Properties

Label 416.2.bi.a.99.9
Level $416$
Weight $2$
Character 416.99
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(99,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bi (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 99.9
Character \(\chi\) \(=\) 416.99
Dual form 416.2.bi.a.395.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26157 + 0.639092i) q^{2} +(0.429027 - 1.03576i) q^{3} +(1.18312 - 1.61252i) q^{4} +(1.40552 - 3.39324i) q^{5} +(0.120699 + 1.58087i) q^{6} +2.38266 q^{7} +(-0.462046 + 2.79043i) q^{8} +(1.23258 + 1.23258i) q^{9} +O(q^{10})\) \(q+(-1.26157 + 0.639092i) q^{2} +(0.429027 - 1.03576i) q^{3} +(1.18312 - 1.61252i) q^{4} +(1.40552 - 3.39324i) q^{5} +(0.120699 + 1.58087i) q^{6} +2.38266 q^{7} +(-0.462046 + 2.79043i) q^{8} +(1.23258 + 1.23258i) q^{9} +(0.395421 + 5.17907i) q^{10} +(3.44283 + 1.42607i) q^{11} +(-1.16260 - 1.91725i) q^{12} +(-3.20025 + 1.66085i) q^{13} +(-3.00590 + 1.52274i) q^{14} +(-2.91158 - 2.91158i) q^{15} +(-1.20044 - 3.81562i) q^{16} +3.06980 q^{17} +(-2.34272 - 0.767256i) q^{18} +(-1.55780 - 3.76086i) q^{19} +(-3.80875 - 6.28105i) q^{20} +(1.02223 - 2.46787i) q^{21} +(-5.25477 + 0.401200i) q^{22} +(3.15599 + 3.15599i) q^{23} +(2.69199 + 1.67574i) q^{24} +(-6.00302 - 6.00302i) q^{25} +(2.97590 - 4.14053i) q^{26} +(4.91276 - 2.03493i) q^{27} +(2.81898 - 3.84209i) q^{28} +(-8.62991 - 3.57463i) q^{29} +(5.53393 + 1.81240i) q^{30} +(-4.07986 + 4.07986i) q^{31} +(3.95297 + 4.04648i) q^{32} +(2.95413 - 2.95413i) q^{33} +(-3.87277 + 1.96189i) q^{34} +(3.34889 - 8.08493i) q^{35} +(3.44586 - 0.529266i) q^{36} +(1.87551 + 0.776862i) q^{37} +(4.36881 + 3.74902i) q^{38} +(0.347256 + 4.02724i) q^{39} +(8.81918 + 5.48985i) q^{40} +10.2537i q^{41} +(0.287586 + 3.76669i) q^{42} +(-6.91918 + 2.86602i) q^{43} +(6.37286 - 3.86442i) q^{44} +(5.91487 - 2.45002i) q^{45} +(-5.99847 - 1.96454i) q^{46} +(7.60062 - 7.60062i) q^{47} +(-4.46709 - 0.393632i) q^{48} -1.32292 q^{49} +(11.4097 + 3.73676i) q^{50} +(1.31703 - 3.17958i) q^{51} +(-1.10813 + 7.12545i) q^{52} +(-7.12120 + 2.94970i) q^{53} +(-4.89728 + 5.70691i) q^{54} +(9.67797 - 9.67797i) q^{55} +(-1.10090 + 6.64866i) q^{56} -4.56369 q^{57} +(13.1718 - 1.00566i) q^{58} +(3.51986 - 8.49769i) q^{59} +(-8.13973 + 1.25022i) q^{60} +(-10.2361 - 4.23994i) q^{61} +(2.53963 - 7.75445i) q^{62} +(2.93682 + 2.93682i) q^{63} +(-7.57303 - 2.57861i) q^{64} +(1.13764 + 13.1936i) q^{65} +(-1.83889 + 5.61481i) q^{66} +(4.84130 - 2.00533i) q^{67} +(3.63195 - 4.95012i) q^{68} +(4.62285 - 1.91485i) q^{69} +(0.942154 + 12.3400i) q^{70} -4.48341i q^{71} +(-4.00895 + 2.86993i) q^{72} +0.732692 q^{73} +(-2.86258 + 0.218557i) q^{74} +(-8.79316 + 3.64225i) q^{75} +(-7.90753 - 1.93758i) q^{76} +(8.20310 + 3.39784i) q^{77} +(-3.01187 - 4.85872i) q^{78} -4.32011 q^{79} +(-14.6345 - 1.28957i) q^{80} -0.732083i q^{81} +(-6.55304 - 12.9357i) q^{82} +(4.10599 + 9.91274i) q^{83} +(-2.77007 - 4.56815i) q^{84} +(4.31468 - 10.4166i) q^{85} +(6.89739 - 8.03768i) q^{86} +(-7.40492 + 7.40492i) q^{87} +(-5.57009 + 8.94808i) q^{88} +16.8830i q^{89} +(-5.89624 + 6.87101i) q^{90} +(-7.62510 + 3.95725i) q^{91} +(8.82301 - 1.35517i) q^{92} +(2.47540 + 5.97614i) q^{93} +(-4.73123 + 14.4462i) q^{94} -14.9510 q^{95} +(5.88712 - 2.35829i) q^{96} +(-9.98019 - 9.98019i) q^{97} +(1.66896 - 0.845471i) q^{98} +(2.48583 + 6.00132i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9} - 4 q^{11} + 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} + 4 q^{18} - 4 q^{19} - 20 q^{20} - 16 q^{21} - 24 q^{22} + 28 q^{24} - 4 q^{26} - 8 q^{27} - 24 q^{28} - 8 q^{29} + 16 q^{30} - 4 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} + 20 q^{39} - 8 q^{40} - 48 q^{42} + 32 q^{43} - 20 q^{44} + 4 q^{45} - 24 q^{46} - 8 q^{47} - 8 q^{48} + 168 q^{49} + 20 q^{50} - 4 q^{52} - 8 q^{53} + 20 q^{54} - 40 q^{55} - 56 q^{56} - 8 q^{57} + 32 q^{58} + 4 q^{59} - 36 q^{60} - 8 q^{61} - 72 q^{62} - 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} - 4 q^{70} + 56 q^{72} - 8 q^{73} - 8 q^{74} - 4 q^{76} - 56 q^{77} - 136 q^{78} - 16 q^{79} + 28 q^{80} + 88 q^{82} - 44 q^{83} + 44 q^{84} - 24 q^{85} + 64 q^{86} - 8 q^{87} - 64 q^{88} + 64 q^{90} + 16 q^{91} - 8 q^{92} + 56 q^{93} - 56 q^{94} - 28 q^{96} - 8 q^{97} - 76 q^{98} - 116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26157 + 0.639092i −0.892065 + 0.451906i
\(3\) 0.429027 1.03576i 0.247699 0.597997i −0.750309 0.661087i \(-0.770095\pi\)
0.998008 + 0.0630897i \(0.0200954\pi\)
\(4\) 1.18312 1.61252i 0.591562 0.806260i
\(5\) 1.40552 3.39324i 0.628570 1.51750i −0.212830 0.977089i \(-0.568268\pi\)
0.841400 0.540412i \(-0.181732\pi\)
\(6\) 0.120699 + 1.58087i 0.0492753 + 0.645389i
\(7\) 2.38266 0.900561 0.450281 0.892887i \(-0.351324\pi\)
0.450281 + 0.892887i \(0.351324\pi\)
\(8\) −0.462046 + 2.79043i −0.163358 + 0.986567i
\(9\) 1.23258 + 1.23258i 0.410861 + 0.410861i
\(10\) 0.395421 + 5.17907i 0.125043 + 1.63777i
\(11\) 3.44283 + 1.42607i 1.03805 + 0.429976i 0.835613 0.549319i \(-0.185113\pi\)
0.202440 + 0.979295i \(0.435113\pi\)
\(12\) −1.16260 1.91725i −0.335612 0.553462i
\(13\) −3.20025 + 1.66085i −0.887588 + 0.460637i
\(14\) −3.00590 + 1.52274i −0.803360 + 0.406969i
\(15\) −2.91158 2.91158i −0.751766 0.751766i
\(16\) −1.20044 3.81562i −0.300110 0.953905i
\(17\) 3.06980 0.744536 0.372268 0.928125i \(-0.378580\pi\)
0.372268 + 0.928125i \(0.378580\pi\)
\(18\) −2.34272 0.767256i −0.552185 0.180844i
\(19\) −1.55780 3.76086i −0.357384 0.862801i −0.995666 0.0929985i \(-0.970355\pi\)
0.638283 0.769802i \(-0.279645\pi\)
\(20\) −3.80875 6.28105i −0.851663 1.40449i
\(21\) 1.02223 2.46787i 0.223068 0.538533i
\(22\) −5.25477 + 0.401200i −1.12032 + 0.0855362i
\(23\) 3.15599 + 3.15599i 0.658069 + 0.658069i 0.954923 0.296854i \(-0.0959375\pi\)
−0.296854 + 0.954923i \(0.595938\pi\)
\(24\) 2.69199 + 1.67574i 0.549501 + 0.342059i
\(25\) −6.00302 6.00302i −1.20060 1.20060i
\(26\) 2.97590 4.14053i 0.583622 0.812025i
\(27\) 4.91276 2.03493i 0.945460 0.391623i
\(28\) 2.81898 3.84209i 0.532737 0.726086i
\(29\) −8.62991 3.57463i −1.60253 0.663792i −0.610763 0.791813i \(-0.709137\pi\)
−0.991771 + 0.128022i \(0.959137\pi\)
\(30\) 5.53393 + 1.81240i 1.01035 + 0.330897i
\(31\) −4.07986 + 4.07986i −0.732765 + 0.732765i −0.971167 0.238402i \(-0.923377\pi\)
0.238402 + 0.971167i \(0.423377\pi\)
\(32\) 3.95297 + 4.04648i 0.698793 + 0.715324i
\(33\) 2.95413 2.95413i 0.514248 0.514248i
\(34\) −3.87277 + 1.96189i −0.664175 + 0.336461i
\(35\) 3.34889 8.08493i 0.566066 1.36660i
\(36\) 3.44586 0.529266i 0.574310 0.0882111i
\(37\) 1.87551 + 0.776862i 0.308332 + 0.127715i 0.531484 0.847068i \(-0.321635\pi\)
−0.223152 + 0.974784i \(0.571635\pi\)
\(38\) 4.36881 + 3.74902i 0.708715 + 0.608171i
\(39\) 0.347256 + 4.02724i 0.0556055 + 0.644875i
\(40\) 8.81918 + 5.48985i 1.39444 + 0.868022i
\(41\) 10.2537i 1.60136i 0.599095 + 0.800678i \(0.295527\pi\)
−0.599095 + 0.800678i \(0.704473\pi\)
\(42\) 0.287586 + 3.76669i 0.0443755 + 0.581213i
\(43\) −6.91918 + 2.86602i −1.05516 + 0.437064i −0.841733 0.539894i \(-0.818464\pi\)
−0.213432 + 0.976958i \(0.568464\pi\)
\(44\) 6.37286 3.86442i 0.960744 0.582583i
\(45\) 5.91487 2.45002i 0.881736 0.365227i
\(46\) −5.99847 1.96454i −0.884426 0.289655i
\(47\) 7.60062 7.60062i 1.10867 1.10867i 0.115339 0.993326i \(-0.463205\pi\)
0.993326 0.115339i \(-0.0367954\pi\)
\(48\) −4.46709 0.393632i −0.644769 0.0568159i
\(49\) −1.32292 −0.188989
\(50\) 11.4097 + 3.73676i 1.61358 + 0.528457i
\(51\) 1.31703 3.17958i 0.184421 0.445231i
\(52\) −1.10813 + 7.12545i −0.153670 + 0.988122i
\(53\) −7.12120 + 2.94970i −0.978173 + 0.405172i −0.813748 0.581217i \(-0.802577\pi\)
−0.164424 + 0.986390i \(0.552577\pi\)
\(54\) −4.89728 + 5.70691i −0.666436 + 0.776612i
\(55\) 9.67797 9.67797i 1.30498 1.30498i
\(56\) −1.10090 + 6.64866i −0.147114 + 0.888464i
\(57\) −4.56369 −0.604476
\(58\) 13.1718 1.00566i 1.72954 0.132050i
\(59\) 3.51986 8.49769i 0.458247 1.10631i −0.510860 0.859664i \(-0.670673\pi\)
0.969107 0.246641i \(-0.0793269\pi\)
\(60\) −8.13973 + 1.25022i −1.05083 + 0.161403i
\(61\) −10.2361 4.23994i −1.31060 0.542868i −0.385541 0.922691i \(-0.625985\pi\)
−0.925059 + 0.379823i \(0.875985\pi\)
\(62\) 2.53963 7.75445i 0.322533 0.984816i
\(63\) 2.93682 + 2.93682i 0.370005 + 0.370005i
\(64\) −7.57303 2.57861i −0.946628 0.322327i
\(65\) 1.13764 + 13.1936i 0.141107 + 1.63646i
\(66\) −1.83889 + 5.61481i −0.226351 + 0.691135i
\(67\) 4.84130 2.00533i 0.591458 0.244990i −0.0668195 0.997765i \(-0.521285\pi\)
0.658278 + 0.752775i \(0.271285\pi\)
\(68\) 3.63195 4.95012i 0.440439 0.600290i
\(69\) 4.62285 1.91485i 0.556526 0.230521i
\(70\) 0.942154 + 12.3400i 0.112609 + 1.47491i
\(71\) 4.48341i 0.532083i −0.963962 0.266041i \(-0.914284\pi\)
0.963962 0.266041i \(-0.0857158\pi\)
\(72\) −4.00895 + 2.86993i −0.472459 + 0.338224i
\(73\) 0.732692 0.0857551 0.0428775 0.999080i \(-0.486347\pi\)
0.0428775 + 0.999080i \(0.486347\pi\)
\(74\) −2.86258 + 0.218557i −0.332768 + 0.0254067i
\(75\) −8.79316 + 3.64225i −1.01535 + 0.420570i
\(76\) −7.90753 1.93758i −0.907056 0.222256i
\(77\) 8.20310 + 3.39784i 0.934830 + 0.387219i
\(78\) −3.01187 4.85872i −0.341027 0.550142i
\(79\) −4.32011 −0.486051 −0.243025 0.970020i \(-0.578140\pi\)
−0.243025 + 0.970020i \(0.578140\pi\)
\(80\) −14.6345 1.28957i −1.63619 0.144178i
\(81\) 0.732083i 0.0813426i
\(82\) −6.55304 12.9357i −0.723663 1.42851i
\(83\) 4.10599 + 9.91274i 0.450691 + 1.08806i 0.972060 + 0.234733i \(0.0754216\pi\)
−0.521369 + 0.853331i \(0.674578\pi\)
\(84\) −2.77007 4.56815i −0.302239 0.498426i
\(85\) 4.31468 10.4166i 0.467993 1.12983i
\(86\) 6.89739 8.03768i 0.743764 0.866725i
\(87\) −7.40492 + 7.40492i −0.793891 + 0.793891i
\(88\) −5.57009 + 8.94808i −0.593774 + 0.953869i
\(89\) 16.8830i 1.78959i 0.446476 + 0.894796i \(0.352679\pi\)
−0.446476 + 0.894796i \(0.647321\pi\)
\(90\) −5.89624 + 6.87101i −0.621518 + 0.724268i
\(91\) −7.62510 + 3.95725i −0.799328 + 0.414832i
\(92\) 8.82301 1.35517i 0.919862 0.141286i
\(93\) 2.47540 + 5.97614i 0.256687 + 0.619696i
\(94\) −4.73123 + 14.4462i −0.487989 + 1.49001i
\(95\) −14.9510 −1.53394
\(96\) 5.88712 2.35829i 0.600852 0.240692i
\(97\) −9.98019 9.98019i −1.01334 1.01334i −0.999910 0.0134254i \(-0.995726\pi\)
−0.0134254 0.999910i \(-0.504274\pi\)
\(98\) 1.66896 0.845471i 0.168591 0.0854054i
\(99\) 2.48583 + 6.00132i 0.249835 + 0.603155i
\(100\) −16.7823 + 2.57768i −1.67823 + 0.257768i
\(101\) −4.61214 + 1.91041i −0.458925 + 0.190093i −0.600155 0.799884i \(-0.704894\pi\)
0.141230 + 0.989977i \(0.454894\pi\)
\(102\) 0.370523 + 4.85297i 0.0366873 + 0.480516i
\(103\) −1.52183 + 1.52183i −0.149951 + 0.149951i −0.778096 0.628145i \(-0.783814\pi\)
0.628145 + 0.778096i \(0.283814\pi\)
\(104\) −3.15583 9.69746i −0.309455 0.950914i
\(105\) −6.93730 6.93730i −0.677011 0.677011i
\(106\) 7.09878 8.27236i 0.689494 0.803482i
\(107\) 3.63523 + 8.77622i 0.351431 + 0.848430i 0.996444 + 0.0842580i \(0.0268520\pi\)
−0.645013 + 0.764172i \(0.723148\pi\)
\(108\) 2.53103 10.3295i 0.243549 0.993956i
\(109\) 2.72505 1.12875i 0.261013 0.108115i −0.248340 0.968673i \(-0.579885\pi\)
0.509353 + 0.860558i \(0.329885\pi\)
\(110\) −6.02433 + 18.3946i −0.574398 + 1.75385i
\(111\) 1.60929 1.60929i 0.152747 0.152747i
\(112\) −2.86024 9.09133i −0.270267 0.859050i
\(113\) 0.135648i 0.0127607i −0.999980 0.00638036i \(-0.997969\pi\)
0.999980 0.00638036i \(-0.00203094\pi\)
\(114\) 5.75742 2.91662i 0.539232 0.273166i
\(115\) 15.1448 6.27319i 1.41226 0.584978i
\(116\) −15.9744 + 9.68668i −1.48319 + 0.899386i
\(117\) −5.99170 1.89743i −0.553933 0.175417i
\(118\) 0.990253 + 12.9700i 0.0911602 + 1.19398i
\(119\) 7.31430 0.670501
\(120\) 9.46984 6.77928i 0.864474 0.618861i
\(121\) 2.04125 + 2.04125i 0.185568 + 0.185568i
\(122\) 15.6233 1.19284i 1.41447 0.107994i
\(123\) 10.6204 + 4.39910i 0.957607 + 0.396654i
\(124\) 1.75188 + 11.4058i 0.157323 + 1.02427i
\(125\) −11.8409 + 4.90466i −1.05908 + 0.438686i
\(126\) −5.58191 1.82811i −0.497276 0.162861i
\(127\) −5.94058 −0.527141 −0.263570 0.964640i \(-0.584900\pi\)
−0.263570 + 0.964640i \(0.584900\pi\)
\(128\) 11.2019 1.58676i 0.990116 0.140251i
\(129\) 8.39622i 0.739246i
\(130\) −9.86711 15.9176i −0.865403 1.39606i
\(131\) 1.35902 3.28097i 0.118738 0.286660i −0.853325 0.521380i \(-0.825417\pi\)
0.972063 + 0.234720i \(0.0754174\pi\)
\(132\) −1.26849 8.25870i −0.110408 0.718828i
\(133\) −3.71171 8.96086i −0.321846 0.777005i
\(134\) −4.82605 + 5.62390i −0.416907 + 0.485831i
\(135\) 19.5303i 1.68090i
\(136\) −1.41839 + 8.56607i −0.121626 + 0.734535i
\(137\) −0.297336 −0.0254031 −0.0127015 0.999919i \(-0.504043\pi\)
−0.0127015 + 0.999919i \(0.504043\pi\)
\(138\) −4.60829 + 5.37014i −0.392284 + 0.457137i
\(139\) 8.09496 + 19.5430i 0.686606 + 1.65761i 0.751510 + 0.659721i \(0.229326\pi\)
−0.0649046 + 0.997891i \(0.520674\pi\)
\(140\) −9.07497 14.9656i −0.766975 1.26483i
\(141\) −4.61157 11.1333i −0.388364 0.937593i
\(142\) 2.86531 + 5.65614i 0.240452 + 0.474653i
\(143\) −13.3864 + 1.15427i −1.11943 + 0.0965245i
\(144\) 3.22342 6.18270i 0.268618 0.515225i
\(145\) −24.2591 + 24.2591i −2.01461 + 2.01461i
\(146\) −0.924343 + 0.468257i −0.0764992 + 0.0387533i
\(147\) −0.567570 + 1.37023i −0.0468124 + 0.113015i
\(148\) 3.47166 2.10517i 0.285369 0.173044i
\(149\) −5.48433 2.27168i −0.449294 0.186104i 0.146551 0.989203i \(-0.453183\pi\)
−0.595845 + 0.803099i \(0.703183\pi\)
\(150\) 8.76546 10.2146i 0.715697 0.834017i
\(151\) 7.42045i 0.603867i −0.953329 0.301934i \(-0.902368\pi\)
0.953329 0.301934i \(-0.0976321\pi\)
\(152\) 11.2142 2.60925i 0.909592 0.211638i
\(153\) 3.78378 + 3.78378i 0.305901 + 0.305901i
\(154\) −12.5203 + 0.955924i −1.00892 + 0.0770306i
\(155\) 8.10959 + 19.5783i 0.651378 + 1.57257i
\(156\) 6.90485 + 4.20477i 0.552831 + 0.336651i
\(157\) 19.2059 + 7.95533i 1.53280 + 0.634905i 0.980105 0.198482i \(-0.0636010\pi\)
0.552691 + 0.833386i \(0.313601\pi\)
\(158\) 5.45013 2.76095i 0.433589 0.219649i
\(159\) 8.64137i 0.685305i
\(160\) 19.2867 7.72593i 1.52475 0.610789i
\(161\) 7.51965 + 7.51965i 0.592631 + 0.592631i
\(162\) 0.467868 + 0.923575i 0.0367592 + 0.0725629i
\(163\) 4.33573 + 10.4674i 0.339601 + 0.819869i 0.997754 + 0.0669847i \(0.0213379\pi\)
−0.658153 + 0.752884i \(0.728662\pi\)
\(164\) 16.5343 + 12.1314i 1.29111 + 0.947301i
\(165\) −5.87197 14.1762i −0.457132 1.10361i
\(166\) −11.5151 9.88152i −0.893749 0.766955i
\(167\) 15.6599 1.21180 0.605901 0.795540i \(-0.292813\pi\)
0.605901 + 0.795540i \(0.292813\pi\)
\(168\) 6.41411 + 3.99272i 0.494859 + 0.308045i
\(169\) 7.48315 10.6303i 0.575627 0.817713i
\(170\) 1.21386 + 15.8987i 0.0930991 + 1.21938i
\(171\) 2.71545 6.55568i 0.207656 0.501326i
\(172\) −3.56473 + 14.5482i −0.271808 + 1.10929i
\(173\) −5.59630 2.31806i −0.425478 0.176239i 0.159661 0.987172i \(-0.448960\pi\)
−0.585139 + 0.810933i \(0.698960\pi\)
\(174\) 4.60941 14.0743i 0.349439 1.06697i
\(175\) −14.3032 14.3032i −1.08122 1.08122i
\(176\) 1.30842 14.8484i 0.0986258 1.11924i
\(177\) −7.29147 7.29147i −0.548060 0.548060i
\(178\) −10.7898 21.2991i −0.808727 1.59643i
\(179\) −0.149710 + 0.361432i −0.0111899 + 0.0270147i −0.929376 0.369135i \(-0.879654\pi\)
0.918186 + 0.396150i \(0.129654\pi\)
\(180\) 3.04731 12.4365i 0.227133 0.926963i
\(181\) −0.779592 1.88210i −0.0579466 0.139895i 0.892255 0.451533i \(-0.149123\pi\)
−0.950201 + 0.311637i \(0.899123\pi\)
\(182\) 7.09056 9.86549i 0.525588 0.731279i
\(183\) −8.78313 + 8.78313i −0.649268 + 0.649268i
\(184\) −10.2648 + 7.34836i −0.756729 + 0.541728i
\(185\) 5.27215 5.27215i 0.387616 0.387616i
\(186\) −6.94219 5.95731i −0.509026 0.436811i
\(187\) 10.5688 + 4.37774i 0.772868 + 0.320132i
\(188\) −3.26368 21.2486i −0.238029 1.54972i
\(189\) 11.7054 4.84855i 0.851445 0.352680i
\(190\) 18.8618 9.55507i 1.36838 0.693198i
\(191\) 9.49922i 0.687340i −0.939091 0.343670i \(-0.888330\pi\)
0.939091 0.343670i \(-0.111670\pi\)
\(192\) −5.91986 + 6.73756i −0.427229 + 0.486241i
\(193\) −4.60773 + 4.60773i −0.331672 + 0.331672i −0.853221 0.521549i \(-0.825354\pi\)
0.521549 + 0.853221i \(0.325354\pi\)
\(194\) 18.9690 + 6.21246i 1.36189 + 0.446029i
\(195\) 14.1535 + 4.48207i 1.01355 + 0.320967i
\(196\) −1.56518 + 2.13324i −0.111799 + 0.152374i
\(197\) 2.53556 6.12138i 0.180651 0.436130i −0.807450 0.589936i \(-0.799153\pi\)
0.988101 + 0.153806i \(0.0491529\pi\)
\(198\) −6.97144 5.98242i −0.495439 0.425152i
\(199\) −11.9626 + 11.9626i −0.848010 + 0.848010i −0.989885 0.141875i \(-0.954687\pi\)
0.141875 + 0.989885i \(0.454687\pi\)
\(200\) 19.5247 13.9774i 1.38060 0.988349i
\(201\) 5.87477i 0.414374i
\(202\) 4.59761 5.35770i 0.323487 0.376966i
\(203\) −20.5622 8.51713i −1.44318 0.597785i
\(204\) −3.56894 5.88557i −0.249875 0.412072i
\(205\) 34.7932 + 14.4118i 2.43006 + 1.00656i
\(206\) 0.947309 2.89249i 0.0660021 0.201529i
\(207\) 7.78002i 0.540749i
\(208\) 10.1789 + 10.2172i 0.705778 + 0.708433i
\(209\) 15.1695i 1.04930i
\(210\) 13.1855 + 4.31833i 0.909884 + 0.297993i
\(211\) −9.27264 3.84085i −0.638355 0.264415i 0.0399434 0.999202i \(-0.487282\pi\)
−0.678298 + 0.734787i \(0.737282\pi\)
\(212\) −3.66881 + 14.9729i −0.251975 + 1.02835i
\(213\) −4.64374 1.92350i −0.318184 0.131796i
\(214\) −10.1949 8.74858i −0.696910 0.598041i
\(215\) 27.5067i 1.87594i
\(216\) 3.40842 + 14.6489i 0.231914 + 0.996735i
\(217\) −9.72093 + 9.72093i −0.659900 + 0.659900i
\(218\) −2.71647 + 3.16556i −0.183983 + 0.214399i
\(219\) 0.314344 0.758894i 0.0212414 0.0512813i
\(220\) −4.15569 27.0561i −0.280176 1.82413i
\(221\) −9.82412 + 5.09848i −0.660842 + 0.342961i
\(222\) −1.00175 + 3.05871i −0.0672329 + 0.205287i
\(223\) −2.60548 + 2.60548i −0.174476 + 0.174476i −0.788943 0.614467i \(-0.789371\pi\)
0.614467 + 0.788943i \(0.289371\pi\)
\(224\) 9.41859 + 9.64140i 0.629306 + 0.644193i
\(225\) 14.7984i 0.986562i
\(226\) 0.0866917 + 0.171130i 0.00576665 + 0.0113834i
\(227\) 8.57100 3.55023i 0.568877 0.235637i −0.0796567 0.996822i \(-0.525382\pi\)
0.648534 + 0.761186i \(0.275382\pi\)
\(228\) −5.39941 + 7.35905i −0.357585 + 0.487365i
\(229\) 18.7946 + 7.78497i 1.24198 + 0.514446i 0.904333 0.426827i \(-0.140369\pi\)
0.337648 + 0.941272i \(0.390369\pi\)
\(230\) −15.0971 + 17.5930i −0.995475 + 1.16005i
\(231\) 7.03870 7.03870i 0.463112 0.463112i
\(232\) 13.9622 22.4296i 0.916661 1.47257i
\(233\) 8.17229 8.17229i 0.535385 0.535385i −0.386785 0.922170i \(-0.626415\pi\)
0.922170 + 0.386785i \(0.126415\pi\)
\(234\) 8.77159 1.43550i 0.573417 0.0938419i
\(235\) −15.1079 36.4736i −0.985528 2.37927i
\(236\) −9.53827 15.7297i −0.620888 1.02391i
\(237\) −1.85344 + 4.47461i −0.120394 + 0.290657i
\(238\) −9.22751 + 4.67451i −0.598130 + 0.303003i
\(239\) 6.42932 + 6.42932i 0.415878 + 0.415878i 0.883780 0.467902i \(-0.154990\pi\)
−0.467902 + 0.883780i \(0.654990\pi\)
\(240\) −7.61430 + 14.6046i −0.491501 + 0.942726i
\(241\) 1.14163 + 1.14163i 0.0735388 + 0.0735388i 0.742920 0.669381i \(-0.233440\pi\)
−0.669381 + 0.742920i \(0.733440\pi\)
\(242\) −3.87972 1.27063i −0.249398 0.0816795i
\(243\) 13.9800 + 5.79071i 0.896818 + 0.371474i
\(244\) −18.9476 + 11.4896i −1.21299 + 0.735544i
\(245\) −1.85940 + 4.48900i −0.118793 + 0.286792i
\(246\) −16.2098 + 1.23761i −1.03350 + 0.0789074i
\(247\) 11.2316 + 9.44841i 0.714648 + 0.601188i
\(248\) −9.49950 13.2697i −0.603219 0.842625i
\(249\) 12.0288 0.762295
\(250\) 11.8036 13.7550i 0.746525 0.869942i
\(251\) −7.92286 19.1275i −0.500086 1.20732i −0.949436 0.313959i \(-0.898344\pi\)
0.449350 0.893356i \(-0.351656\pi\)
\(252\) 8.21031 1.26106i 0.517201 0.0794395i
\(253\) 6.36488 + 15.3662i 0.400157 + 0.966063i
\(254\) 7.49446 3.79657i 0.470244 0.238218i
\(255\) −8.93796 8.93796i −0.559717 0.559717i
\(256\) −13.1179 + 9.16084i −0.819868 + 0.572552i
\(257\) 8.42337i 0.525435i 0.964873 + 0.262718i \(0.0846187\pi\)
−0.964873 + 0.262718i \(0.915381\pi\)
\(258\) −5.36595 10.5924i −0.334070 0.659456i
\(259\) 4.46871 + 1.85100i 0.277672 + 0.115015i
\(260\) 22.6208 + 13.7751i 1.40288 + 0.854298i
\(261\) −6.23105 15.0431i −0.385693 0.931144i
\(262\) 0.382339 + 5.00772i 0.0236210 + 0.309378i
\(263\) 10.8146 + 10.8146i 0.666854 + 0.666854i 0.956987 0.290132i \(-0.0936993\pi\)
−0.290132 + 0.956987i \(0.593699\pi\)
\(264\) 6.87836 + 9.60825i 0.423334 + 0.591347i
\(265\) 28.3098i 1.73906i
\(266\) 10.4094 + 8.93264i 0.638241 + 0.547695i
\(267\) 17.4867 + 7.24324i 1.07017 + 0.443279i
\(268\) 2.49421 10.1792i 0.152358 0.621796i
\(269\) 5.87141 14.1748i 0.357986 0.864256i −0.637597 0.770370i \(-0.720071\pi\)
0.995583 0.0938854i \(-0.0299287\pi\)
\(270\) 12.4817 + 24.6389i 0.759609 + 1.49947i
\(271\) −1.20901 + 1.20901i −0.0734423 + 0.0734423i −0.742874 0.669432i \(-0.766538\pi\)
0.669432 + 0.742874i \(0.266538\pi\)
\(272\) −3.68511 11.7132i −0.223443 0.710217i
\(273\) 0.827393 + 9.59555i 0.0500761 + 0.580749i
\(274\) 0.375110 0.190025i 0.0226612 0.0114798i
\(275\) −12.1067 29.2281i −0.730060 1.76252i
\(276\) 2.38167 9.71994i 0.143360 0.585072i
\(277\) −7.51221 18.1361i −0.451365 1.08969i −0.971803 0.235792i \(-0.924232\pi\)
0.520439 0.853899i \(-0.325768\pi\)
\(278\) −22.7021 19.4814i −1.36158 1.16842i
\(279\) −10.0575 −0.602129
\(280\) 21.0131 + 13.0805i 1.25577 + 0.781707i
\(281\) 4.60447i 0.274680i 0.990524 + 0.137340i \(0.0438552\pi\)
−0.990524 + 0.137340i \(0.956145\pi\)
\(282\) 12.9330 + 11.0982i 0.770150 + 0.660891i
\(283\) 3.89938 + 9.41393i 0.231794 + 0.559600i 0.996388 0.0849116i \(-0.0270608\pi\)
−0.764595 + 0.644511i \(0.777061\pi\)
\(284\) −7.22959 5.30443i −0.428997 0.314760i
\(285\) −6.41438 + 15.4857i −0.379955 + 0.917293i
\(286\) 16.1502 10.0113i 0.954982 0.591982i
\(287\) 24.4310i 1.44212i
\(288\) −0.115261 + 9.85998i −0.00679183 + 0.581005i
\(289\) −7.57632 −0.445666
\(290\) 15.1008 46.1084i 0.886749 2.70758i
\(291\) −14.6189 + 6.05534i −0.856973 + 0.354970i
\(292\) 0.866865 1.18148i 0.0507294 0.0691409i
\(293\) 10.3973 + 4.30672i 0.607419 + 0.251601i 0.665125 0.746732i \(-0.268378\pi\)
−0.0577055 + 0.998334i \(0.518378\pi\)
\(294\) −0.159676 2.09138i −0.00931251 0.121972i
\(295\) −23.8874 23.8874i −1.39078 1.39078i
\(296\) −3.03435 + 4.87454i −0.176368 + 0.283327i
\(297\) 19.8157 1.14983
\(298\) 8.37069 0.639100i 0.484901 0.0370221i
\(299\) −15.3416 4.85831i −0.887225 0.280963i
\(300\) −4.53020 + 18.4884i −0.261551 + 1.06743i
\(301\) −16.4861 + 6.82875i −0.950241 + 0.393603i
\(302\) 4.74235 + 9.36142i 0.272891 + 0.538689i
\(303\) 5.59670i 0.321522i
\(304\) −12.4800 + 10.4587i −0.715775 + 0.599845i
\(305\) −28.7742 + 28.7742i −1.64761 + 1.64761i
\(306\) −7.19169 2.35532i −0.411122 0.134645i
\(307\) −5.67908 + 2.35235i −0.324122 + 0.134256i −0.538811 0.842427i \(-0.681126\pi\)
0.214689 + 0.976682i \(0.431126\pi\)
\(308\) 15.1844 9.20761i 0.865209 0.524652i
\(309\) 0.923349 + 2.22916i 0.0525275 + 0.126813i
\(310\) −22.7432 19.5166i −1.29172 1.10847i
\(311\) −8.98611 8.98611i −0.509556 0.509556i 0.404834 0.914390i \(-0.367329\pi\)
−0.914390 + 0.404834i \(0.867329\pi\)
\(312\) −11.3982 0.891775i −0.645296 0.0504868i
\(313\) 14.0132 14.0132i 0.792072 0.792072i −0.189759 0.981831i \(-0.560771\pi\)
0.981831 + 0.189759i \(0.0607707\pi\)
\(314\) −29.3138 + 2.23810i −1.65427 + 0.126303i
\(315\) 14.0931 5.83756i 0.794057 0.328909i
\(316\) −5.11123 + 6.96627i −0.287529 + 0.391883i
\(317\) 2.38771 + 5.76443i 0.134107 + 0.323763i 0.976640 0.214882i \(-0.0689366\pi\)
−0.842533 + 0.538644i \(0.818937\pi\)
\(318\) −5.52263 10.9017i −0.309694 0.611337i
\(319\) −24.6137 24.6137i −1.37810 1.37810i
\(320\) −19.3939 + 22.0728i −1.08415 + 1.23391i
\(321\) 10.6497 0.594408
\(322\) −14.2923 4.68082i −0.796479 0.260852i
\(323\) −4.78214 11.5451i −0.266085 0.642386i
\(324\) −1.18050 0.866145i −0.0655833 0.0481191i
\(325\) 29.1813 + 9.24102i 1.61869 + 0.512599i
\(326\) −12.1595 10.4344i −0.673450 0.577909i
\(327\) 3.30677i 0.182865i
\(328\) −28.6122 4.73767i −1.57984 0.261594i
\(329\) 18.1097 18.1097i 0.998421 0.998421i
\(330\) 16.4678 + 14.1315i 0.906522 + 0.777915i
\(331\) −3.98616 + 9.62344i −0.219099 + 0.528952i −0.994765 0.102192i \(-0.967414\pi\)
0.775666 + 0.631144i \(0.217414\pi\)
\(332\) 20.8424 + 5.10700i 1.14387 + 0.280283i
\(333\) 1.35417 + 3.26926i 0.0742083 + 0.179155i
\(334\) −19.7561 + 10.0081i −1.08101 + 0.547620i
\(335\) 19.2462i 1.05153i
\(336\) −10.6436 0.937893i −0.580654 0.0511662i
\(337\) −4.59839 −0.250490 −0.125245 0.992126i \(-0.539972\pi\)
−0.125245 + 0.992126i \(0.539972\pi\)
\(338\) −2.64680 + 18.1933i −0.143967 + 0.989582i
\(339\) −0.140499 0.0581967i −0.00763087 0.00316081i
\(340\) −11.6921 19.2816i −0.634094 1.04569i
\(341\) −19.8644 + 8.22812i −1.07572 + 0.445578i
\(342\) 0.763947 + 10.0059i 0.0413095 + 0.541056i
\(343\) −19.8307 −1.07076
\(344\) −4.80045 20.6317i −0.258823 1.11239i
\(345\) 18.3778i 0.989427i
\(346\) 8.54158 0.652148i 0.459198 0.0350597i
\(347\) −6.23726 + 2.58356i −0.334834 + 0.138693i −0.543765 0.839238i \(-0.683002\pi\)
0.208931 + 0.977930i \(0.433002\pi\)
\(348\) 3.17965 + 20.7015i 0.170447 + 1.10972i
\(349\) −8.18421 + 3.39001i −0.438091 + 0.181463i −0.590817 0.806805i \(-0.701195\pi\)
0.152726 + 0.988269i \(0.451195\pi\)
\(350\) 27.1855 + 8.90343i 1.45313 + 0.475908i
\(351\) −12.3423 + 14.6716i −0.658784 + 0.783114i
\(352\) 7.83886 + 19.5686i 0.417812 + 1.04301i
\(353\) −2.76987 2.76987i −0.147425 0.147425i 0.629542 0.776967i \(-0.283243\pi\)
−0.776967 + 0.629542i \(0.783243\pi\)
\(354\) 13.8586 + 4.53879i 0.736578 + 0.241234i
\(355\) −15.2133 6.30154i −0.807437 0.334451i
\(356\) 27.2241 + 19.9746i 1.44288 + 1.05865i
\(357\) 3.13803 7.57587i 0.166082 0.400958i
\(358\) −0.0421184 0.551651i −0.00222603 0.0291557i
\(359\) −26.8258 −1.41581 −0.707905 0.706308i \(-0.750360\pi\)
−0.707905 + 0.706308i \(0.750360\pi\)
\(360\) 4.10367 + 17.6371i 0.216282 + 0.929554i
\(361\) 1.71769 1.71769i 0.0904049 0.0904049i
\(362\) 2.18635 + 1.87617i 0.114912 + 0.0986095i
\(363\) 2.99000 1.23850i 0.156934 0.0650042i
\(364\) −2.64030 + 16.9775i −0.138389 + 0.889865i
\(365\) 1.02982 2.48620i 0.0539031 0.130133i
\(366\) 5.46732 16.6938i 0.285781 0.872597i
\(367\) 17.9214 0.935490 0.467745 0.883863i \(-0.345066\pi\)
0.467745 + 0.883863i \(0.345066\pi\)
\(368\) 8.25347 15.8306i 0.430242 0.825228i
\(369\) −12.6385 + 12.6385i −0.657934 + 0.657934i
\(370\) −3.28180 + 10.0206i −0.170613 + 0.520945i
\(371\) −16.9674 + 7.02813i −0.880904 + 0.364883i
\(372\) 12.5653 + 3.07888i 0.651482 + 0.159632i
\(373\) 12.1912 5.04976i 0.631236 0.261467i −0.0440422 0.999030i \(-0.514024\pi\)
0.675278 + 0.737563i \(0.264024\pi\)
\(374\) −16.1311 + 1.23161i −0.834119 + 0.0636848i
\(375\) 14.3686i 0.741990i
\(376\) 17.6972 + 24.7209i 0.912663 + 1.27488i
\(377\) 33.5548 2.89332i 1.72816 0.149014i
\(378\) −11.6686 + 13.5976i −0.600166 + 0.699387i
\(379\) 7.49356 + 3.10394i 0.384919 + 0.159438i 0.566747 0.823892i \(-0.308202\pi\)
−0.181829 + 0.983330i \(0.558202\pi\)
\(380\) −17.6889 + 24.1088i −0.907421 + 1.23676i
\(381\) −2.54866 + 6.15302i −0.130572 + 0.315229i
\(382\) 6.07088 + 11.9839i 0.310613 + 0.613152i
\(383\) 9.36513 9.36513i 0.478536 0.478536i −0.426127 0.904663i \(-0.640122\pi\)
0.904663 + 0.426127i \(0.140122\pi\)
\(384\) 3.16240 12.2832i 0.161381 0.626827i
\(385\) 23.0593 23.0593i 1.17521 1.17521i
\(386\) 2.86822 8.75775i 0.145988 0.445757i
\(387\) −12.0611 4.99585i −0.613098 0.253953i
\(388\) −27.9011 + 4.28546i −1.41646 + 0.217561i
\(389\) −27.6340 + 11.4464i −1.40110 + 0.580354i −0.950036 0.312139i \(-0.898955\pi\)
−0.451062 + 0.892493i \(0.648955\pi\)
\(390\) −20.7200 + 3.39092i −1.04920 + 0.171706i
\(391\) 9.68825 + 9.68825i 0.489956 + 0.489956i
\(392\) 0.611252 3.69153i 0.0308729 0.186451i
\(393\) −2.81525 2.81525i −0.142011 0.142011i
\(394\) 0.713337 + 9.34302i 0.0359374 + 0.470694i
\(395\) −6.07203 + 14.6592i −0.305517 + 0.737583i
\(396\) 12.6183 + 3.09185i 0.634092 + 0.155371i
\(397\) −6.37142 15.3820i −0.319772 0.771998i −0.999266 0.0383169i \(-0.987800\pi\)
0.679493 0.733682i \(-0.262200\pi\)
\(398\) 7.44650 22.7370i 0.373259 1.13970i
\(399\) −10.8737 −0.544368
\(400\) −15.6990 + 30.1115i −0.784949 + 1.50558i
\(401\) −7.19029 7.19029i −0.359066 0.359066i 0.504403 0.863469i \(-0.331713\pi\)
−0.863469 + 0.504403i \(0.831713\pi\)
\(402\) 3.75452 + 7.41144i 0.187258 + 0.369649i
\(403\) 6.28052 19.8326i 0.312855 0.987933i
\(404\) −2.37615 + 9.69742i −0.118218 + 0.482465i
\(405\) −2.48413 1.02896i −0.123438 0.0511295i
\(406\) 31.3839 2.39615i 1.55755 0.118919i
\(407\) 5.34921 + 5.34921i 0.265150 + 0.265150i
\(408\) 8.26389 + 5.14419i 0.409123 + 0.254675i
\(409\) 38.4154 1.89952 0.949761 0.312977i \(-0.101326\pi\)
0.949761 + 0.312977i \(0.101326\pi\)
\(410\) −53.1045 + 4.05452i −2.62265 + 0.200238i
\(411\) −0.127565 + 0.307969i −0.00629231 + 0.0151910i
\(412\) 0.653470 + 4.25450i 0.0321941 + 0.209604i
\(413\) 8.38663 20.2471i 0.412679 0.996296i
\(414\) −4.97215 9.81505i −0.244368 0.482383i
\(415\) 39.4073 1.93443
\(416\) −19.3711 6.38444i −0.949746 0.313023i
\(417\) 23.7148 1.16132
\(418\) 9.69473 + 19.1375i 0.474185 + 0.936043i
\(419\) 8.48669 20.4887i 0.414602 1.00094i −0.569284 0.822141i \(-0.692779\pi\)
0.983886 0.178797i \(-0.0572205\pi\)
\(420\) −19.3942 + 2.97885i −0.946341 + 0.145353i
\(421\) −3.51182 + 8.47828i −0.171156 + 0.413206i −0.986060 0.166389i \(-0.946789\pi\)
0.814905 + 0.579595i \(0.196789\pi\)
\(422\) 14.1527 1.08056i 0.688945 0.0526008i
\(423\) 18.7368 0.911013
\(424\) −4.94062 21.2341i −0.239938 1.03122i
\(425\) −18.4281 18.4281i −0.893893 0.893893i
\(426\) 7.08771 0.541145i 0.343401 0.0262186i
\(427\) −24.3892 10.1023i −1.18028 0.488886i
\(428\) 18.4528 + 4.52147i 0.891948 + 0.218554i
\(429\) −4.54757 + 14.3603i −0.219559 + 0.693323i
\(430\) −17.5793 34.7016i −0.847749 1.67346i
\(431\) −23.2676 23.2676i −1.12076 1.12076i −0.991627 0.129136i \(-0.958780\pi\)
−0.129136 0.991627i \(-0.541220\pi\)
\(432\) −13.6620 16.3024i −0.657313 0.784349i
\(433\) −2.92887 −0.140753 −0.0703763 0.997521i \(-0.522420\pi\)
−0.0703763 + 0.997521i \(0.522420\pi\)
\(434\) 6.05108 18.4762i 0.290461 0.886887i
\(435\) 14.7189 + 35.5345i 0.705715 + 1.70375i
\(436\) 1.40394 5.72966i 0.0672363 0.274401i
\(437\) 6.95283 16.7856i 0.332599 0.802965i
\(438\) 0.0884355 + 1.15829i 0.00422561 + 0.0553454i
\(439\) 10.1578 + 10.1578i 0.484806 + 0.484806i 0.906663 0.421856i \(-0.138621\pi\)
−0.421856 + 0.906663i \(0.638621\pi\)
\(440\) 22.5341 + 31.4774i 1.07427 + 1.50063i
\(441\) −1.63061 1.63061i −0.0776482 0.0776482i
\(442\) 9.13542 12.7106i 0.434528 0.604582i
\(443\) −26.5351 + 10.9912i −1.26072 + 0.522208i −0.910131 0.414321i \(-0.864019\pi\)
−0.350590 + 0.936529i \(0.614019\pi\)
\(444\) −0.691023 4.49899i −0.0327945 0.213513i
\(445\) 57.2879 + 23.7294i 2.71571 + 1.12488i
\(446\) 1.62185 4.95213i 0.0767970 0.234490i
\(447\) −4.70585 + 4.70585i −0.222579 + 0.222579i
\(448\) −18.0440 6.14396i −0.852497 0.290275i
\(449\) −2.54450 + 2.54450i −0.120082 + 0.120082i −0.764594 0.644512i \(-0.777061\pi\)
0.644512 + 0.764594i \(0.277061\pi\)
\(450\) 9.45756 + 18.6693i 0.445834 + 0.880078i
\(451\) −14.6224 + 35.3017i −0.688544 + 1.66229i
\(452\) −0.218735 0.160489i −0.0102885 0.00754875i
\(453\) −7.68581 3.18357i −0.361111 0.149577i
\(454\) −8.54401 + 9.95652i −0.400990 + 0.467283i
\(455\) 2.71061 + 31.4358i 0.127075 + 1.47373i
\(456\) 2.10863 12.7347i 0.0987458 0.596356i
\(457\) 8.60738i 0.402636i −0.979526 0.201318i \(-0.935478\pi\)
0.979526 0.201318i \(-0.0645225\pi\)
\(458\) −28.6860 + 2.19017i −1.34041 + 0.102340i
\(459\) 15.0812 6.24683i 0.703930 0.291577i
\(460\) 7.80255 31.8433i 0.363796 1.48470i
\(461\) 33.5284 13.8879i 1.56158 0.646826i 0.576213 0.817299i \(-0.304530\pi\)
0.985362 + 0.170474i \(0.0545298\pi\)
\(462\) −4.38144 + 13.3782i −0.203843 + 0.622410i
\(463\) 11.2768 11.2768i 0.524077 0.524077i −0.394723 0.918800i \(-0.629159\pi\)
0.918800 + 0.394723i \(0.129159\pi\)
\(464\) −3.27972 + 37.2196i −0.152257 + 1.72788i
\(465\) 23.7577 1.10174
\(466\) −5.08708 + 15.5328i −0.235654 + 0.719542i
\(467\) −0.336886 + 0.813314i −0.0155892 + 0.0376357i −0.931482 0.363786i \(-0.881484\pi\)
0.915893 + 0.401422i \(0.131484\pi\)
\(468\) −10.1486 + 7.41684i −0.469117 + 0.342844i
\(469\) 11.5352 4.77802i 0.532645 0.220629i
\(470\) 42.3696 + 36.3587i 1.95436 + 1.67710i
\(471\) 16.4797 16.4797i 0.759343 0.759343i
\(472\) 22.0859 + 13.7482i 1.01659 + 0.632814i
\(473\) −27.9087 −1.28324
\(474\) −0.521435 6.82956i −0.0239503 0.313692i
\(475\) −13.2250 + 31.9280i −0.606806 + 1.46496i
\(476\) 8.65371 11.7944i 0.396642 0.540598i
\(477\) −12.4132 5.14172i −0.568362 0.235423i
\(478\) −12.2200 4.00212i −0.558929 0.183053i
\(479\) 15.7874 + 15.7874i 0.721344 + 0.721344i 0.968879 0.247535i \(-0.0796204\pi\)
−0.247535 + 0.968879i \(0.579620\pi\)
\(480\) 0.272268 23.2910i 0.0124273 1.06309i
\(481\) −7.29234 + 0.628795i −0.332502 + 0.0286706i
\(482\) −2.16985 0.710641i −0.0988341 0.0323688i
\(483\) 11.0147 4.56243i 0.501186 0.207598i
\(484\) 5.70660 0.876505i 0.259391 0.0398411i
\(485\) −47.8926 + 19.8378i −2.17469 + 0.900786i
\(486\) −21.3376 + 1.62912i −0.967892 + 0.0738983i
\(487\) 27.5391i 1.24792i −0.781458 0.623958i \(-0.785524\pi\)
0.781458 0.623958i \(-0.214476\pi\)
\(488\) 16.5608 26.6041i 0.749673 1.20431i
\(489\) 12.7019 0.574398
\(490\) −0.523112 6.85152i −0.0236318 0.309520i
\(491\) 20.4754 8.48119i 0.924042 0.382751i 0.130627 0.991432i \(-0.458301\pi\)
0.793415 + 0.608681i \(0.208301\pi\)
\(492\) 19.6588 11.9209i 0.886289 0.537435i
\(493\) −26.4921 10.9734i −1.19315 0.494217i
\(494\) −20.2078 4.74183i −0.909193 0.213345i
\(495\) 23.8578 1.07233
\(496\) 20.4648 + 10.6696i 0.918898 + 0.479078i
\(497\) 10.6824i 0.479173i
\(498\) −15.1752 + 7.68752i −0.680017 + 0.344486i
\(499\) −10.7974 26.0672i −0.483357 1.16693i −0.958005 0.286752i \(-0.907424\pi\)
0.474648 0.880176i \(-0.342576\pi\)
\(500\) −6.10037 + 24.8965i −0.272817 + 1.11340i
\(501\) 6.71852 16.2199i 0.300161 0.724654i
\(502\) 22.2195 + 19.0672i 0.991703 + 0.851012i
\(503\) 4.16452 4.16452i 0.185687 0.185687i −0.608142 0.793829i \(-0.708085\pi\)
0.793829 + 0.608142i \(0.208085\pi\)
\(504\) −9.55196 + 6.83806i −0.425478 + 0.304592i
\(505\) 18.3352i 0.815906i
\(506\) −17.8501 15.3178i −0.793536 0.680959i
\(507\) −7.79995 12.3114i −0.346408 0.546769i
\(508\) −7.02843 + 9.57929i −0.311836 + 0.425012i
\(509\) −10.6099 25.6147i −0.470277 1.13535i −0.964041 0.265754i \(-0.914379\pi\)
0.493764 0.869596i \(-0.335621\pi\)
\(510\) 16.9881 + 5.56370i 0.752244 + 0.246365i
\(511\) 1.74576 0.0772277
\(512\) 10.6945 19.9406i 0.472636 0.881258i
\(513\) −15.3062 15.3062i −0.675784 0.675784i
\(514\) −5.38331 10.6267i −0.237447 0.468723i
\(515\) 3.02496 + 7.30291i 0.133296 + 0.321805i
\(516\) 13.5391 + 9.93376i 0.596024 + 0.437309i
\(517\) 37.0067 15.3287i 1.62755 0.674154i
\(518\) −6.82055 + 0.520747i −0.299678 + 0.0228803i
\(519\) −4.80192 + 4.80192i −0.210781 + 0.210781i
\(520\) −37.3414 2.92152i −1.63753 0.128117i
\(521\) −3.13369 3.13369i −0.137289 0.137289i 0.635122 0.772412i \(-0.280950\pi\)
−0.772412 + 0.635122i \(0.780950\pi\)
\(522\) 17.4748 + 14.9957i 0.764853 + 0.656345i
\(523\) 9.55979 + 23.0794i 0.418020 + 1.00919i 0.982920 + 0.184031i \(0.0589146\pi\)
−0.564900 + 0.825159i \(0.691085\pi\)
\(524\) −3.68274 6.07325i −0.160881 0.265311i
\(525\) −20.9511 + 8.67824i −0.914382 + 0.378749i
\(526\) −20.5548 6.73184i −0.896233 0.293522i
\(527\) −12.5244 + 12.5244i −0.545570 + 0.545570i
\(528\) −14.8181 7.72559i −0.644875 0.336213i
\(529\) 3.07950i 0.133892i
\(530\) −18.0926 35.7148i −0.785891 1.55135i
\(531\) 14.8126 6.13558i 0.642813 0.266262i
\(532\) −18.8410 4.61659i −0.816860 0.200155i
\(533\) −17.0298 32.8143i −0.737644 1.42134i
\(534\) −26.6899 + 2.03777i −1.15498 + 0.0881827i
\(535\) 34.8892 1.50839
\(536\) 3.35884 + 14.4359i 0.145080 + 0.623534i
\(537\) 0.310128 + 0.310128i 0.0133830 + 0.0133830i
\(538\) 1.65182 + 21.6350i 0.0712152 + 0.932749i
\(539\) −4.55461 1.88658i −0.196181 0.0812608i
\(540\) −31.4930 23.1067i −1.35524 0.994356i
\(541\) −36.1831 + 14.9875i −1.55563 + 0.644365i −0.984324 0.176370i \(-0.943565\pi\)
−0.571310 + 0.820734i \(0.693565\pi\)
\(542\) 0.752585 2.29793i 0.0323263 0.0987043i
\(543\) −2.28387 −0.0980104
\(544\) 12.1348 + 12.4219i 0.520277 + 0.532584i
\(545\) 10.8332i 0.464045i
\(546\) −7.17626 11.5767i −0.307115 0.495437i
\(547\) 9.39690 22.6861i 0.401782 0.969988i −0.585451 0.810708i \(-0.699083\pi\)
0.987233 0.159281i \(-0.0509174\pi\)
\(548\) −0.351785 + 0.479460i −0.0150275 + 0.0204815i
\(549\) −7.39078 17.8429i −0.315431 0.761517i
\(550\) 33.9529 + 29.1361i 1.44776 + 1.24237i
\(551\) 38.0245i 1.61990i
\(552\) 3.20729 + 13.7845i 0.136511 + 0.586707i
\(553\) −10.2934 −0.437719
\(554\) 21.0678 + 18.0790i 0.895085 + 0.768101i
\(555\) −3.19880 7.72259i −0.135781 0.327806i
\(556\) 41.0908 + 10.0684i 1.74264 + 0.426997i
\(557\) −3.88582 9.38120i −0.164647 0.397494i 0.819925 0.572471i \(-0.194015\pi\)
−0.984573 + 0.174977i \(0.944015\pi\)
\(558\) 12.6883 6.42769i 0.537138 0.272106i
\(559\) 17.3830 20.6637i 0.735224 0.873981i
\(560\) −34.8692 3.07261i −1.47349 0.129841i
\(561\) 9.06860 9.06860i 0.382877 0.382877i
\(562\) −2.94268 5.80886i −0.124129 0.245032i
\(563\) 15.4537 37.3086i 0.651297 1.57237i −0.159602 0.987182i \(-0.551021\pi\)
0.810898 0.585187i \(-0.198979\pi\)
\(564\) −23.4087 5.73583i −0.985685 0.241522i
\(565\) −0.460287 0.190657i −0.0193644 0.00802100i
\(566\) −10.9357 9.38428i −0.459662 0.394451i
\(567\) 1.74431i 0.0732540i
\(568\) 12.5107 + 2.07154i 0.524935 + 0.0869199i
\(569\) −6.13903 6.13903i −0.257362 0.257362i 0.566619 0.823980i \(-0.308251\pi\)
−0.823980 + 0.566619i \(0.808251\pi\)
\(570\) −1.80458 23.6357i −0.0755855 0.989990i
\(571\) 9.16143 + 22.1176i 0.383394 + 0.925594i 0.991304 + 0.131589i \(0.0420079\pi\)
−0.607911 + 0.794005i \(0.707992\pi\)
\(572\) −13.9765 + 22.9515i −0.584386 + 0.959649i
\(573\) −9.83893 4.07542i −0.411027 0.170253i
\(574\) −15.6137 30.8215i −0.651703 1.28646i
\(575\) 37.8909i 1.58016i
\(576\) −6.15602 12.5127i −0.256501 0.521364i
\(577\) 19.7094 + 19.7094i 0.820512 + 0.820512i 0.986181 0.165669i \(-0.0529784\pi\)
−0.165669 + 0.986181i \(0.552978\pi\)
\(578\) 9.55807 4.84196i 0.397563 0.201399i
\(579\) 2.79567 + 6.74935i 0.116184 + 0.280493i
\(580\) 10.4168 + 67.8198i 0.432533 + 2.81606i
\(581\) 9.78318 + 23.6187i 0.405875 + 0.979869i
\(582\) 14.5728 16.9820i 0.604063 0.703928i
\(583\) −28.7236 −1.18961
\(584\) −0.338537 + 2.04453i −0.0140088 + 0.0846031i
\(585\) −14.8599 + 17.6644i −0.614382 + 0.730332i
\(586\) −15.8694 + 1.21162i −0.655558 + 0.0500517i
\(587\) −15.3046 + 36.9485i −0.631687 + 1.52503i 0.205813 + 0.978591i \(0.434016\pi\)
−0.837500 + 0.546437i \(0.815984\pi\)
\(588\) 1.53803 + 2.53637i 0.0634271 + 0.104598i
\(589\) 21.6994 + 8.98819i 0.894109 + 0.370352i
\(590\) 45.4019 + 14.8694i 1.86917 + 0.612165i
\(591\) −5.25247 5.25247i −0.216058 0.216058i
\(592\) 0.712771 8.08881i 0.0292947 0.332448i
\(593\) −28.0466 28.0466i −1.15174 1.15174i −0.986205 0.165531i \(-0.947066\pi\)
−0.165531 0.986205i \(-0.552934\pi\)
\(594\) −24.9990 + 12.6641i −1.02572 + 0.519614i
\(595\) 10.2804 24.8191i 0.421456 1.01749i
\(596\) −10.1518 + 6.15591i −0.415833 + 0.252156i
\(597\) 7.25816 + 17.5227i 0.297057 + 0.717158i
\(598\) 22.4594 3.67556i 0.918432 0.150305i
\(599\) 6.67534 6.67534i 0.272747 0.272747i −0.557458 0.830205i \(-0.688223\pi\)
0.830205 + 0.557458i \(0.188223\pi\)
\(600\) −6.10060 26.2196i −0.249056 1.07041i
\(601\) −5.95565 + 5.95565i −0.242936 + 0.242936i −0.818064 0.575128i \(-0.804952\pi\)
0.575128 + 0.818064i \(0.304952\pi\)
\(602\) 16.4341 19.1511i 0.669805 0.780539i
\(603\) 8.43903 + 3.49556i 0.343664 + 0.142350i
\(604\) −11.9656 8.77930i −0.486874 0.357225i
\(605\) 9.79546 4.05741i 0.398242 0.164957i
\(606\) −3.57680 7.06063i −0.145298 0.286818i
\(607\) 24.2498i 0.984271i 0.870519 + 0.492135i \(0.163784\pi\)
−0.870519 + 0.492135i \(0.836216\pi\)
\(608\) 9.06032 21.1702i 0.367445 0.858564i
\(609\) −17.6434 + 17.6434i −0.714948 + 0.714948i
\(610\) 17.9114 54.6901i 0.725210 2.21434i
\(611\) −11.7004 + 36.9474i −0.473346 + 1.49473i
\(612\) 10.5781 1.62474i 0.427594 0.0656763i
\(613\) −6.91148 + 16.6858i −0.279152 + 0.673933i −0.999813 0.0193552i \(-0.993839\pi\)
0.720661 + 0.693288i \(0.243839\pi\)
\(614\) 5.66119 6.59711i 0.228467 0.266238i
\(615\) 29.8544 29.8544i 1.20384 1.20384i
\(616\) −13.2716 + 21.3202i −0.534730 + 0.859017i
\(617\) 9.74446i 0.392297i −0.980574 0.196149i \(-0.937156\pi\)
0.980574 0.196149i \(-0.0628435\pi\)
\(618\) −2.58951 2.22214i −0.104165 0.0893876i
\(619\) −36.9524 15.3062i −1.48524 0.615208i −0.514968 0.857209i \(-0.672196\pi\)
−0.970276 + 0.242001i \(0.922196\pi\)
\(620\) 41.1650 + 10.0866i 1.65323 + 0.405090i
\(621\) 21.9268 + 9.08238i 0.879892 + 0.364463i
\(622\) 17.0796 + 5.59367i 0.684828 + 0.224286i
\(623\) 40.2264i 1.61164i
\(624\) 14.9496 6.15946i 0.598461 0.246576i
\(625\) 4.62478i 0.184991i
\(626\) −8.72291 + 26.6343i −0.348638 + 1.06452i
\(627\) −15.7120 6.50814i −0.627478 0.259910i
\(628\) 35.5510 21.5577i 1.41864 0.860246i
\(629\) 5.75744 + 2.38481i 0.229564 + 0.0950886i
\(630\) −14.0487 + 16.3713i −0.559715 + 0.652248i
\(631\) 31.9209i 1.27075i −0.772204 0.635375i \(-0.780846\pi\)
0.772204 0.635375i \(-0.219154\pi\)
\(632\) 1.99609 12.0550i 0.0794002 0.479522i
\(633\) −7.95642 + 7.95642i −0.316239 + 0.316239i
\(634\) −6.69626 5.74628i −0.265943 0.228214i
\(635\) −8.34963 + 20.1578i −0.331345 + 0.799937i
\(636\) 13.9344 + 10.2238i 0.552534 + 0.405400i
\(637\) 4.23368 2.19718i 0.167745 0.0870555i
\(638\) 46.7823 + 15.3215i 1.85213 + 0.606584i
\(639\) 5.52617 5.52617i 0.218612 0.218612i
\(640\) 10.3603 40.2409i 0.409526 1.59066i
\(641\) 26.6084i 1.05097i 0.850804 + 0.525484i \(0.176116\pi\)
−0.850804 + 0.525484i \(0.823884\pi\)
\(642\) −13.4353 + 6.80613i −0.530251 + 0.268617i
\(643\) −12.3405 + 5.11160i −0.486661 + 0.201582i −0.612503 0.790469i \(-0.709837\pi\)
0.125841 + 0.992050i \(0.459837\pi\)
\(644\) 21.0222 3.22891i 0.828392 0.127237i
\(645\) 28.4904 + 11.8011i 1.12181 + 0.464668i
\(646\) 13.4114 + 11.5087i 0.527664 + 0.452805i
\(647\) −23.9105 + 23.9105i −0.940019 + 0.940019i −0.998300 0.0582808i \(-0.981438\pi\)
0.0582808 + 0.998300i \(0.481438\pi\)
\(648\) 2.04283 + 0.338256i 0.0802499 + 0.0132879i
\(649\) 24.2366 24.2366i 0.951368 0.951368i
\(650\) −42.7201 + 6.99132i −1.67562 + 0.274222i
\(651\) 5.89803 + 14.2391i 0.231162 + 0.558075i
\(652\) 22.0086 + 5.39275i 0.861922 + 0.211196i
\(653\) −18.4574 + 44.5601i −0.722293 + 1.74377i −0.0555823 + 0.998454i \(0.517702\pi\)
−0.666711 + 0.745316i \(0.732298\pi\)
\(654\) 2.11333 + 4.17173i 0.0826378 + 0.163127i
\(655\) −9.22298 9.22298i −0.360372 0.360372i
\(656\) 39.1241 12.3089i 1.52754 0.480583i
\(657\) 0.903102 + 0.903102i 0.0352334 + 0.0352334i
\(658\) −11.2729 + 34.4205i −0.439464 + 1.34185i
\(659\) −5.09011 2.10839i −0.198282 0.0821313i 0.281332 0.959610i \(-0.409224\pi\)
−0.479615 + 0.877479i \(0.659224\pi\)
\(660\) −29.8066 7.30350i −1.16022 0.284289i
\(661\) 4.84661 11.7007i 0.188511 0.455106i −0.801162 0.598447i \(-0.795785\pi\)
0.989673 + 0.143341i \(0.0457846\pi\)
\(662\) −1.12144 14.6882i −0.0435860 0.570872i
\(663\) 1.06601 + 12.3628i 0.0414003 + 0.480133i
\(664\) −29.5580 + 6.87735i −1.14707 + 0.266893i
\(665\) −35.6232 −1.38141
\(666\) −3.79775 3.25897i −0.147160 0.126282i
\(667\) −15.9544 38.5174i −0.617757 1.49140i
\(668\) 18.5276 25.2519i 0.716855 0.977027i
\(669\) 1.58083 + 3.81647i 0.0611186 + 0.147553i
\(670\) 12.3001 + 24.2805i 0.475194 + 0.938036i
\(671\) −29.1948 29.1948i −1.12705 1.12705i
\(672\) 14.0270 5.61900i 0.541104 0.216758i
\(673\) 23.5100i 0.906244i −0.891449 0.453122i \(-0.850310\pi\)
0.891449 0.453122i \(-0.149690\pi\)
\(674\) 5.80120 2.93879i 0.223454 0.113198i
\(675\) −41.7071 17.2757i −1.60531 0.664940i
\(676\) −8.28803 24.6436i −0.318770 0.947832i
\(677\) 2.75713 + 6.65630i 0.105965 + 0.255823i 0.967965 0.251087i \(-0.0807879\pi\)
−0.861999 + 0.506909i \(0.830788\pi\)
\(678\) 0.214443 0.0163727i 0.00823563 0.000628789i
\(679\) −23.7794 23.7794i −0.912571 0.912571i
\(680\) 27.0731 + 16.8528i 1.03821 + 0.646274i
\(681\) 10.4007i 0.398554i
\(682\) 19.8019 23.0756i 0.758253 0.883609i
\(683\) 40.7465 + 16.8778i 1.55912 + 0.645810i 0.984937 0.172915i \(-0.0553185\pi\)
0.574186 + 0.818725i \(0.305318\pi\)
\(684\) −7.35845 12.1349i −0.281358 0.463990i
\(685\) −0.417913 + 1.00893i −0.0159676 + 0.0385492i
\(686\) 25.0179 12.6736i 0.955186 0.483882i
\(687\) 16.1268 16.1268i 0.615274 0.615274i
\(688\) 19.2417 + 22.9605i 0.733582 + 0.875359i
\(689\) 17.8906 21.2670i 0.681577 0.810209i
\(690\) 11.7451 + 23.1849i 0.447128 + 0.882634i
\(691\) −9.80712 23.6765i −0.373080 0.900695i −0.993225 0.116208i \(-0.962926\pi\)
0.620145 0.784488i \(-0.287074\pi\)
\(692\) −10.3590 + 6.28158i −0.393791 + 0.238790i
\(693\) 5.92288 + 14.2991i 0.224992 + 0.543178i
\(694\) 6.21762 7.24552i 0.236017 0.275036i
\(695\) 77.6916 2.94701
\(696\) −17.2415 24.0844i −0.653539 0.912915i
\(697\) 31.4768i 1.19227i
\(698\) 8.15844 9.50721i 0.308801 0.359853i
\(699\) −4.95842 11.9707i −0.187545 0.452773i
\(700\) −39.9866 + 6.14173i −1.51135 + 0.232136i
\(701\) 9.09161 21.9491i 0.343386 0.829006i −0.653983 0.756509i \(-0.726903\pi\)
0.997369 0.0724969i \(-0.0230967\pi\)
\(702\) 6.19418 26.3972i 0.233784 0.996297i
\(703\) 8.26373i 0.311672i
\(704\) −22.3954 19.6774i −0.844058 0.741619i
\(705\) −44.2596 −1.66691
\(706\) 5.26459 + 1.72419i 0.198135 + 0.0648906i
\(707\) −10.9892 + 4.55186i −0.413290 + 0.171190i
\(708\) −20.3843 + 3.13093i −0.766091 + 0.117668i
\(709\) −40.1855 16.6454i −1.50920 0.625130i −0.533805 0.845608i \(-0.679238\pi\)
−0.975392 + 0.220478i \(0.929238\pi\)
\(710\) 23.2199 1.77283i 0.871427 0.0665333i
\(711\) −5.32489 5.32489i −0.199699 0.199699i
\(712\) −47.1108 7.80070i −1.76555 0.292344i
\(713\) −25.7520 −0.964419
\(714\) 0.882832 + 11.5630i 0.0330391 + 0.432734i
\(715\) −14.8982 + 47.0456i −0.557162 + 1.75940i
\(716\) 0.405691 + 0.669029i 0.0151614 + 0.0250028i
\(717\) 9.41760 3.90090i 0.351707 0.145682i
\(718\) 33.8426 17.1441i 1.26300 0.639813i
\(719\) 41.1238i 1.53366i 0.641851 + 0.766829i \(0.278167\pi\)
−0.641851 + 0.766829i \(0.721833\pi\)
\(720\) −16.4488 19.6278i −0.613010 0.731484i
\(721\) −3.62601 + 3.62601i −0.135040 + 0.135040i
\(722\) −1.06923 + 3.26476i −0.0397926 + 0.121502i
\(723\) 1.67225 0.692667i 0.0621915 0.0257606i
\(724\) −3.95728 0.969650i −0.147071 0.0360368i
\(725\) 30.3470 + 73.2641i 1.12706 + 2.72096i
\(726\) −2.98058 + 3.47333i −0.110620 + 0.128908i
\(727\) −20.2216 20.2216i −0.749977 0.749977i 0.224498 0.974475i \(-0.427926\pi\)
−0.974475 + 0.224498i \(0.927926\pi\)
\(728\) −7.51929 23.1058i −0.278683 0.856356i
\(729\) 13.5486 13.5486i 0.501799 0.501799i
\(730\) 0.289722 + 3.79466i 0.0107231 + 0.140447i
\(731\) −21.2405 + 8.79810i −0.785608 + 0.325410i
\(732\) 3.77145 + 24.5545i 0.139397 + 0.907560i
\(733\) −6.31994 15.2577i −0.233432 0.563555i 0.763145 0.646228i \(-0.223654\pi\)
−0.996577 + 0.0826725i \(0.973654\pi\)
\(734\) −22.6091 + 11.4534i −0.834519 + 0.422754i
\(735\) 3.85180 + 3.85180i 0.142076 + 0.142076i
\(736\) −0.295123 + 25.2462i −0.0108784 + 0.930586i
\(737\) 19.5275 0.719305
\(738\) 7.86720 24.0215i 0.289596 0.884245i
\(739\) 6.93010 + 16.7307i 0.254928 + 0.615450i 0.998589 0.0531067i \(-0.0169123\pi\)
−0.743661 + 0.668557i \(0.766912\pi\)
\(740\) −2.26384 14.7391i −0.0832206 0.541818i
\(741\) 14.6049 7.57962i 0.536526 0.278444i
\(742\) 16.9140 19.7102i 0.620932 0.723585i
\(743\) 47.4863i 1.74210i 0.491192 + 0.871051i \(0.336561\pi\)
−0.491192 + 0.871051i \(0.663439\pi\)
\(744\) −17.8198 + 4.14618i −0.653304 + 0.152006i
\(745\) −15.4167 + 15.4167i −0.564825 + 0.564825i
\(746\) −12.1528 + 14.1619i −0.444945 + 0.518505i
\(747\) −7.15729 + 17.2792i −0.261872 + 0.632214i
\(748\) 19.5634 11.8630i 0.715309 0.433754i
\(749\) 8.66153 + 20.9108i 0.316485 + 0.764063i
\(750\) −9.18284 18.1270i −0.335310 0.661903i
\(751\) 0.264621i 0.00965617i −0.999988 0.00482809i \(-0.998463\pi\)
0.999988 0.00482809i \(-0.00153683\pi\)
\(752\) −38.1252 19.8770i −1.39028 0.724839i
\(753\) −23.2106 −0.845842
\(754\) −40.4826 + 25.0947i −1.47429 + 0.913895i
\(755\) −25.1793 10.4296i −0.916370 0.379573i
\(756\) 6.03059 24.6117i 0.219330 0.895118i
\(757\) −8.14414 + 3.37342i −0.296004 + 0.122609i −0.525743 0.850643i \(-0.676213\pi\)
0.229739 + 0.973252i \(0.426213\pi\)
\(758\) −11.4374 + 0.873240i −0.415424 + 0.0317175i
\(759\) 18.6464 0.676822
\(760\) 6.90805 41.7198i 0.250581 1.51334i
\(761\) 43.4075i 1.57352i 0.617258 + 0.786761i \(0.288244\pi\)
−0.617258 + 0.786761i \(0.711756\pi\)
\(762\) −0.717024 9.39130i −0.0259750 0.340211i
\(763\) 6.49288 2.68944i 0.235058 0.0973642i
\(764\) −15.3177 11.2388i −0.554174 0.406604i
\(765\) 18.1575 7.52107i 0.656484 0.271925i
\(766\) −5.82960 + 17.8000i −0.210632 + 0.643138i
\(767\) 2.84899 + 33.0407i 0.102871 + 1.19303i
\(768\) 3.86052 + 17.5173i 0.139305 + 0.632099i
\(769\) −22.6166 22.6166i