.161210i \(0.948460\pi\)
\(68\) 0 0
\(69\) 0.805588 + 1.39532i 0.0969814 + 0.167977i
\(70\) 0 0
\(71\) −4.27941 + 15.9710i −0.507873 + 1.89541i −0.0671978 + 0.997740i \(0.521406\pi\)
−0.440675 + 0.897667i \(0.645261\pi\)
\(72\) 0 0
\(73\) 9.55184 + 9.55184i 1.11796 + 1.11796i 0.992041 + 0.125918i \(0.0401876\pi\)
0.125918 + 0.992041i \(0.459812\pi\)
\(74\) 0 0
\(75\) −0.627540 0.362311i −0.0724621 0.0418360i
\(76\) 0 0
\(77\) −2.76202 −0.314762
\(78\) 0 0
\(79\) 6.37555i 0.717305i −0.933471 0.358653i \(-0.883236\pi\)
0.933471 0.358653i \(-0.116764\pi\)
\(80\) 0 0
\(81\) 5.06972 8.78102i 0.563303 0.975669i
\(82\) 0 0
\(83\) −3.53261 + 3.53261i −0.387754 + 0.387754i −0.873886 0.486132i \(-0.838408\pi\)
0.486132 + 0.873886i \(0.338408\pi\)
\(84\) 0 0
\(85\) 2.53035 + 0.678006i 0.274455 + 0.0735401i
\(86\) 0 0
\(87\) 6.06683 3.50268i 0.650432 0.375527i
\(88\) 0 0
\(89\) 9.33624 2.50164i 0.989639 0.265173i 0.272540 0.962144i \(-0.412136\pi\)
0.717099 + 0.696971i \(0.245470\pi\)
\(90\) 0 0
\(91\) −3.34892 + 10.5984i −0.351062 + 1.11101i
\(92\) 0 0
\(93\) −12.8358 + 3.43933i −1.33101 + 0.356642i
\(94\) 0 0
\(95\) −7.42997 12.8691i −0.762299 1.32034i
\(96\) 0 0
\(97\) −10.6893 2.86418i −1.08533 0.290813i −0.328552 0.944486i \(-0.606561\pi\)
−0.756777 + 0.653673i \(0.773227\pi\)
\(98\) 0 0
\(99\) 0.282671 + 0.282671i 0.0284095 + 0.0284095i
\(100\) 0 0
\(101\) −2.21864 + 3.84279i −0.220763 + 0.382372i −0.955040 0.296478i \(-0.904188\pi\)
0.734277 + 0.678850i \(0.237521\pi\)
\(102\) 0 0
\(103\) −6.24017 −0.614862 −0.307431 0.951570i \(-0.599469\pi\)
−0.307431 + 0.951570i \(0.599469\pi\)
\(104\) 0 0
\(105\) 12.2867 1.19906
\(106\) 0 0
\(107\) −0.706753 + 1.22413i −0.0683244 + 0.118341i −0.898164 0.439661i \(-0.855099\pi\)
0.829839 + 0.558002i \(0.188432\pi\)
\(108\) 0 0
\(109\) −0.960216 0.960216i −0.0919720 0.0919720i 0.659624 0.751596i \(-0.270716\pi\)
−0.751596 + 0.659624i \(0.770716\pi\)
\(110\) 0 0
\(111\) −17.5118 4.69228i −1.66215 0.445371i
\(112\) 0 0
\(113\) 1.53001 + 2.65005i 0.143931 + 0.249296i 0.928974 0.370146i \(-0.120692\pi\)
−0.785043 + 0.619442i \(0.787359\pi\)
\(114\) 0 0
\(115\) −1.79992 + 0.482287i −0.167843 + 0.0449735i
\(116\) 0 0
\(117\) 1.42739 0.741924i 0.131963 0.0685909i
\(118\) 0 0
\(119\) 3.63313 0.973494i 0.333048 0.0892400i
\(120\) 0 0
\(121\) −8.83107 + 5.09862i −0.802824 + 0.463511i
\(122\) 0 0
\(123\) −21.6350 5.79708i −1.95076 0.522705i
\(124\) 0 0
\(125\) 8.18343 8.18343i 0.731949 0.731949i
\(126\) 0 0
\(127\) 3.69229 6.39523i 0.327637 0.567485i −0.654405 0.756144i \(-0.727081\pi\)
0.982043 + 0.188659i \(0.0604142\pi\)
\(128\) 0 0
\(129\) 9.06670i 0.798278i
\(130\) 0 0
\(131\) 15.9912 1.39716 0.698580 0.715532i \(-0.253816\pi\)
0.698580 + 0.715532i \(0.253816\pi\)
\(132\) 0 0
\(133\) −18.4777 10.6681i −1.60222 0.925040i
\(134\) 0 0
\(135\) 7.19747 + 7.19747i 0.619459 + 0.619459i
\(136\) 0 0
\(137\) −2.60171 + 9.70972i −0.222279 + 0.829558i 0.761197 + 0.648521i \(0.224612\pi\)
−0.983476 + 0.181037i \(0.942055\pi\)
\(138\) 0 0
\(139\) 1.25261 + 2.16959i 0.106245 + 0.184022i 0.914246 0.405159i \(-0.132784\pi\)
−0.808001 + 0.589181i \(0.799450\pi\)
\(140\) 0 0
\(141\) 2.88694 + 10.7742i 0.243124 + 0.907350i
\(142\) 0 0
\(143\) −0.697235 3.15433i −0.0583057 0.263778i
\(144\) 0 0
\(145\) 2.09697 + 7.82602i 0.174144 + 0.649915i
\(146\) 0 0
\(147\) 4.02427 2.32341i 0.331916 0.191632i
\(148\) 0 0
\(149\) −1.27183 + 4.74654i −0.104192 + 0.388851i −0.998252 0.0590960i \(-0.981178\pi\)
0.894060 + 0.447947i \(0.147845\pi\)
\(150\) 0 0
\(151\) 6.92678 6.92678i 0.563693 0.563693i −0.366661 0.930355i \(-0.619499\pi\)
0.930355 + 0.366661i \(0.119499\pi\)
\(152\) 0 0
\(153\) −0.471450 0.272192i −0.0381145 0.0220054i
\(154\) 0 0
\(155\) 15.3689i 1.23446i
\(156\) 0 0
\(157\) 18.0396i 1.43972i −0.694121 0.719858i \(-0.744207\pi\)
0.694121 0.719858i \(-0.255793\pi\)
\(158\) 0 0
\(159\) 3.47989 + 2.00912i 0.275973 + 0.159333i
\(160\) 0 0
\(161\) −1.89188 + 1.89188i −0.149101 + 0.149101i
\(162\) 0 0
\(163\) 1.71282 6.39232i 0.134158 0.500685i −0.865842 0.500318i \(-0.833216\pi\)
1.00000 0.000367214i \(-0.000116888\pi\)
\(164\) 0 0
\(165\) −3.09262 + 1.78553i −0.240760 + 0.139003i
\(166\) 0 0
\(167\) 3.00756 + 11.2244i 0.232732 + 0.868569i 0.979158 + 0.203100i \(0.0651017\pi\)
−0.746426 + 0.665469i \(0.768232\pi\)
\(168\) 0 0
\(169\) −12.9491 1.14916i −0.996085 0.0883971i
\(170\) 0 0
\(171\) 0.799247 + 2.98283i 0.0611200 + 0.228103i
\(172\) 0 0
\(173\) 6.46840 + 11.2036i 0.491784 + 0.851794i 0.999955 0.00946175i \(-0.00301181\pi\)
−0.508172 + 0.861256i \(0.669678\pi\)
\(174\) 0 0
\(175\) 0.311439 1.16231i 0.0235426 0.0878620i
\(176\) 0 0
\(177\) 0.193916 + 0.193916i 0.0145756 + 0.0145756i
\(178\) 0 0
\(179\) 4.56241 + 2.63411i 0.341011 + 0.196883i 0.660719 0.750633i \(-0.270252\pi\)
−0.319708 + 0.947516i \(0.603585\pi\)
\(180\) 0 0
\(181\) 12.7764 0.949664 0.474832 0.880077i \(-0.342509\pi\)
0.474832 + 0.880077i \(0.342509\pi\)
\(182\) 0 0
\(183\) 15.5681i 1.15083i
\(184\) 0 0
\(185\) 10.4839 18.1587i 0.770793 1.33505i
\(186\) 0 0
\(187\) −0.773003 + 0.773003i −0.0565276 + 0.0565276i
\(188\) 0 0
\(189\) 14.1169 + 3.78260i 1.02685 + 0.275144i
\(190\) 0 0
\(191\) 4.76820 2.75292i 0.345015 0.199194i −0.317473 0.948267i \(-0.602834\pi\)
0.662487 + 0.749073i \(0.269501\pi\)
\(192\) 0 0
\(193\) −3.03099 + 0.812152i −0.218176 + 0.0584600i −0.366251 0.930516i \(-0.619359\pi\)
0.148075 + 0.988976i \(0.452692\pi\)
\(194\) 0 0
\(195\) 3.10162 + 14.0319i 0.222112 + 1.00484i
\(196\) 0 0
\(197\) 6.20134 1.66164i 0.441827 0.118387i −0.0310457 0.999518i \(-0.509884\pi\)
0.472873 + 0.881131i \(0.343217\pi\)
\(198\) 0 0
\(199\) 8.24489 + 14.2806i 0.584465 + 1.01232i 0.994942 + 0.100452i \(0.0320287\pi\)
−0.410477 + 0.911871i \(0.634638\pi\)
\(200\) 0 0
\(201\) −2.92717 0.784333i −0.206467 0.0553226i
\(202\) 0 0
\(203\) 8.22586 + 8.22586i 0.577342 + 0.577342i
\(204\) 0 0
\(205\) 12.9524 22.4342i 0.904633 1.56687i
\(206\) 0 0
\(207\) 0.387237 0.0269148
\(208\) 0 0
\(209\) 6.20120 0.428946
\(210\) 0 0
\(211\) −1.39689 + 2.41949i −0.0961660 + 0.166564i −0.910095 0.414400i \(-0.863991\pi\)
0.813929 + 0.580965i \(0.197325\pi\)
\(212\) 0 0
\(213\) 21.7041 + 21.7041i 1.48714 + 1.48714i
\(214\) 0 0
\(215\) 10.1288 + 2.71401i 0.690780 + 0.185094i
\(216\) 0 0
\(217\) −11.0335 19.1106i −0.749003 1.29731i
\(218\) 0 0
\(219\) 24.2222 6.49033i 1.63679 0.438576i
\(220\) 0 0
\(221\) 2.02890 + 3.90341i 0.136478 + 0.262572i
\(222\) 0 0
\(223\) −17.8074 + 4.77148i −1.19247 + 0.319522i −0.799863 0.600183i \(-0.795094\pi\)
−0.392610 + 0.919705i \(0.628428\pi\)
\(224\) 0 0
\(225\) −0.150826 + 0.0870793i −0.0100551 + 0.00580529i
\(226\) 0 0
\(227\) −11.3561 3.04286i −0.753731 0.201962i −0.138558 0.990354i \(-0.544247\pi\)
−0.615172 + 0.788393i \(0.710914\pi\)
\(228\) 0 0
\(229\) −12.3457 + 12.3457i −0.815827 + 0.815827i −0.985500 0.169673i \(-0.945729\pi\)
0.169673 + 0.985500i \(0.445729\pi\)
\(230\) 0 0
\(231\) −2.56369 + 4.44044i −0.168679 + 0.292160i
\(232\) 0 0
\(233\) 12.3861i 0.811440i −0.913997 0.405720i \(-0.867021\pi\)
0.913997 0.405720i \(-0.132979\pi\)
\(234\) 0 0
\(235\) −12.9005 −0.841536
\(236\) 0 0
\(237\) −10.2498 5.91774i −0.665798 0.384399i
\(238\) 0 0
\(239\) 11.8203 + 11.8203i 0.764589 + 0.764589i 0.977148 0.212559i \(-0.0681798\pi\)
−0.212559 + 0.977148i \(0.568180\pi\)
\(240\) 0 0
\(241\) 4.17425 15.5785i 0.268887 1.00350i −0.690941 0.722911i \(-0.742804\pi\)
0.959828 0.280589i \(-0.0905296\pi\)
\(242\) 0 0
\(243\) −2.30003 3.98377i −0.147547 0.255559i
\(244\) 0 0
\(245\) 1.39097 + 5.19118i 0.0888660 + 0.331652i
\(246\) 0 0
\(247\) 7.51889 23.7951i 0.478415 1.51405i
\(248\) 0 0
\(249\) 2.40035 + 8.95823i 0.152116 + 0.567705i
\(250\) 0 0
\(251\) −15.0162 + 8.66963i −0.947817 + 0.547222i −0.892402 0.451241i \(-0.850981\pi\)
−0.0554146 + 0.998463i \(0.517648\pi\)
\(252\) 0 0
\(253\) 0.201263 0.751124i 0.0126533 0.0472228i
\(254\) 0 0
\(255\) 3.43867 3.43867i 0.215338 0.215338i
\(256\) 0 0
\(257\) 15.3868 + 8.88359i 0.959804 + 0.554143i 0.896113 0.443826i \(-0.146379\pi\)
0.0636915 + 0.997970i \(0.479713\pi\)
\(258\) 0 0
\(259\) 30.1060i 1.87070i
\(260\) 0 0
\(261\) 1.68370i 0.104218i
\(262\) 0 0
\(263\) 13.6169 + 7.86171i 0.839653 + 0.484774i 0.857146 0.515073i \(-0.172235\pi\)
−0.0174932 + 0.999847i \(0.505569\pi\)
\(264\) 0 0
\(265\) −3.28614 + 3.28614i −0.201866 + 0.201866i
\(266\) 0 0
\(267\) 4.64401 17.3317i 0.284209 1.06068i
\(268\) 0 0
\(269\) 20.3903 11.7723i 1.24322 0.717771i 0.273469 0.961881i \(-0.411829\pi\)
0.969748 + 0.244110i \(0.0784957\pi\)
\(270\) 0 0
\(271\) −3.15771 11.7847i −0.191817 0.715872i −0.993068 0.117543i \(-0.962498\pi\)
0.801251 0.598329i \(-0.204168\pi\)
\(272\) 0 0
\(273\) 13.9303 + 15.2213i 0.843103 + 0.921237i
\(274\) 0 0
\(275\) 0.0905174 + 0.337816i 0.00545841 + 0.0203711i
\(276\) 0 0
\(277\) 0.828359 + 1.43476i 0.0497713 + 0.0862063i 0.889838 0.456277i \(-0.150817\pi\)
−0.840066 + 0.542483i \(0.817484\pi\)
\(278\) 0 0
\(279\) −0.826624 + 3.08500i −0.0494887 + 0.184694i
\(280\) 0 0
\(281\) 9.02164 + 9.02164i 0.538186 + 0.538186i 0.922996 0.384810i \(-0.125733\pi\)
−0.384810 + 0.922996i \(0.625733\pi\)
\(282\) 0 0
\(283\) 18.6957 + 10.7940i 1.11134 + 0.641634i 0.939177 0.343434i \(-0.111590\pi\)
0.172166 + 0.985068i \(0.444924\pi\)
\(284\) 0 0
\(285\) −27.5858 −1.63404
\(286\) 0 0
\(287\) 37.1945i 2.19552i
\(288\) 0 0
\(289\) −7.75565 + 13.4332i −0.456215 + 0.790187i
\(290\) 0 0
\(291\) −14.5264 + 14.5264i −0.851551 + 0.851551i
\(292\) 0 0
\(293\) −22.9272 6.14333i −1.33942 0.358897i −0.483202 0.875509i \(-0.660526\pi\)
−0.856220 + 0.516612i \(0.827193\pi\)
\(294\) 0 0
\(295\) −0.274678 + 0.158586i −0.0159924 + 0.00923321i
\(296\) 0 0
\(297\) −4.10296 + 1.09938i −0.238078 + 0.0637928i
\(298\) 0 0
\(299\) −2.63817 1.68301i −0.152569 0.0973311i
\(300\) 0 0
\(301\) 14.5432 3.89683i 0.838253 0.224609i
\(302\) 0 0
\(303\) 4.11865 + 7.13371i 0.236610 + 0.409821i
\(304\) 0 0
\(305\) −17.3919 4.66014i −0.995856 0.266839i
\(306\) 0 0
\(307\) 3.16487 + 3.16487i 0.180629 + 0.180629i 0.791630 0.611001i \(-0.209233\pi\)
−0.611001 + 0.791630i \(0.709233\pi\)
\(308\) 0 0
\(309\) −5.79208 + 10.0322i −0.329500 + 0.570711i
\(310\) 0 0
\(311\) −20.2792 −1.14993 −0.574965 0.818178i \(-0.694984\pi\)
−0.574965 + 0.818178i \(0.694984\pi\)
\(312\) 0 0
\(313\) −2.16882 −0.122589 −0.0612945 0.998120i \(-0.519523\pi\)
−0.0612945 + 0.998120i \(0.519523\pi\)
\(314\) 0 0
\(315\) 1.47652 2.55742i 0.0831927 0.144094i
\(316\) 0 0
\(317\) −12.9527 12.9527i −0.727494 0.727494i 0.242626 0.970120i \(-0.421991\pi\)
−0.970120 + 0.242626i \(0.921991\pi\)
\(318\) 0 0
\(319\) −3.26588 0.875089i −0.182854 0.0489956i
\(320\) 0 0
\(321\) 1.31201 + 2.27246i 0.0732291 + 0.126837i
\(322\) 0 0
\(323\) −8.15698 + 2.18566i −0.453866 + 0.121613i
\(324\) 0 0
\(325\) 1.40601 + 0.0622656i 0.0779915 + 0.00345387i
\(326\) 0 0
\(327\) −2.43498 + 0.652452i −0.134655 + 0.0360807i
\(328\) 0 0
\(329\) −16.0412 + 9.26139i −0.884380 + 0.510597i
\(330\) 0 0
\(331\) 1.73058 + 0.463707i 0.0951211 + 0.0254876i 0.306066 0.952010i \(-0.400987\pi\)
−0.210945 + 0.977498i \(0.567654\pi\)
\(332\) 0 0
\(333\) −3.08110 + 3.08110i −0.168843 + 0.168843i
\(334\) 0 0
\(335\) 1.75243 3.03529i 0.0957454 0.165836i
\(336\) 0 0
\(337\) 26.4251i 1.43947i −0.694250 0.719734i \(-0.744264\pi\)
0.694250 0.719734i \(-0.255736\pi\)
\(338\) 0 0
\(339\) 5.68057 0.308526
\(340\) 0 0
\(341\) 5.55435 + 3.20681i 0.300785 + 0.173658i
\(342\) 0 0
\(343\) −9.80227 9.80227i −0.529273 0.529273i
\(344\) 0 0
\(345\) −0.895310 + 3.34134i −0.0482019 + 0.179892i
\(346\) 0 0
\(347\) −13.6071 23.5682i −0.730469 1.26521i −0.956683 0.291131i \(-0.905968\pi\)
0.226214 0.974078i \(-0.427365\pi\)
\(348\) 0 0
\(349\) 1.42060 + 5.30175i 0.0760429 + 0.283796i 0.993468 0.114113i \(-0.0364026\pi\)
−0.917425 + 0.397909i \(0.869736\pi\)
\(350\) 0 0
\(351\) −0.756250 + 17.0768i −0.0403656 + 0.911492i
\(352\) 0 0
\(353\) 2.30377 + 8.59780i 0.122618 + 0.457615i 0.999744 0.0226454i \(-0.00720886\pi\)
−0.877126 + 0.480260i \(0.840542\pi\)
\(354\) 0 0
\(355\) −30.7435 + 17.7497i −1.63169 + 0.942059i
\(356\) 0 0
\(357\) 1.80718 6.74449i 0.0956461 0.356956i
\(358\) 0 0
\(359\) −2.49366 + 2.49366i −0.131611 + 0.131611i −0.769843 0.638233i \(-0.779666\pi\)
0.638233 + 0.769843i \(0.279666\pi\)
\(360\) 0 0
\(361\) 25.0310 + 14.4516i 1.31742 + 0.760613i
\(362\) 0 0
\(363\) 18.9300i 0.993568i
\(364\) 0 0
\(365\) 29.0026i 1.51806i
\(366\) 0 0
\(367\) −3.94804 2.27940i −0.206086 0.118984i 0.393405 0.919365i \(-0.371297\pi\)
−0.599491 + 0.800381i \(0.704630\pi\)
\(368\) 0 0
\(369\) −3.80655 + 3.80655i −0.198161 + 0.198161i
\(370\) 0 0
\(371\) −1.72702 + 6.44532i −0.0896623 + 0.334624i
\(372\) 0 0
\(373\) −6.61761 + 3.82068i −0.342647 + 0.197827i −0.661442 0.749997i \(-0.730055\pi\)
0.318795 + 0.947824i \(0.396722\pi\)
\(374\) 0 0
\(375\) −5.56052 20.7521i −0.287144 1.07164i
\(376\) 0 0
\(377\) −7.31771 + 11.4707i −0.376881 + 0.590772i
\(378\) 0 0
\(379\) 6.19755 + 23.1296i 0.318347 + 1.18809i 0.920833 + 0.389957i \(0.127510\pi\)
−0.602486 + 0.798129i \(0.705823\pi\)
\(380\) 0 0
\(381\) −6.85431 11.8720i −0.351157 0.608222i
\(382\) 0 0
\(383\) −1.99580 + 7.44844i −0.101981 + 0.380598i −0.997985 0.0634476i \(-0.979790\pi\)
0.896004 + 0.444045i \(0.146457\pi\)
\(384\) 0 0
\(385\) −4.19321 4.19321i −0.213706 0.213706i
\(386\) 0 0
\(387\) −1.88718 1.08956i −0.0959308 0.0553857i
\(388\) 0 0
\(389\) −31.2509 −1.58448 −0.792242 0.610207i \(-0.791086\pi\)
−0.792242 + 0.610207i \(0.791086\pi\)
\(390\) 0 0
\(391\) 1.05895i 0.0535536i
\(392\) 0 0
\(393\) 14.8429 25.7087i 0.748727 1.29683i
\(394\) 0 0
\(395\) 9.67914 9.67914i 0.487011 0.487011i
\(396\) 0 0
\(397\) −9.70876 2.60145i −0.487269 0.130563i 0.00681640 0.999977i \(-0.497830\pi\)
−0.494085 + 0.869413i \(0.664497\pi\)
\(398\) 0 0
\(399\) −34.3017 + 19.8041i −1.71723 + 0.991445i
\(400\) 0 0
\(401\) −0.321158 + 0.0860540i −0.0160379 + 0.00429733i −0.266829 0.963744i \(-0.585976\pi\)
0.250791 + 0.968041i \(0.419309\pi\)
\(402\) 0 0
\(403\) 19.0397 17.4248i 0.948434 0.867993i
\(404\) 0 0
\(405\) 21.0277 5.63436i 1.04488 0.279974i
\(406\) 0 0
\(407\) 4.37504 + 7.57780i 0.216863 + 0.375618i
\(408\) 0 0
\(409\) 12.2976 + 3.29512i 0.608076 + 0.162933i 0.549701 0.835361i \(-0.314742\pi\)
0.0583746 + 0.998295i \(0.481408\pi\)
\(410\) 0 0
\(411\) 13.1952 + 13.1952i 0.650872 + 0.650872i
\(412\) 0 0
\(413\) −0.227700 + 0.394388i −0.0112044 + 0.0194066i
\(414\) 0 0
\(415\) −10.7262 −0.526527
\(416\) 0 0
\(417\) 4.65067 0.227744
\(418\) 0 0
\(419\) 11.7449 20.3428i 0.573777 0.993812i −0.422396 0.906411i \(-0.638811\pi\)
0.996173 0.0874001i \(-0.0278559\pi\)
\(420\) 0 0
\(421\) −7.20576 7.20576i −0.351187 0.351187i 0.509364 0.860551i \(-0.329881\pi\)
−0.860551 + 0.509364i \(0.829881\pi\)
\(422\) 0 0
\(423\) 2.58951 + 0.693858i 0.125907 + 0.0337366i
\(424\) 0 0
\(425\) −0.238131 0.412455i −0.0115510 0.0200070i
\(426\) 0 0
\(427\) −24.9716 + 6.69112i −1.20846 + 0.323806i
\(428\) 0 0
\(429\) −5.71831 1.80689i −0.276083 0.0872377i
\(430\) 0 0
\(431\) 33.7738 9.04966i 1.62683 0.435907i 0.673829 0.738887i \(-0.264648\pi\)
0.952997 + 0.302981i \(0.0979817\pi\)
\(432\) 0 0
\(433\) −15.6775 + 9.05142i −0.753414 + 0.434984i −0.826926 0.562311i \(-0.809913\pi\)
0.0735123 + 0.997294i \(0.476579\pi\)
\(434\) 0 0
\(435\) 14.5281 + 3.89280i 0.696570 + 0.186645i
\(436\) 0 0
\(437\) 4.24758 4.24758i 0.203190 0.203190i
\(438\) 0 0
\(439\) −8.05255 + 13.9474i −0.384327 + 0.665674i −0.991676 0.128761i \(-0.958900\pi\)
0.607348 + 0.794436i \(0.292233\pi\)
\(440\) 0 0
\(441\) 1.11684i 0.0531828i
\(442\) 0 0
\(443\) 17.9120 0.851025 0.425512 0.904953i \(-0.360094\pi\)
0.425512 + 0.904953i \(0.360094\pi\)
\(444\) 0 0
\(445\) 17.9719 + 10.3761i 0.851948 + 0.491872i
\(446\) 0 0
\(447\) 6.45040 + 6.45040i 0.305093 + 0.305093i
\(448\) 0 0
\(449\) 6.95151 25.9434i 0.328062 1.22434i −0.583136 0.812375i \(-0.698174\pi\)
0.911198 0.411969i \(-0.135159\pi\)
\(450\) 0 0
\(451\) 5.40515 + 9.36200i 0.254519 + 0.440839i
\(452\) 0 0
\(453\) −4.70664 17.5654i −0.221137 0.825296i
\(454\) 0 0
\(455\) −21.1743 + 11.0059i −0.992668 + 0.515964i
\(456\) 0 0
\(457\) 4.15957 + 15.5237i 0.194577 + 0.726170i 0.992376 + 0.123247i \(0.0393307\pi\)
−0.797799 + 0.602923i \(0.794003\pi\)
\(458\) 0 0
\(459\) 5.00949 2.89223i 0.233823 0.134998i
\(460\) 0 0
\(461\) −3.69416 + 13.7868i −0.172054 + 0.642115i 0.824981 + 0.565161i \(0.191186\pi\)
−0.997035 + 0.0769536i \(0.975481\pi\)
\(462\) 0 0
\(463\) −4.18298 + 4.18298i −0.194400 + 0.194400i −0.797594 0.603194i \(-0.793894\pi\)
0.603194 + 0.797594i \(0.293894\pi\)
\(464\) 0 0
\(465\) −24.7083 14.2653i −1.14582 0.661539i
\(466\) 0 0
\(467\) 3.76421i 0.174187i −0.996200 0.0870935i \(-0.972242\pi\)
0.996200 0.0870935i \(-0.0277579\pi\)
\(468\) 0 0
\(469\) 5.03234i 0.232372i
\(470\) 0 0
\(471\) −29.0019 16.7442i −1.33634 0.771534i
\(472\) 0 0
\(473\) −3.09428 + 3.09428i −0.142275 + 0.142275i
\(474\) 0 0
\(475\) −0.699232 + 2.60957i −0.0320830 + 0.119735i
\(476\) 0 0
\(477\) 0.836372 0.482880i 0.0382948 0.0221095i
\(478\) 0 0
\(479\) 2.57796 + 9.62109i 0.117790 + 0.439599i 0.999480 0.0322298i \(-0.0102608\pi\)
−0.881690 + 0.471828i \(0.843594\pi\)
\(480\) 0 0
\(481\) 34.3821 7.59985i 1.56769 0.346523i
\(482\) 0 0
\(483\) 1.28550 + 4.79756i 0.0584924 + 0.218297i
\(484\) 0 0
\(485\) −11.8798 20.5764i −0.539433 0.934325i
\(486\) 0 0
\(487\) 7.18195 26.8034i 0.325445 1.21458i −0.588418 0.808557i \(-0.700249\pi\)
0.913864 0.406021i \(-0.133084\pi\)
\(488\) 0 0
\(489\) −8.68697 8.68697i −0.392838 0.392838i
\(490\) 0 0
\(491\) 4.70703 + 2.71760i 0.212425 + 0.122644i 0.602438 0.798166i \(-0.294196\pi\)
−0.390013 + 0.920809i \(0.627529\pi\)
\(492\) 0 0
\(493\) 4.60432 0.207368
\(494\) 0 0
\(495\) 0.858282i 0.0385769i
\(496\) 0 0
\(497\) −25.4854 + 44.1420i −1.14318 + 1.98004i
\(498\) 0 0
\(499\) −14.7930 + 14.7930i −0.662226 + 0.662226i −0.955904 0.293678i \(-0.905121\pi\)
0.293678 + 0.955904i \(0.405121\pi\)
\(500\) 0 0
\(501\) 20.8368 + 5.58320i 0.930920 + 0.249439i
\(502\) 0 0
\(503\) 1.65389 0.954873i 0.0737432 0.0425757i −0.462675 0.886528i \(-0.653110\pi\)
0.536418 + 0.843952i \(0.319777\pi\)
\(504\) 0 0
\(505\) −9.20226 + 2.46574i −0.409495 + 0.109724i
\(506\) 0 0
\(507\) −13.8668 + 19.7514i −0.615845 + 0.877188i
\(508\) 0 0
\(509\) −25.0168 + 6.70324i −1.10885 + 0.297116i −0.766364 0.642406i \(-0.777936\pi\)
−0.342488 + 0.939522i \(0.611270\pi\)
\(510\) 0 0
\(511\) 20.8212 + 36.0634i 0.921076 + 1.59535i
\(512\) 0 0
\(513\) −31.6947 8.49257i −1.39935 0.374956i
\(514\) 0 0
\(515\) −9.47362 9.47362i −0.417457 0.417457i
\(516\) 0 0
\(517\) 2.69176 4.66226i 0.118383 0.205046i
\(518\) 0 0
\(519\) 24.0157 1.05417
\(520\) 0 0
\(521\) −34.4885 −1.51097 −0.755485 0.655166i \(-0.772599\pi\)
−0.755485 + 0.655166i \(0.772599\pi\)
\(522\) 0 0
\(523\) 4.27922 7.41182i 0.187117 0.324096i −0.757171 0.653217i \(-0.773419\pi\)
0.944288 + 0.329121i \(0.106752\pi\)
\(524\) 0 0
\(525\) −1.57954 1.57954i −0.0689367 0.0689367i
\(526\) 0 0
\(527\) −8.43638 2.26052i −0.367494 0.0984698i
\(528\) 0 0
\(529\) 11.1234 + 19.2662i 0.483625 + 0.837662i
\(530\) 0 0
\(531\) 0.0636657 0.0170592i 0.00276285 0.000740305i
\(532\) 0 0
\(533\) 42.4774 9.38924i 1.83990 0.406693i
\(534\) 0 0
\(535\) −2.93141 + 0.785468i −0.126736 + 0.0339587i
\(536\) 0 0
\(537\) 8.46961 4.88993i 0.365490 0.211016i
\(538\) 0 0
\(539\) −2.16633 0.580467i −0.0933105 0.0250025i
\(540\) 0 0
\(541\) −4.38710 + 4.38710i −0.188616 + 0.188616i −0.795098 0.606481i \(-0.792580\pi\)
0.606481 + 0.795098i \(0.292580\pi\)
\(542\) 0 0
\(543\) 11.8590 20.5404i 0.508918 0.881472i
\(544\) 0 0
\(545\) 2.91553i 0.124888i
\(546\) 0 0
\(547\) 7.06581 0.302112 0.151056 0.988525i \(-0.451733\pi\)
0.151056 + 0.988525i \(0.451733\pi\)
\(548\) 0 0
\(549\) 3.24042 + 1.87086i 0.138298 + 0.0798462i
\(550\) 0 0
\(551\) −18.4684 18.4684i −0.786782 0.786782i
\(552\) 0 0
\(553\) 5.08683 18.9843i 0.216314 0.807296i
\(554\) 0 0
\(555\) −19.4622 33.7095i −0.826124 1.43089i
\(556\) 0 0
\(557\) −5.75717 21.4861i −0.243939 0.910394i −0.973914 0.226919i \(-0.927135\pi\)
0.729974 0.683475i \(-0.239532\pi\)
\(558\) 0 0
\(559\) 8.12153 + 15.6251i 0.343504 + 0.660870i
\(560\) 0 0
\(561\) 0.525244 + 1.96024i 0.0221758 + 0.0827613i
\(562\) 0 0
\(563\) −7.46259 + 4.30853i −0.314511 + 0.181583i −0.648943 0.760837i \(-0.724789\pi\)
0.334432 + 0.942420i \(0.391455\pi\)
\(564\) 0 0
\(565\) −1.70041 + 6.34603i −0.0715369 + 0.266979i
\(566\) 0 0
\(567\) 22.1021 22.1021i 0.928200 0.928200i
\(568\) 0 0
\(569\) 18.5329 + 10.7000i 0.776940 + 0.448566i 0.835345 0.549727i \(-0.185268\pi\)
−0.0584048 + 0.998293i \(0.518601\pi\)
\(570\) 0 0
\(571\) 32.6657i 1.36702i −0.729943 0.683508i \(-0.760454\pi\)
0.729943 0.683508i \(-0.239546\pi\)
\(572\) 0 0
\(573\) 10.2210i 0.426987i
\(574\) 0 0
\(575\) 0.293392 + 0.169390i 0.0122353 + 0.00706404i
\(576\) 0 0
\(577\) 14.9528 14.9528i 0.622495 0.622495i −0.323674 0.946169i \(-0.604918\pi\)
0.946169 + 0.323674i \(0.104918\pi\)
\(578\) 0 0
\(579\) −1.50767 + 5.62670i −0.0626566 + 0.233838i
\(580\) 0 0
\(581\) −13.3375 + 7.70041i −0.553333 + 0.319467i
\(582\) 0 0
\(583\) −0.501945 1.87328i −0.0207884 0.0775835i
\(584\) 0 0
\(585\) 3.29338 + 1.04066i 0.136165 + 0.0430259i
\(586\) 0 0
\(587\) −2.77481 10.3557i −0.114529 0.427427i 0.884722 0.466118i \(-0.154348\pi\)
−0.999251 + 0.0386910i \(0.987681\pi\)
\(588\) 0 0
\(589\) 24.7720 + 42.9064i 1.02071 + 1.76793i
\(590\) 0 0
\(591\) 3.08465 11.5121i 0.126886 0.473544i
\(592\) 0 0
\(593\) −1.75970 1.75970i −0.0722623 0.0722623i 0.670052 0.742314i \(-0.266272\pi\)
−0.742314 + 0.670052i \(0.766272\pi\)
\(594\) 0 0
\(595\) 6.99362 + 4.03777i 0.286710 + 0.165532i
\(596\) 0 0
\(597\) 30.6114 1.25284
\(598\) 0 0
\(599\) 27.9976i 1.14395i 0.820271 + 0.571975i \(0.193823\pi\)
−0.820271 + 0.571975i \(0.806177\pi\)
\(600\) 0 0
\(601\) 0.221136 0.383018i 0.00902032 0.0156236i −0.861480 0.507791i \(-0.830462\pi\)
0.870500 + 0.492168i \(0.163795\pi\)
\(602\) 0 0
\(603\) −0.515019 + 0.515019i −0.0209732 + 0.0209732i
\(604\) 0 0
\(605\) −21.1476 5.66648i −0.859772 0.230375i
\(606\) 0 0
\(607\) 5.63658 3.25428i 0.228782 0.132087i −0.381228 0.924481i \(-0.624499\pi\)
0.610010 + 0.792394i \(0.291165\pi\)
\(608\) 0 0
\(609\) 20.8597 5.58935i 0.845279 0.226492i
\(610\) 0 0
\(611\) −14.6262 15.9817i −0.591713 0.646550i
\(612\) 0 0
\(613\) −0.889978 + 0.238469i −0.0359459 + 0.00963167i −0.276747 0.960943i \(-0.589256\pi\)
0.240801 + 0.970574i \(0.422590\pi\)
\(614\) 0 0
\(615\) −24.0446 41.6465i −0.969572 1.67935i
\(616\) 0 0
\(617\) 31.2554 + 8.37486i 1.25830 + 0.337159i 0.825536 0.564350i \(-0.190873\pi\)
0.432760 + 0.901509i \(0.357540\pi\)
\(618\) 0 0
\(619\) 5.65589 + 5.65589i 0.227329 + 0.227329i 0.811576 0.584247i \(-0.198610\pi\)
−0.584247 + 0.811576i \(0.698610\pi\)
\(620\) 0 0
\(621\) −2.05733 + 3.56341i −0.0825579 + 0.142995i
\(622\) 0 0
\(623\) 29.7963 1.19376
\(624\) 0 0
\(625\) 22.8959 0.915837
\(626\) 0 0
\(627\) 5.75592 9.96954i 0.229869 0.398145i
\(628\) 0 0
\(629\) −8.42572 8.42572i −0.335955 0.335955i
\(630\) 0 0
\(631\) 37.9511 + 10.1690i 1.51081 + 0.404820i 0.916704 0.399567i \(-0.130839\pi\)
0.594106 + 0.804387i \(0.297506\pi\)
\(632\) 0 0
\(633\) 2.59317 + 4.49151i 0.103069 + 0.178521i
\(634\) 0 0
\(635\) 15.3145 4.10351i 0.607738 0.162843i
\(636\) 0 0
\(637\) −4.85401 + 7.60880i −0.192323 + 0.301472i
\(638\) 0 0
\(639\) 7.12580 1.90935i 0.281892 0.0755328i
\(640\) 0 0
\(641\) 30.9704 17.8808i 1.22326 0.706248i 0.257647 0.966239i \(-0.417053\pi\)
0.965611 + 0.259991i \(0.0837196\pi\)
\(642\) 0 0
\(643\) 38.3465 + 10.2749i 1.51224 + 0.405203i 0.917178 0.398477i \(-0.130461\pi\)
0.595061 + 0.803680i \(0.297128\pi\)
\(644\) 0 0
\(645\) 13.7648 13.7648i 0.541987 0.541987i
\(646\) 0 0
\(647\) 10.7499 18.6195i 0.422624 0.732006i −0.573571 0.819156i \(-0.694442\pi\)
0.996195 + 0.0871493i \(0.0277757\pi\)
\(648\) 0 0
\(649\) 0.132359i 0.00519554i
\(650\) 0 0
\(651\) −40.9649 −1.60554
\(652\) 0 0
\(653\) 35.0221 + 20.2200i 1.37052 + 0.791270i 0.990993 0.133911i \(-0.0427538\pi\)
0.379526 + 0.925181i \(0.376087\pi\)
\(654\) 0 0
\(655\) 24.2773 + 24.2773i 0.948594 + 0.948594i
\(656\) 0 0
\(657\) 1.55991 5.82168i 0.0608580 0.227125i
\(658\) 0 0
\(659\) 19.3441 + 33.5049i 0.753539 + 1.30517i 0.946098 + 0.323882i \(0.104988\pi\)
−0.192559 + 0.981285i \(0.561679\pi\)
\(660\) 0 0
\(661\) 6.62710 + 24.7327i 0.257764 + 0.961990i 0.966532 + 0.256548i \(0.0825851\pi\)
−0.708767 + 0.705443i \(0.750748\pi\)
\(662\) 0 0
\(663\) 8.15864 + 0.361307i 0.316855 + 0.0140320i
\(664\) 0 0
\(665\) −11.8562 44.2481i −0.459766 1.71587i
\(666\) 0 0
\(667\) −2.83640 + 1.63760i −0.109826 + 0.0634080i
\(668\) 0 0
\(669\) −8.85771 + 33.0574i −0.342459 + 1.27807i
\(670\) 0 0
\(671\) 5.31309 5.31309i 0.205109 0.205109i
\(672\) 0 0
\(673\) −14.8421 8.56910i −0.572121 0.330314i 0.185875 0.982573i \(-0.440488\pi\)
−0.757996 + 0.652259i \(0.773821\pi\)
\(674\) 0 0
\(675\) 1.85056i 0.0712280i
\(676\) 0 0
\(677\) 3.78614i 0.145513i −0.997350 0.0727565i \(-0.976820\pi\)
0.997350 0.0727565i \(-0.0231796\pi\)
\(678\) 0 0
\(679\) −29.5439 17.0572i −1.13379 0.654595i
\(680\) 0 0
\(681\) −15.4326 + 15.4326i −0.591378 + 0.591378i
\(682\) 0 0
\(683\) −6.18965 + 23.1001i −0.236840 + 0.883900i 0.740470 + 0.672089i \(0.234603\pi\)
−0.977311 + 0.211811i \(0.932064\pi\)
\(684\) 0 0
\(685\) −18.6908 + 10.7911i −0.714139 + 0.412309i
\(686\) 0 0
\(687\) 8.38872 + 31.3071i 0.320050 + 1.19444i
\(688\) 0 0
\(689\) −7.79674 0.345280i −0.297032 0.0131541i
\(690\) 0 0
\(691\) −8.71060 32.5084i −0.331367 1.23668i −0.907755 0.419502i \(-0.862205\pi\)
0.576388 0.817176i \(-0.304462\pi\)
\(692\) 0 0
\(693\) 0.616169 + 1.06724i 0.0234063 + 0.0405409i
\(694\) 0 0
\(695\) −1.39212 + 5.19547i −0.0528062 + 0.197076i
\(696\) 0 0
\(697\) −10.4096 10.4096i −0.394290 0.394290i
\(698\) 0 0
\(699\) −19.9129 11.4967i −0.753173 0.434845i
\(700\) 0 0
\(701\) 42.4122 1.60189 0.800943 0.598741i \(-0.204332\pi\)
0.800943 + 0.598741i \(0.204332\pi\)
\(702\) 0 0
\(703\) 67.5930i 2.54932i
\(704\) 0 0
\(705\) −11.9742 + 20.7399i −0.450973 + 0.781109i
\(706\) 0 0
\(707\) −9.67242 + 9.67242i −0.363769 + 0.363769i
\(708\) 0 0
\(709\) −16.5841 4.44369i −0.622828 0.166886i −0.0664152 0.997792i \(-0.521156\pi\)
−0.556413 + 0.830906i \(0.687823\pi\)
\(710\) 0 0
\(711\) −2.46349 + 1.42230i −0.0923880 + 0.0533402i
\(712\) 0 0
\(713\) 6.00105 1.60798i 0.224741 0.0602192i
\(714\) 0 0
\(715\) 3.73027 5.84731i 0.139504 0.218677i
\(716\) 0 0
\(717\) 29.9747 8.03169i 1.11942 0.299949i
\(718\) 0 0
\(719\) −12.9144 22.3684i −0.481625 0.834199i 0.518152 0.855288i \(-0.326620\pi\)
−0.999778 + 0.0210891i \(0.993287\pi\)
\(720\) 0 0
\(721\) −18.5812 4.97882i −0.692000 0.185421i
\(722\) 0 0
\(723\) −21.1707 21.1707i −0.787347 0.787347i
\(724\) 0 0
\(725\) 0.736504 1.27566i 0.0273531 0.0473769i
\(726\) 0 0
\(727\) −20.4783 −0.759499 −0.379749 0.925089i \(-0.623990\pi\)
−0.379749 + 0.925089i \(0.623990\pi\)
\(728\) 0 0
\(729\) 21.8789 0.810328
\(730\) 0 0
\(731\) 2.97957 5.16077i 0.110203 0.190878i
\(732\) 0 0
\(733\) 3.94018 + 3.94018i 0.145534 + 0.145534i 0.776120 0.630586i \(-0.217185\pi\)
−0.630586 + 0.776120i \(0.717185\pi\)
\(734\) 0 0
\(735\) 9.63684 + 2.58218i 0.355460 + 0.0952452i
\(736\) 0 0
\(737\) 0.731306 + 1.26666i 0.0269380 + 0.0466580i
\(738\) 0 0
\(739\) 7.07345 1.89532i 0.260201 0.0697206i −0.126360 0.991984i \(-0.540329\pi\)
0.386561 + 0.922264i \(0.373663\pi\)
\(740\) 0 0
\(741\) −31.2760 34.1744i −1.14895 1.25543i
\(742\) 0 0
\(743\) −18.7680 + 5.02887i −0.688530 + 0.184491i −0.586088 0.810248i \(-0.699333\pi\)
−0.102443 + 0.994739i \(0.532666\pi\)
\(744\) 0 0
\(745\) −9.13688 + 5.27518i −0.334750 + 0.193268i
\(746\) 0 0
\(747\) 2.15306 + 0.576911i 0.0787764 + 0.0211081i
\(748\) 0 0
\(749\) −3.08118 + 3.08118i −0.112584 + 0.112584i
\(750\) 0 0
\(751\) −1.09140 + 1.89037i −0.0398259 + 0.0689805i −0.885251 0.465113i \(-0.846014\pi\)
0.845425 + 0.534094i \(0.179347\pi\)
\(752\) 0 0
\(753\) 32.1884i 1.17301i
\(754\) 0 0
\(755\) 21.0320 0.765433
\(756\) 0 0
\(757\) 30.6174 + 17.6769i 1.11281 + 0.642479i 0.939555 0.342398i \(-0.111239\pi\)
0.173252 + 0.984878i \(0.444572\pi\)
\(758\) 0 0
\(759\) −1.02075 1.02075i −0.0370510 0.0370510i
\(760\) 0 0
\(761\) −12.7004 + 47.3984i −0.460388 + 1.71819i 0.211356 + 0.977409i \(0.432212\pi\)
−0.671744 + 0.740783i \(0.734455\pi\)
\(762\) 0 0
\(763\) −2.09309 3.62534i −0.0757749 0.131246i
\(764\) 0 0
\(765\) −0.302507 1.12897i −0.0109372 0.0408181i
\(766\) 0 0
\(767\) −0.507885 0.160483i −0.0183386 0.00579472i
\(768\) 0 0
\(769\) 9.20326 + 34.3470i 0.331878 + 1.23859i 0.907214 + 0.420669i \(0.138205\pi\)
−0.575336 + 0.817917i \(0.695129\pi\)
\(770\) 0 0
\(771\) 28.5639 16.4914i 1.02870 0.593923i
\(772\) 0 0
\(773\) −2.31295 + 8.63204i −0.0831910 + 0.310473i −0.994965 0.100218i \(-0.968046\pi\)
0.911775 + 0.410691i \(0.134713\pi\)
\(774\) 0 0
\(775\) −1.97577 + 1.97577i −0.0709718 + 0.0709718i
\(776\) 0 0
\(777\) −48.4007 27.9442i −1.73637 1.00249i
\(778\) 0 0
\(779\) 83.5078i 2.99198i
\(780\) 0 0
\(781\) 14.8143i 0.530097i
\(782\) 0 0
\(783\) 15.4936 + 8.94525i 0.553697 + 0.319677i
\(784\) 0 0
\(785\) 27.3871 27.3871i 0.977488 0.977488i
\(786\) 0 0
\(787\) −0.134667 + 0.502585i −0.00480037 + 0.0179152i −0.968284 0.249850i \(-0.919619\pi\)
0.963484 + 0.267766i \(0.0862853\pi\)
\(788\) 0 0
\(789\) 25.2782 14.5944i 0.899928 0.519574i
\(790\) 0 0
\(791\) 2.44148 + 9.11174i 0.0868092 + 0.323976i
\(792\) 0 0
\(793\) −13.9452 26.8293i −0.495209 0.952737i
\(794\) 0 0
\(795\) 2.23288 + 8.33323i 0.0791922 + 0.295549i
\(796\) 0 0
\(797\) −26.5438 45.9751i −0.940228 1.62852i −0.765035 0.643989i \(-0.777278\pi\)
−0.175193 0.984534i \(-0.556055\pi\)
\(798\) 0 0
\(799\) −1.89746 + 7.08140i −0.0671271 + 0.250522i
\(800\) 0 0
\(801\) −3.04941 3.04941i −0.107745 0.107745i
\(802\) 0 0
\(803\) −10.4816 6.05153i −0.369886 0.213554i
\(804\) 0 0
\(805\) −5.74438 −0.202463
\(806\) 0 0
\(807\) 43.7080i 1.53859i
\(808\) 0 0
\(809\) −0.520277 + 0.901146i −0.0182920 + 0.0316826i −0.875026 0.484075i \(-0.839156\pi\)
0.856735 + 0.515758i \(0.172490\pi\)
\(810\) 0 0
\(811\) 37.2714 37.2714i 1.30878 1.30878i 0.386479 0.922298i \(-0.373691\pi\)
0.922298 0.386479i \(-0.126309\pi\)
\(812\) 0 0
\(813\) −21.8770 5.86193i −0.767261 0.205587i
\(814\) 0 0
\(815\) 12.3050 7.10427i 0.431024 0.248852i
\(816\) 0 0
\(817\) −32.6518 + 8.74903i −1.14234 + 0.306090i
\(818\) 0 0
\(819\) 4.84227 1.07034i 0.169203 0.0374007i
\(820\) 0 0
\(821\) −35.4311 + 9.49372i −1.23655 + 0.331333i −0.817128 0.576457i \(-0.804435\pi\)
−0.419425 + 0.907790i \(0.637768\pi\)
\(822\) 0 0
\(823\) −5.46329 9.46269i −0.190438 0.329849i 0.754957 0.655774i \(-0.227658\pi\)
−0.945396 + 0.325925i \(0.894324\pi\)
\(824\) 0 0
\(825\) 0.627117 + 0.168035i 0.0218334 + 0.00585024i
\(826\) 0 0
\(827\) 7.38922 + 7.38922i 0.256948 + 0.256948i 0.823812 0.566864i \(-0.191843\pi\)
−0.566864 + 0.823812i \(0.691843\pi\)
\(828\) 0 0
\(829\) −9.96688 + 17.2631i −0.346164 + 0.599574i −0.985565 0.169300i \(-0.945849\pi\)
0.639401 + 0.768874i \(0.279183\pi\)
\(830\) 0 0
\(831\) 3.07551 0.106688
\(832\) 0 0
\(833\) 3.05415 0.105820
\(834\) 0 0
\(835\) −12.4745 + 21.6065i −0.431698 + 0.747723i
\(836\) 0 0
\(837\) −23.9969 23.9969i −0.829453 0.829453i
\(838\) 0 0
\(839\) −46.7341 12.5224i −1.61344 0.432320i −0.664375 0.747399i \(-0.731302\pi\)
−0.949065 + 0.315079i \(0.897969\pi\)
\(840\) 0 0
\(841\) −7.37975 12.7821i −0.254474 0.440762i
\(842\) 0 0
\(843\) 22.8777 6.13007i 0.787951 0.211131i
\(844\) 0 0
\(845\) −17.9143 21.4035i −0.616270 0.736304i
\(846\) 0 0
\(847\) −30.3641 + 8.13603i −1.04332 + 0.279557i
\(848\) 0 0
\(849\) 34.7064 20.0378i 1.19112 0.687694i
\(850\) 0 0
\(851\) 8.18724 + 2.19376i 0.280655 + 0.0752012i
\(852\) 0 0
\(853\) −0.897526 + 0.897526i −0.0307307 + 0.0307307i −0.722305 0.691574i \(-0.756917\pi\)
0.691574 + 0.722305i \(0.256917\pi\)
\(854\) 0 0
\(855\) −3.31504 + 5.74183i −0.113372 + 0.196366i
\(856\) 0 0
\(857\) 11.9475i 0.408120i 0.978958 + 0.204060i \(0.0654137\pi\)
−0.978958 + 0.204060i \(0.934586\pi\)
\(858\) 0 0
\(859\) −46.0184 −1.57013 −0.785065 0.619414i \(-0.787370\pi\)
−0.785065 + 0.619414i \(0.787370\pi\)
\(860\) 0 0
\(861\) −59.7968 34.5237i −2.03787 1.17656i
\(862\) 0 0
\(863\) −15.2947 15.2947i −0.520639 0.520639i 0.397125 0.917764i \(-0.370008\pi\)
−0.917764 + 0.397125i \(0.870008\pi\)
\(864\) 0 0
\(865\) −7.18882 + 26.8290i −0.244427 + 0.912215i
\(866\) 0 0
\(867\) 14.3975 + 24.9372i 0.488964 + 0.846911i
\(868\) 0 0
\(869\) 1.47845 + 5.51766i 0.0501530 + 0.187174i
\(870\) 0 0
\(871\) 5.74710 1.27034i 0.194733 0.0430440i
\(872\) 0 0
\(873\) 1.27792 + 4.76925i 0.0432509 + 0.161415i
\(874\) 0 0
\(875\) 30.8969 17.8383i 1.04451 0.603046i
\(876\) 0 0
\(877\) 4.34149 16.2027i 0.146602 0.547125i −0.853077 0.521785i \(-0.825266\pi\)
0.999679 0.0253405i \(-0.00806700\pi\)
\(878\) 0 0
\(879\) −31.1574 + 31.1574i −1.05091 + 1.05091i
\(880\) 0 0
\(881\) −11.9739 6.91316i −0.403412 0.232910i 0.284543 0.958663i \(-0.408158\pi\)
−0.687955 + 0.725753i \(0.741491\pi\)
\(882\) 0 0
\(883\) 9.15740i 0.308171i 0.988058 + 0.154086i \(0.0492431\pi\)
−0.988058 + 0.154086i \(0.950757\pi\)
\(884\) 0 0
\(885\) 0.588792i 0.0197920i
\(886\) 0 0
\(887\) −23.0479 13.3067i −0.773873 0.446796i 0.0603813 0.998175i \(-0.480768\pi\)
−0.834255 + 0.551379i \(0.814102\pi\)
\(888\) 0 0
\(889\) 16.0970 16.0970i 0.539875 0.539875i
\(890\) 0 0
\(891\) −2.35128 + 8.77509i −0.0787708 + 0.293976i
\(892\) 0 0
\(893\) 36.0152 20.7934i 1.20520 0.695824i
\(894\) 0 0
\(895\) 2.92749 + 10.9255i 0.0978551 + 0.365200i
\(896\) 0 0
\(897\) −5.15447 + 2.67917i −0.172103 + 0.0894548i
\(898\) 0 0
\(899\) −6.99146 26.0925i −0.233178 0.870233i
\(900\) 0 0
\(901\) 1.32050 + 2.28718i 0.0439923 + 0.0761970i
\(902\) 0 0
\(903\) 7.23402 26.9977i 0.240733 0.898428i
\(904\) 0 0
\(905\) 19.3967 + 19.3967i 0.644769 + 0.644769i
\(906\) 0 0
\(907\) 24.0477 + 13.8839i 0.798490 + 0.461008i 0.842943 0.538003i \(-0.180821\pi\)
−0.0444530 + 0.999011i \(0.514154\pi\)
\(908\) 0 0
\(909\) 1.97979 0.0656654
\(910\) 0 0
\(911\) 49.1603i 1.62875i −0.580336 0.814377i \(-0.697079\pi\)
0.580336 0.814377i \(-0.302921\pi\)
\(912\) 0 0
\(913\) 2.23807 3.87645i 0.0740693 0.128292i
\(914\) 0 0
\(915\) −23.6350 + 23.6350i −0.781350 + 0.781350i
\(916\) 0 0
\(917\) 47.6167 + 12.7589i 1.57244 + 0.421334i
\(918\) 0 0
\(919\) 1.24049 0.716196i 0.0409199 0.0236251i −0.479400 0.877596i \(-0.659146\pi\)
0.520320 + 0.853971i \(0.325813\pi\)
\(920\) 0 0
\(921\) 8.02570 2.15048i 0.264456 0.0708607i
\(922\) 0 0
\(923\) −56.8452 17.9622i −1.87108 0.591232i
\(924\) 0 0
\(925\) −3.68218 + 0.986638i −0.121069 + 0.0324405i
\(926\) 0 0
\(927\) 1.39209 + 2.41118i 0.0457224 + 0.0791935i
\(928\) 0 0
\(929\) −21.5871 5.78426i −0.708251 0.189775i −0.113328 0.993558i \(-0.536151\pi\)
−0.594924 + 0.803782i \(0.702818\pi\)
\(930\) 0 0
\(931\) −12.2505 12.2505i −0.401495 0.401495i
\(932\) 0 0
\(933\) −18.8231 + 32.6025i −0.616239 + 1.06736i
\(934\) 0 0
\(935\) −2.34710 −0.0767582
\(936\) 0 0
\(937\) 13.0538 0.426448 0.213224 0.977003i \(-0.431604\pi\)
0.213224 + 0.977003i \(0.431604\pi\)
\(938\) 0 0
\(939\) −2.01308 + 3.48676i −0.0656945 + 0.113786i
\(940\) 0 0
\(941\) 16.6807 + 16.6807i 0.543777 + 0.543777i 0.924634 0.380857i \(-0.124371\pi\)
−0.380857 + 0.924634i \(0.624371\pi\)
\(942\) 0 0
\(943\) 10.1149 + 2.71029i 0.329387 + 0.0882591i
\(944\) 0 0
\(945\) 15.6891 + 27.1743i 0.510367 + 0.883982i
\(946\) 0 0
\(947\) −53.5470 + 14.3479i −1.74004 + 0.466243i −0.982456 0.186493i \(-0.940288\pi\)
−0.757586 + 0.652735i \(0.773621\pi\)
\(948\) 0 0
\(949\) −35.9296 + 32.8823i −1.16632 + 1.06740i
\(950\) 0 0
\(951\) −32.8463 + 8.80114i −1.06511 + 0.285396i
\(952\) 0 0
\(953\) −0.170196 + 0.0982626i −0.00551318 + 0.00318304i −0.502754 0.864429i \(-0.667680\pi\)
0.497241 + 0.867613i \(0.334347\pi\)
\(954\) 0 0
\(955\) 11.4183 + 3.05953i 0.369488 + 0.0990040i
\(956\) 0 0
\(957\) −4.43823 + 4.43823i −0.143467 + 0.143467i
\(958\) 0 0
\(959\) −15.4941 + 26.8366i −0.500331 + 0.866599i
\(960\) 0 0
\(961\) 20.2411i 0.652939i
\(962\) 0 0
\(963\) 0.630667 0.0203230
\(964\) 0 0
\(965\) −5.83454 3.36857i −0.187820 0.108438i
\(966\) 0 0
\(967\) 8.39214 + 8.39214i 0.269873 + 0.269873i 0.829049 0.559176i \(-0.188882\pi\)
−0.559176 + 0.829049i \(0.688882\pi\)
\(968\) 0 0
\(969\) −4.05742 + 15.1425i −0.130343 + 0.486447i
\(970\) 0 0
\(971\) 4.01139 + 6.94792i 0.128731 + 0.222969i 0.923185 0.384355i \(-0.125576\pi\)
−0.794454 + 0.607324i \(0.792243\pi\)
\(972\) 0 0
\(973\) 1.99884 + 7.45976i 0.0640797 + 0.239149i
\(974\) 0 0
\(975\) 1.40515 2.20262i 0.0450009 0.0705403i
\(976\) 0 0
\(977\) −10.4415 38.9682i −0.334053 1.24670i −0.904892 0.425641i \(-0.860049\pi\)
0.570839 0.821062i \(-0.306618\pi\)
\(978\) 0 0
\(979\) −7.49984 + 4.33004i −0.239696 + 0.138389i
\(980\) 0 0
\(981\) −0.156813 + 0.585234i −0.00500666 + 0.0186851i
\(982\) 0 0
\(983\) −19.1993 + 19.1993i −0.612363 + 0.612363i −0.943561 0.331198i \(-0.892547\pi\)
0.331198 + 0.943561i \(0.392547\pi\)
\(984\) 0 0
\(985\) 11.9373 + 6.89201i 0.380354 + 0.219598i
\(986\) 0 0
\(987\) 34.3855i 1.09450i
\(988\) 0 0
\(989\) 4.23892i 0.134790i
\(990\) 0 0
\(991\) 22.0555 + 12.7338i 0.700616 + 0.404501i 0.807577 0.589762i \(-0.200779\pi\)
−0.106961 + 0.994263i \(0.534112\pi\)
\(992\) 0 0
\(993\) 2.35180 2.35180i 0.0746321 0.0746321i
\(994\) 0 0
\(995\) −9.16316 + 34.1974i −0.290492 + 1.08413i
\(996\) 0 0
\(997\) −10.7663 + 6.21593i −0.340972 + 0.196860i −0.660702 0.750648i \(-0.729741\pi\)
0.319730 + 0.947509i \(0.396408\pi\)
\(998\) 0 0
\(999\) −11.9833 44.7222i −0.379134 1.41495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.bk.a.175.10 48
4.3 odd 2 104.2.u.a.19.6 yes 48
8.3 odd 2 inner 416.2.bk.a.175.9 48
8.5 even 2 104.2.u.a.19.9 yes 48
12.11 even 2 936.2.ed.d.19.7 48
13.11 odd 12 inner 416.2.bk.a.271.9 48
24.5 odd 2 936.2.ed.d.19.4 48
52.11 even 12 104.2.u.a.11.9 yes 48
104.11 even 12 inner 416.2.bk.a.271.10 48
104.37 odd 12 104.2.u.a.11.6 48
156.11 odd 12 936.2.ed.d.739.4 48
312.245 even 12 936.2.ed.d.739.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.u.a.11.6 48 104.37 odd 12
104.2.u.a.11.9 yes 48 52.11 even 12
104.2.u.a.19.6 yes 48 4.3 odd 2
104.2.u.a.19.9 yes 48 8.5 even 2
416.2.bk.a.175.9 48 8.3 odd 2 inner
416.2.bk.a.175.10 48 1.1 even 1 trivial
416.2.bk.a.271.9 48 13.11 odd 12 inner
416.2.bk.a.271.10 48 104.11 even 12 inner
936.2.ed.d.19.4 48 24.5 odd 2
936.2.ed.d.19.7 48 12.11 even 2
936.2.ed.d.739.4 48 156.11 odd 12
936.2.ed.d.739.7 48 312.245 even 12