Properties

Label 416.2.bi.a.99.4
Level $416$
Weight $2$
Character 416.99
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(99,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bi (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 99.4
Character \(\chi\) \(=\) 416.99
Dual form 416.2.bi.a.395.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37040 + 0.349306i) q^{2} +(-0.598132 + 1.44402i) q^{3} +(1.75597 - 0.957376i) q^{4} +(0.944556 - 2.28036i) q^{5} +(0.315273 - 2.18781i) q^{6} -3.99101 q^{7} +(-2.07196 + 1.92536i) q^{8} +(0.393895 + 0.393895i) q^{9} +O(q^{10})\) \(q+(-1.37040 + 0.349306i) q^{2} +(-0.598132 + 1.44402i) q^{3} +(1.75597 - 0.957376i) q^{4} +(0.944556 - 2.28036i) q^{5} +(0.315273 - 2.18781i) q^{6} -3.99101 q^{7} +(-2.07196 + 1.92536i) q^{8} +(0.393895 + 0.393895i) q^{9} +(-0.497872 + 3.45493i) q^{10} +(1.25590 + 0.520212i) q^{11} +(0.332166 + 3.10829i) q^{12} +(3.60343 - 0.123708i) q^{13} +(5.46926 - 1.39408i) q^{14} +(2.72791 + 2.72791i) q^{15} +(2.16686 - 3.36225i) q^{16} +2.50532 q^{17} +(-0.677382 - 0.402202i) q^{18} +(-0.0188665 - 0.0455478i) q^{19} +(-0.524549 - 4.90854i) q^{20} +(2.38715 - 5.76309i) q^{21} +(-1.90280 - 0.274202i) q^{22} +(2.76280 + 2.76280i) q^{23} +(-1.54094 - 4.14356i) q^{24} +(-0.772317 - 0.772317i) q^{25} +(-4.89491 + 1.42823i) q^{26} +(-5.13645 + 2.12759i) q^{27} +(-7.00809 + 3.82089i) q^{28} +(7.24960 + 3.00288i) q^{29} +(-4.69119 - 2.78544i) q^{30} +(6.59516 - 6.59516i) q^{31} +(-1.79501 + 5.36451i) q^{32} +(-1.50239 + 1.50239i) q^{33} +(-3.43329 + 0.875125i) q^{34} +(-3.76973 + 9.10093i) q^{35} +(1.06877 + 0.314563i) q^{36} +(2.30097 + 0.953092i) q^{37} +(0.0417647 + 0.0558283i) q^{38} +(-1.97669 + 5.27741i) q^{39} +(2.43342 + 6.54341i) q^{40} +7.91626i q^{41} +(-1.25826 + 8.73155i) q^{42} +(5.29406 - 2.19287i) q^{43} +(2.70337 - 0.288894i) q^{44} +(1.27028 - 0.526167i) q^{45} +(-4.75119 - 2.82106i) q^{46} +(-1.49919 + 1.49919i) q^{47} +(3.55907 + 5.14005i) q^{48} +8.92814 q^{49} +(1.32816 + 0.788605i) q^{50} +(-1.49851 + 3.61773i) q^{51} +(6.20908 - 3.66706i) q^{52} +(-7.29352 + 3.02108i) q^{53} +(6.29579 - 4.70983i) q^{54} +(2.37254 - 2.37254i) q^{55} +(8.26920 - 7.68411i) q^{56} +0.0770564 q^{57} +(-10.9837 - 1.58281i) q^{58} +(-4.15572 + 10.0328i) q^{59} +(7.40176 + 2.17849i) q^{60} +(-3.72929 - 1.54472i) q^{61} +(-6.73425 + 11.3417i) q^{62} +(-1.57204 - 1.57204i) q^{63} +(0.586014 - 7.97851i) q^{64} +(3.12154 - 8.33396i) q^{65} +(1.53408 - 2.58366i) q^{66} +(5.99293 - 2.48235i) q^{67} +(4.39927 - 2.39854i) q^{68} +(-5.64204 + 2.33701i) q^{69} +(1.98701 - 13.7887i) q^{70} -15.7489i q^{71} +(-1.57452 - 0.0577458i) q^{72} -10.3198 q^{73} +(-3.48616 - 0.502371i) q^{74} +(1.57719 - 0.653292i) q^{75} +(-0.0767354 - 0.0619182i) q^{76} +(-5.01232 - 2.07617i) q^{77} +(0.865413 - 7.92261i) q^{78} +11.8419 q^{79} +(-5.62041 - 8.11705i) q^{80} -7.01854i q^{81} +(-2.76520 - 10.8484i) q^{82} +(4.71040 + 11.3719i) q^{83} +(-1.32568 - 12.4052i) q^{84} +(2.36642 - 5.71304i) q^{85} +(-6.48897 + 4.85435i) q^{86} +(-8.67243 + 8.67243i) q^{87} +(-3.60377 + 1.34020i) q^{88} -12.7689i q^{89} +(-1.55699 + 1.16477i) q^{90} +(-14.3813 + 0.493721i) q^{91} +(7.49642 + 2.20635i) q^{92} +(5.57876 + 13.4683i) q^{93} +(1.53081 - 2.57816i) q^{94} -0.121686 q^{95} +(-6.67279 - 5.80070i) q^{96} +(-4.25886 - 4.25886i) q^{97} +(-12.2351 + 3.11866i) q^{98} +(0.289785 + 0.699603i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9} - 4 q^{11} + 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} + 4 q^{18} - 4 q^{19} - 20 q^{20} - 16 q^{21} - 24 q^{22} + 28 q^{24} - 4 q^{26} - 8 q^{27} - 24 q^{28} - 8 q^{29} + 16 q^{30} - 4 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} + 20 q^{39} - 8 q^{40} - 48 q^{42} + 32 q^{43} - 20 q^{44} + 4 q^{45} - 24 q^{46} - 8 q^{47} - 8 q^{48} + 168 q^{49} + 20 q^{50} - 4 q^{52} - 8 q^{53} + 20 q^{54} - 40 q^{55} - 56 q^{56} - 8 q^{57} + 32 q^{58} + 4 q^{59} - 36 q^{60} - 8 q^{61} - 72 q^{62} - 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} - 4 q^{70} + 56 q^{72} - 8 q^{73} - 8 q^{74} - 4 q^{76} - 56 q^{77} - 136 q^{78} - 16 q^{79} + 28 q^{80} + 88 q^{82} - 44 q^{83} + 44 q^{84} - 24 q^{85} + 64 q^{86} - 8 q^{87} - 64 q^{88} + 64 q^{90} + 16 q^{91} - 8 q^{92} + 56 q^{93} - 56 q^{94} - 28 q^{96} - 8 q^{97} - 76 q^{98} - 116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37040 + 0.349306i −0.969016 + 0.246997i
\(3\) −0.598132 + 1.44402i −0.345331 + 0.833704i 0.651827 + 0.758368i \(0.274003\pi\)
−0.997158 + 0.0753360i \(0.975997\pi\)
\(4\) 1.75597 0.957376i 0.877985 0.478688i
\(5\) 0.944556 2.28036i 0.422418 1.01981i −0.559214 0.829023i \(-0.688897\pi\)
0.981632 0.190784i \(-0.0611030\pi\)
\(6\) 0.315273 2.18781i 0.128710 0.893168i
\(7\) −3.99101 −1.50846 −0.754230 0.656611i \(-0.771989\pi\)
−0.754230 + 0.656611i \(0.771989\pi\)
\(8\) −2.07196 + 1.92536i −0.732548 + 0.680716i
\(9\) 0.393895 + 0.393895i 0.131298 + 0.131298i
\(10\) −0.497872 + 3.45493i −0.157441 + 1.09255i
\(11\) 1.25590 + 0.520212i 0.378669 + 0.156850i 0.563896 0.825846i \(-0.309302\pi\)
−0.185227 + 0.982696i \(0.559302\pi\)
\(12\) 0.332166 + 3.10829i 0.0958881 + 0.897286i
\(13\) 3.60343 0.123708i 0.999411 0.0343105i
\(14\) 5.46926 1.39408i 1.46172 0.372585i
\(15\) 2.72791 + 2.72791i 0.704343 + 0.704343i
\(16\) 2.16686 3.36225i 0.541716 0.840562i
\(17\) 2.50532 0.607630 0.303815 0.952731i \(-0.401739\pi\)
0.303815 + 0.952731i \(0.401739\pi\)
\(18\) −0.677382 0.402202i −0.159661 0.0948000i
\(19\) −0.0188665 0.0455478i −0.00432827 0.0104494i 0.921701 0.387902i \(-0.126800\pi\)
−0.926029 + 0.377453i \(0.876800\pi\)
\(20\) −0.524549 4.90854i −0.117293 1.09758i
\(21\) 2.38715 5.76309i 0.520918 1.25761i
\(22\) −1.90280 0.274202i −0.405678 0.0584600i
\(23\) 2.76280 + 2.76280i 0.576083 + 0.576083i 0.933822 0.357739i \(-0.116452\pi\)
−0.357739 + 0.933822i \(0.616452\pi\)
\(24\) −1.54094 4.14356i −0.314544 0.845800i
\(25\) −0.772317 0.772317i −0.154463 0.154463i
\(26\) −4.89491 + 1.42823i −0.959971 + 0.280099i
\(27\) −5.13645 + 2.12759i −0.988509 + 0.409454i
\(28\) −7.00809 + 3.82089i −1.32440 + 0.722081i
\(29\) 7.24960 + 3.00288i 1.34622 + 0.557621i 0.935237 0.354023i \(-0.115187\pi\)
0.410980 + 0.911644i \(0.365187\pi\)
\(30\) −4.69119 2.78544i −0.856491 0.508550i
\(31\) 6.59516 6.59516i 1.18453 1.18453i 0.205968 0.978559i \(-0.433966\pi\)
0.978559 0.205968i \(-0.0660342\pi\)
\(32\) −1.79501 + 5.36451i −0.317315 + 0.948320i
\(33\) −1.50239 + 1.50239i −0.261533 + 0.261533i
\(34\) −3.43329 + 0.875125i −0.588804 + 0.150083i
\(35\) −3.76973 + 9.10093i −0.637200 + 1.53834i
\(36\) 1.06877 + 0.314563i 0.178129 + 0.0524271i
\(37\) 2.30097 + 0.953092i 0.378277 + 0.156687i 0.563717 0.825968i \(-0.309371\pi\)
−0.185440 + 0.982656i \(0.559371\pi\)
\(38\) 0.0417647 + 0.0558283i 0.00677513 + 0.00905655i
\(39\) −1.97669 + 5.27741i −0.316523 + 0.845062i
\(40\) 2.43342 + 6.54341i 0.384758 + 1.03460i
\(41\) 7.91626i 1.23631i 0.786055 + 0.618156i \(0.212120\pi\)
−0.786055 + 0.618156i \(0.787880\pi\)
\(42\) −1.25826 + 8.73155i −0.194153 + 1.34731i
\(43\) 5.29406 2.19287i 0.807336 0.334410i 0.0594456 0.998232i \(-0.481067\pi\)
0.747891 + 0.663822i \(0.231067\pi\)
\(44\) 2.70337 0.288894i 0.407548 0.0435524i
\(45\) 1.27028 0.526167i 0.189362 0.0784363i
\(46\) −4.75119 2.82106i −0.700525 0.415943i
\(47\) −1.49919 + 1.49919i −0.218679 + 0.218679i −0.807942 0.589263i \(-0.799418\pi\)
0.589263 + 0.807942i \(0.299418\pi\)
\(48\) 3.55907 + 5.14005i 0.513708 + 0.741903i
\(49\) 8.92814 1.27545
\(50\) 1.32816 + 0.788605i 0.187830 + 0.111526i
\(51\) −1.49851 + 3.61773i −0.209834 + 0.506584i
\(52\) 6.20908 3.66706i 0.861044 0.508530i
\(53\) −7.29352 + 3.02108i −1.00184 + 0.414977i −0.822472 0.568805i \(-0.807406\pi\)
−0.179370 + 0.983782i \(0.557406\pi\)
\(54\) 6.29579 4.70983i 0.856748 0.640926i
\(55\) 2.37254 2.37254i 0.319913 0.319913i
\(56\) 8.26920 7.68411i 1.10502 1.02683i
\(57\) 0.0770564 0.0102064
\(58\) −10.9837 1.58281i −1.44224 0.207833i
\(59\) −4.15572 + 10.0328i −0.541029 + 1.30616i 0.382968 + 0.923762i \(0.374902\pi\)
−0.923997 + 0.382399i \(0.875098\pi\)
\(60\) 7.40176 + 2.17849i 0.955563 + 0.281242i
\(61\) −3.72929 1.54472i −0.477487 0.197781i 0.130942 0.991390i \(-0.458200\pi\)
−0.608429 + 0.793609i \(0.708200\pi\)
\(62\) −6.73425 + 11.3417i −0.855251 + 1.44040i
\(63\) −1.57204 1.57204i −0.198058 0.198058i
\(64\) 0.586014 7.97851i 0.0732517 0.997313i
\(65\) 3.12154 8.33396i 0.387179 1.03370i
\(66\) 1.53408 2.58366i 0.188832 0.318027i
\(67\) 5.99293 2.48235i 0.732153 0.303268i 0.0147163 0.999892i \(-0.495315\pi\)
0.717436 + 0.696624i \(0.245315\pi\)
\(68\) 4.39927 2.39854i 0.533490 0.290865i
\(69\) −5.64204 + 2.33701i −0.679222 + 0.281343i
\(70\) 1.98701 13.7887i 0.237493 1.64806i
\(71\) 15.7489i 1.86905i −0.355897 0.934525i \(-0.615825\pi\)
0.355897 0.934525i \(-0.384175\pi\)
\(72\) −1.57452 0.0577458i −0.185559 0.00680540i
\(73\) −10.3198 −1.20784 −0.603920 0.797045i \(-0.706395\pi\)
−0.603920 + 0.797045i \(0.706395\pi\)
\(74\) −3.48616 0.502371i −0.405258 0.0583994i
\(75\) 1.57719 0.653292i 0.182118 0.0754357i
\(76\) −0.0767354 0.0619182i −0.00880215 0.00710250i
\(77\) −5.01232 2.07617i −0.571207 0.236602i
\(78\) 0.865413 7.92261i 0.0979887 0.897059i
\(79\) 11.8419 1.33231 0.666157 0.745811i \(-0.267938\pi\)
0.666157 + 0.745811i \(0.267938\pi\)
\(80\) −5.62041 8.11705i −0.628381 0.907514i
\(81\) 7.01854i 0.779837i
\(82\) −2.76520 10.8484i −0.305365 1.19801i
\(83\) 4.71040 + 11.3719i 0.517034 + 1.24823i 0.939717 + 0.341952i \(0.111088\pi\)
−0.422684 + 0.906277i \(0.638912\pi\)
\(84\) −1.32568 12.4052i −0.144643 1.35352i
\(85\) 2.36642 5.71304i 0.256674 0.619666i
\(86\) −6.48897 + 4.85435i −0.699724 + 0.523458i
\(87\) −8.67243 + 8.67243i −0.929782 + 0.929782i
\(88\) −3.60377 + 1.34020i −0.384163 + 0.142866i
\(89\) 12.7689i 1.35350i −0.736213 0.676749i \(-0.763388\pi\)
0.736213 0.676749i \(-0.236612\pi\)
\(90\) −1.55699 + 1.16477i −0.164121 + 0.122778i
\(91\) −14.3813 + 0.493721i −1.50757 + 0.0517560i
\(92\) 7.49642 + 2.20635i 0.781556 + 0.230028i
\(93\) 5.57876 + 13.4683i 0.578490 + 1.39660i
\(94\) 1.53081 2.57816i 0.157890 0.265917i
\(95\) −0.121686 −0.0124847
\(96\) −6.67279 5.80070i −0.681039 0.592032i
\(97\) −4.25886 4.25886i −0.432421 0.432421i 0.457030 0.889451i \(-0.348913\pi\)
−0.889451 + 0.457030i \(0.848913\pi\)
\(98\) −12.2351 + 3.11866i −1.23593 + 0.315032i
\(99\) 0.289785 + 0.699603i 0.0291245 + 0.0703128i
\(100\) −2.09556 0.616768i −0.209556 0.0616768i
\(101\) 3.07479 1.27362i 0.305953 0.126730i −0.224425 0.974491i \(-0.572050\pi\)
0.530377 + 0.847762i \(0.322050\pi\)
\(102\) 0.789861 5.48116i 0.0782078 0.542716i
\(103\) 8.07721 8.07721i 0.795871 0.795871i −0.186570 0.982442i \(-0.559737\pi\)
0.982442 + 0.186570i \(0.0597372\pi\)
\(104\) −7.22797 + 7.19420i −0.708760 + 0.705449i
\(105\) −10.8871 10.8871i −1.06247 1.06247i
\(106\) 8.93973 6.68774i 0.868304 0.649571i
\(107\) 1.31983 + 3.18634i 0.127592 + 0.308035i 0.974747 0.223311i \(-0.0716864\pi\)
−0.847155 + 0.531346i \(0.821686\pi\)
\(108\) −6.98255 + 8.65348i −0.671896 + 0.832682i
\(109\) −8.80704 + 3.64800i −0.843562 + 0.349415i −0.762257 0.647274i \(-0.775909\pi\)
−0.0813049 + 0.996689i \(0.525909\pi\)
\(110\) −2.42258 + 4.08006i −0.230984 + 0.389019i
\(111\) −2.75256 + 2.75256i −0.261262 + 0.261262i
\(112\) −8.64797 + 13.4188i −0.817156 + 1.26795i
\(113\) 2.59394i 0.244018i −0.992529 0.122009i \(-0.961066\pi\)
0.992529 0.122009i \(-0.0389336\pi\)
\(114\) −0.105598 + 0.0269163i −0.00989014 + 0.00252094i
\(115\) 8.90978 3.69055i 0.830842 0.344146i
\(116\) 15.6050 1.66762i 1.44888 0.154834i
\(117\) 1.46810 + 1.37065i 0.135726 + 0.126716i
\(118\) 2.19047 15.2005i 0.201649 1.39932i
\(119\) −9.99877 −0.916585
\(120\) −10.9043 0.399917i −0.995422 0.0365072i
\(121\) −6.47150 6.47150i −0.588318 0.588318i
\(122\) 5.65019 + 0.814217i 0.511544 + 0.0737158i
\(123\) −11.4312 4.73497i −1.03072 0.426938i
\(124\) 5.26686 17.8950i 0.472978 1.60702i
\(125\) 8.91114 3.69111i 0.797036 0.330143i
\(126\) 2.70344 + 1.60519i 0.240841 + 0.143002i
\(127\) 4.63435 0.411232 0.205616 0.978633i \(-0.434080\pi\)
0.205616 + 0.978633i \(0.434080\pi\)
\(128\) 1.98387 + 11.1384i 0.175351 + 0.984506i
\(129\) 8.95634i 0.788562i
\(130\) −1.36664 + 12.5112i −0.119862 + 1.09730i
\(131\) −4.94654 + 11.9420i −0.432181 + 1.04338i 0.546402 + 0.837523i \(0.315997\pi\)
−0.978583 + 0.205854i \(0.934003\pi\)
\(132\) −1.19980 + 4.07651i −0.104429 + 0.354814i
\(133\) 0.0752964 + 0.181782i 0.00652902 + 0.0157625i
\(134\) −7.34558 + 5.49517i −0.634562 + 0.474711i
\(135\) 13.7226i 1.18105i
\(136\) −5.19092 + 4.82364i −0.445118 + 0.413624i
\(137\) 6.00387 0.512945 0.256472 0.966552i \(-0.417440\pi\)
0.256472 + 0.966552i \(0.417440\pi\)
\(138\) 6.91550 5.17343i 0.588687 0.440392i
\(139\) −1.26567 3.05560i −0.107353 0.259173i 0.861070 0.508487i \(-0.169795\pi\)
−0.968423 + 0.249314i \(0.919795\pi\)
\(140\) 2.09348 + 19.5900i 0.176931 + 1.65566i
\(141\) −1.26814 3.06156i −0.106797 0.257830i
\(142\) 5.50119 + 21.5822i 0.461650 + 1.81114i
\(143\) 4.58991 + 1.71918i 0.383828 + 0.143765i
\(144\) 2.17789 0.470856i 0.181491 0.0392380i
\(145\) 13.6953 13.6953i 1.13733 1.13733i
\(146\) 14.1422 3.60477i 1.17042 0.298333i
\(147\) −5.34020 + 12.8924i −0.440453 + 1.06335i
\(148\) 4.95290 0.529289i 0.407126 0.0435073i
\(149\) 4.67896 + 1.93809i 0.383315 + 0.158774i 0.566016 0.824394i \(-0.308484\pi\)
−0.182701 + 0.983169i \(0.558484\pi\)
\(150\) −1.93317 + 1.44619i −0.157843 + 0.118081i
\(151\) 12.5444i 1.02085i −0.859922 0.510426i \(-0.829488\pi\)
0.859922 0.510426i \(-0.170512\pi\)
\(152\) 0.126786 + 0.0580483i 0.0102837 + 0.00470834i
\(153\) 0.986835 + 0.986835i 0.0797809 + 0.0797809i
\(154\) 7.59408 + 1.09434i 0.611948 + 0.0881845i
\(155\) −8.80984 21.2688i −0.707624 1.70835i
\(156\) 1.58146 + 11.1594i 0.126618 + 0.893467i
\(157\) −20.7501 8.59498i −1.65604 0.685954i −0.658275 0.752778i \(-0.728714\pi\)
−0.997765 + 0.0668236i \(0.978714\pi\)
\(158\) −16.2281 + 4.13644i −1.29103 + 0.329077i
\(159\) 12.3390i 0.978545i
\(160\) 10.5375 + 9.16034i 0.833064 + 0.724188i
\(161\) −11.0263 11.0263i −0.868998 0.868998i
\(162\) 2.45162 + 9.61818i 0.192617 + 0.755675i
\(163\) −4.15971 10.0424i −0.325814 0.786584i −0.998894 0.0470148i \(-0.985029\pi\)
0.673080 0.739569i \(-0.264971\pi\)
\(164\) 7.57884 + 13.9007i 0.591808 + 1.08546i
\(165\) 2.00690 + 4.84508i 0.156237 + 0.377189i
\(166\) −10.4274 13.9387i −0.809323 1.08185i
\(167\) 11.0815 0.857510 0.428755 0.903421i \(-0.358952\pi\)
0.428755 + 0.903421i \(0.358952\pi\)
\(168\) 6.14992 + 16.5370i 0.474476 + 1.27586i
\(169\) 12.9694 0.891548i 0.997646 0.0685806i
\(170\) −1.24733 + 8.65573i −0.0956658 + 0.663864i
\(171\) 0.0105096 0.0253725i 0.000803691 0.00194028i
\(172\) 7.19681 8.91902i 0.548751 0.680069i
\(173\) −20.4716 8.47961i −1.55643 0.644693i −0.571963 0.820280i \(-0.693818\pi\)
−0.984464 + 0.175587i \(0.943818\pi\)
\(174\) 8.85533 14.9140i 0.671321 1.13063i
\(175\) 3.08232 + 3.08232i 0.233002 + 0.233002i
\(176\) 4.47045 3.09543i 0.336973 0.233327i
\(177\) −12.0019 12.0019i −0.902116 0.902116i
\(178\) 4.46025 + 17.4984i 0.334310 + 1.31156i
\(179\) −3.12282 + 7.53915i −0.233411 + 0.563503i −0.996574 0.0827023i \(-0.973645\pi\)
0.763164 + 0.646205i \(0.223645\pi\)
\(180\) 1.72683 2.14007i 0.128710 0.159511i
\(181\) 5.96815 + 14.4084i 0.443609 + 1.07097i 0.974673 + 0.223636i \(0.0717926\pi\)
−0.531063 + 0.847332i \(0.678207\pi\)
\(182\) 19.5356 5.70007i 1.44808 0.422518i
\(183\) 4.46121 4.46121i 0.329782 0.329782i
\(184\) −11.0438 0.405031i −0.814157 0.0298593i
\(185\) 4.34678 4.34678i 0.319582 0.319582i
\(186\) −12.3497 16.5082i −0.905522 1.21044i
\(187\) 3.14644 + 1.30330i 0.230091 + 0.0953067i
\(188\) −1.19724 + 4.06781i −0.0873179 + 0.296676i
\(189\) 20.4996 8.49121i 1.49113 0.617645i
\(190\) 0.166758 0.0425056i 0.0120979 0.00308368i
\(191\) 3.48429i 0.252114i 0.992023 + 0.126057i \(0.0402323\pi\)
−0.992023 + 0.126057i \(0.959768\pi\)
\(192\) 11.1706 + 5.61841i 0.806168 + 0.405474i
\(193\) −4.18981 + 4.18981i −0.301589 + 0.301589i −0.841635 0.540046i \(-0.818407\pi\)
0.540046 + 0.841635i \(0.318407\pi\)
\(194\) 7.32396 + 4.34867i 0.525830 + 0.312217i
\(195\) 10.1673 + 9.49236i 0.728095 + 0.679762i
\(196\) 15.6776 8.54759i 1.11983 0.610542i
\(197\) −5.95330 + 14.3725i −0.424155 + 1.02400i 0.556953 + 0.830544i \(0.311970\pi\)
−0.981109 + 0.193458i \(0.938030\pi\)
\(198\) −0.641496 0.857510i −0.0455891 0.0609406i
\(199\) −14.0679 + 14.0679i −0.997248 + 0.997248i −0.999996 0.00274833i \(-0.999125\pi\)
0.00274833 + 0.999996i \(0.499125\pi\)
\(200\) 3.08719 + 0.113223i 0.218298 + 0.00800609i
\(201\) 10.1387i 0.715126i
\(202\) −3.76879 + 2.81940i −0.265171 + 0.198372i
\(203\) −28.9332 11.9845i −2.03071 0.841149i
\(204\) 0.832183 + 7.78727i 0.0582645 + 0.545218i
\(205\) 18.0519 + 7.47735i 1.26080 + 0.522241i
\(206\) −8.24756 + 13.8904i −0.574635 + 0.967790i
\(207\) 2.17651i 0.151278i
\(208\) 7.39220 12.3837i 0.512557 0.858653i
\(209\) 0.0670182i 0.00463574i
\(210\) 18.7226 + 11.1167i 1.29198 + 0.767126i
\(211\) −9.31229 3.85728i −0.641084 0.265546i 0.0383700 0.999264i \(-0.487783\pi\)
−0.679454 + 0.733718i \(0.737783\pi\)
\(212\) −9.91491 + 12.2876i −0.680959 + 0.843913i
\(213\) 22.7417 + 9.41992i 1.55823 + 0.645442i
\(214\) −2.92169 3.90553i −0.199723 0.266976i
\(215\) 14.1436i 0.964588i
\(216\) 6.54614 14.2977i 0.445408 0.972839i
\(217\) −26.3214 + 26.3214i −1.78681 + 1.78681i
\(218\) 10.7949 8.07556i 0.731121 0.546946i
\(219\) 6.17259 14.9020i 0.417105 1.00698i
\(220\) 1.89470 6.43752i 0.127740 0.434018i
\(221\) 9.02775 0.309929i 0.607273 0.0208481i
\(222\) 2.81061 4.73359i 0.188636 0.317698i
\(223\) −3.57447 + 3.57447i −0.239364 + 0.239364i −0.816587 0.577223i \(-0.804136\pi\)
0.577223 + 0.816587i \(0.304136\pi\)
\(224\) 7.16389 21.4098i 0.478657 1.43050i
\(225\) 0.608424i 0.0405616i
\(226\) 0.906080 + 3.55473i 0.0602715 + 0.236457i
\(227\) 10.8096 4.47750i 0.717462 0.297182i 0.00607335 0.999982i \(-0.498067\pi\)
0.711388 + 0.702799i \(0.248067\pi\)
\(228\) 0.135309 0.0737720i 0.00896104 0.00488567i
\(229\) 14.4414 + 5.98182i 0.954313 + 0.395290i 0.804850 0.593478i \(-0.202246\pi\)
0.149463 + 0.988767i \(0.452246\pi\)
\(230\) −10.9208 + 8.16976i −0.720096 + 0.538698i
\(231\) 5.99605 5.99605i 0.394511 0.394511i
\(232\) −20.8025 + 7.73621i −1.36575 + 0.507907i
\(233\) −10.5598 + 10.5598i −0.691799 + 0.691799i −0.962628 0.270829i \(-0.912702\pi\)
0.270829 + 0.962628i \(0.412702\pi\)
\(234\) −2.49066 1.36551i −0.162819 0.0892661i
\(235\) 2.00262 + 4.83475i 0.130637 + 0.315384i
\(236\) 2.30784 + 21.5959i 0.150227 + 1.40577i
\(237\) −7.08300 + 17.0999i −0.460090 + 1.11076i
\(238\) 13.7023 3.49263i 0.888186 0.226394i
\(239\) 13.1406 + 13.1406i 0.849992 + 0.849992i 0.990132 0.140140i \(-0.0447552\pi\)
−0.140140 + 0.990132i \(0.544755\pi\)
\(240\) 15.0829 3.26090i 0.973598 0.210490i
\(241\) −3.83639 3.83639i −0.247124 0.247124i 0.572665 0.819789i \(-0.305909\pi\)
−0.819789 + 0.572665i \(0.805909\pi\)
\(242\) 11.1291 + 6.60799i 0.715403 + 0.424777i
\(243\) −5.27445 2.18475i −0.338356 0.140152i
\(244\) −8.02740 + 0.857845i −0.513902 + 0.0549179i
\(245\) 8.43313 20.3594i 0.538773 1.30071i
\(246\) 17.3193 + 2.49578i 1.10424 + 0.159125i
\(247\) −0.0736187 0.161794i −0.00468425 0.0102947i
\(248\) −0.966863 + 26.3629i −0.0613959 + 1.67405i
\(249\) −19.2387 −1.21920
\(250\) −10.9225 + 8.17100i −0.690797 + 0.516780i
\(251\) 0.445627 + 1.07584i 0.0281277 + 0.0679064i 0.937319 0.348472i \(-0.113299\pi\)
−0.909192 + 0.416378i \(0.863299\pi\)
\(252\) −4.26549 1.25542i −0.268700 0.0790841i
\(253\) 2.03256 + 4.90705i 0.127786 + 0.308503i
\(254\) −6.35090 + 1.61881i −0.398491 + 0.101573i
\(255\) 6.83430 + 6.83430i 0.427980 + 0.427980i
\(256\) −6.60941 14.5711i −0.413088 0.910691i
\(257\) 2.06870i 0.129042i 0.997916 + 0.0645210i \(0.0205519\pi\)
−0.997916 + 0.0645210i \(0.979448\pi\)
\(258\) −3.12850 12.2737i −0.194772 0.764129i
\(259\) −9.18318 3.80380i −0.570615 0.236356i
\(260\) −2.49740 17.6227i −0.154882 1.09291i
\(261\) 1.67276 + 4.03840i 0.103541 + 0.249971i
\(262\) 2.60730 18.0931i 0.161080 1.11780i
\(263\) −6.83532 6.83532i −0.421484 0.421484i 0.464231 0.885714i \(-0.346331\pi\)
−0.885714 + 0.464231i \(0.846331\pi\)
\(264\) 0.220253 6.00552i 0.0135557 0.369615i
\(265\) 19.4854i 1.19698i
\(266\) −0.166683 0.222811i −0.0102200 0.0136614i
\(267\) 18.4385 + 7.63747i 1.12842 + 0.467406i
\(268\) 8.14686 10.0964i 0.497649 0.616737i
\(269\) 3.61403 8.72505i 0.220352 0.531976i −0.774586 0.632468i \(-0.782042\pi\)
0.994938 + 0.100493i \(0.0320419\pi\)
\(270\) −4.79338 18.8053i −0.291716 1.14446i
\(271\) −9.77094 + 9.77094i −0.593543 + 0.593543i −0.938587 0.345044i \(-0.887864\pi\)
0.345044 + 0.938587i \(0.387864\pi\)
\(272\) 5.42869 8.42352i 0.329163 0.510751i
\(273\) 7.88898 21.0622i 0.477463 1.27474i
\(274\) −8.22767 + 2.09719i −0.497052 + 0.126696i
\(275\) −0.568187 1.37172i −0.0342630 0.0827181i
\(276\) −7.66986 + 9.50528i −0.461672 + 0.572151i
\(277\) 8.70567 + 21.0174i 0.523073 + 1.26281i 0.935985 + 0.352039i \(0.114512\pi\)
−0.412912 + 0.910771i \(0.635488\pi\)
\(278\) 2.80181 + 3.74528i 0.168042 + 0.224627i
\(279\) 5.19561 0.311053
\(280\) −9.71181 26.1148i −0.580392 1.56066i
\(281\) 19.4402i 1.15970i 0.814722 + 0.579851i \(0.196889\pi\)
−0.814722 + 0.579851i \(0.803111\pi\)
\(282\) 2.80728 + 3.75259i 0.167171 + 0.223463i
\(283\) 0.871315 + 2.10354i 0.0517943 + 0.125042i 0.947659 0.319285i \(-0.103443\pi\)
−0.895864 + 0.444327i \(0.853443\pi\)
\(284\) −15.0776 27.6546i −0.894692 1.64100i
\(285\) 0.0727841 0.175716i 0.00431136 0.0104085i
\(286\) −6.89052 0.752674i −0.407445 0.0445066i
\(287\) 31.5939i 1.86493i
\(288\) −2.82010 + 1.40601i −0.166176 + 0.0828499i
\(289\) −10.7234 −0.630785
\(290\) −13.9841 + 23.5518i −0.821176 + 1.38301i
\(291\) 8.69722 3.60251i 0.509840 0.211183i
\(292\) −18.1212 + 9.87991i −1.06047 + 0.578178i
\(293\) −10.1294 4.19575i −0.591769 0.245119i 0.0666427 0.997777i \(-0.478771\pi\)
−0.658411 + 0.752658i \(0.728771\pi\)
\(294\) 2.81480 19.5331i 0.164163 1.13919i
\(295\) 18.9531 + 18.9531i 1.10349 + 1.10349i
\(296\) −6.60255 + 2.45541i −0.383765 + 0.142718i
\(297\) −7.55767 −0.438541
\(298\) −7.08901 1.02156i −0.410656 0.0591773i
\(299\) 10.2973 + 9.61376i 0.595510 + 0.555978i
\(300\) 2.14405 2.65712i 0.123787 0.153409i
\(301\) −21.1286 + 8.75176i −1.21783 + 0.504443i
\(302\) 4.38185 + 17.1908i 0.252147 + 0.989221i
\(303\) 5.20183i 0.298838i
\(304\) −0.194024 0.0352619i −0.0111280 0.00202241i
\(305\) −7.04504 + 7.04504i −0.403398 + 0.403398i
\(306\) −1.69706 1.00765i −0.0970146 0.0576034i
\(307\) −17.0226 + 7.05097i −0.971528 + 0.402420i −0.811281 0.584657i \(-0.801229\pi\)
−0.160248 + 0.987077i \(0.551229\pi\)
\(308\) −10.7892 + 1.15298i −0.614769 + 0.0656971i
\(309\) 6.83240 + 16.4949i 0.388682 + 0.938360i
\(310\) 19.5023 + 26.0694i 1.10766 + 1.48064i
\(311\) −13.6580 13.6580i −0.774475 0.774475i 0.204411 0.978885i \(-0.434472\pi\)
−0.978885 + 0.204411i \(0.934472\pi\)
\(312\) −6.06527 14.7404i −0.343378 0.834510i
\(313\) 16.6480 16.6480i 0.940998 0.940998i −0.0573554 0.998354i \(-0.518267\pi\)
0.998354 + 0.0573554i \(0.0182668\pi\)
\(314\) 31.4382 + 4.53038i 1.77416 + 0.255664i
\(315\) −5.06969 + 2.09993i −0.285645 + 0.118318i
\(316\) 20.7940 11.3371i 1.16975 0.637763i
\(317\) −13.2372 31.9574i −0.743475 1.79491i −0.591123 0.806582i \(-0.701315\pi\)
−0.152352 0.988326i \(-0.548685\pi\)
\(318\) 4.31008 + 16.9093i 0.241697 + 0.948226i
\(319\) 7.54266 + 7.54266i 0.422308 + 0.422308i
\(320\) −17.6403 8.87246i −0.986125 0.495986i
\(321\) −5.39057 −0.300872
\(322\) 18.9620 + 11.2589i 1.05671 + 0.627433i
\(323\) −0.0472667 0.114112i −0.00262999 0.00634936i
\(324\) −6.71938 12.3243i −0.373299 0.684686i
\(325\) −2.87853 2.68745i −0.159672 0.149073i
\(326\) 9.20834 + 12.3091i 0.510003 + 0.681738i
\(327\) 14.8995i 0.823945i
\(328\) −15.2416 16.4022i −0.841577 0.905657i
\(329\) 5.98327 5.98327i 0.329868 0.329868i
\(330\) −4.44266 5.93866i −0.244561 0.326912i
\(331\) 5.15554 12.4466i 0.283374 0.684126i −0.716536 0.697551i \(-0.754273\pi\)
0.999910 + 0.0134245i \(0.00427327\pi\)
\(332\) 19.1585 + 15.4591i 1.05146 + 0.848429i
\(333\) 0.530922 + 1.28176i 0.0290943 + 0.0702399i
\(334\) −15.1860 + 3.87083i −0.830941 + 0.211802i
\(335\) 16.0107i 0.874760i
\(336\) −14.2043 20.5140i −0.774908 1.11913i
\(337\) 21.0080 1.14438 0.572190 0.820121i \(-0.306094\pi\)
0.572190 + 0.820121i \(0.306094\pi\)
\(338\) −17.4618 + 5.75206i −0.949796 + 0.312871i
\(339\) 3.74570 + 1.55152i 0.203438 + 0.0842669i
\(340\) −1.31416 12.2975i −0.0712706 0.666924i
\(341\) 11.7138 4.85200i 0.634336 0.262751i
\(342\) −0.00553958 + 0.0384414i −0.000299546 + 0.00207867i
\(343\) −7.69523 −0.415503
\(344\) −6.74701 + 14.7365i −0.363774 + 0.794538i
\(345\) 15.0733i 0.811520i
\(346\) 31.0162 + 4.46957i 1.66744 + 0.240286i
\(347\) 7.24218 2.99981i 0.388781 0.161038i −0.179726 0.983717i \(-0.557521\pi\)
0.568507 + 0.822678i \(0.307521\pi\)
\(348\) −6.92575 + 23.5313i −0.371259 + 1.26141i
\(349\) −21.3656 + 8.84992i −1.14367 + 0.473726i −0.872408 0.488779i \(-0.837443\pi\)
−0.271267 + 0.962504i \(0.587443\pi\)
\(350\) −5.30068 3.14733i −0.283333 0.168232i
\(351\) −18.2456 + 8.30202i −0.973879 + 0.443129i
\(352\) −5.04504 + 5.80352i −0.268901 + 0.309329i
\(353\) −11.0991 11.0991i −0.590746 0.590746i 0.347087 0.937833i \(-0.387171\pi\)
−0.937833 + 0.347087i \(0.887171\pi\)
\(354\) 20.6397 + 12.2550i 1.09699 + 0.651346i
\(355\) −35.9131 14.8757i −1.90607 0.789521i
\(356\) −12.2246 22.4218i −0.647904 1.18835i
\(357\) 5.98058 14.4384i 0.316526 0.764161i
\(358\) 1.64603 11.4224i 0.0869952 0.603695i
\(359\) −33.1007 −1.74699 −0.873495 0.486832i \(-0.838152\pi\)
−0.873495 + 0.486832i \(0.838152\pi\)
\(360\) −1.61890 + 3.53593i −0.0853238 + 0.186360i
\(361\) 13.4333 13.4333i 0.707016 0.707016i
\(362\) −13.2117 17.6605i −0.694390 0.928215i
\(363\) 13.2158 5.47415i 0.693648 0.287319i
\(364\) −24.7805 + 14.6353i −1.29885 + 0.767097i
\(365\) −9.74761 + 23.5328i −0.510213 + 1.23176i
\(366\) −4.55530 + 7.67196i −0.238109 + 0.401020i
\(367\) −12.6816 −0.661975 −0.330988 0.943635i \(-0.607382\pi\)
−0.330988 + 0.943635i \(0.607382\pi\)
\(368\) 15.2758 3.30260i 0.796307 0.172160i
\(369\) −3.11818 + 3.11818i −0.162326 + 0.162326i
\(370\) −4.43846 + 7.47517i −0.230744 + 0.388616i
\(371\) 29.1085 12.0571i 1.51124 0.625975i
\(372\) 22.6904 + 18.3090i 1.17644 + 0.949277i
\(373\) 24.9962 10.3538i 1.29425 0.536098i 0.374004 0.927427i \(-0.377985\pi\)
0.920251 + 0.391329i \(0.127985\pi\)
\(374\) −4.76712 0.686964i −0.246502 0.0355221i
\(375\) 15.0756i 0.778501i
\(376\) 0.219784 5.99272i 0.0113345 0.309051i
\(377\) 26.4949 + 9.92383i 1.36456 + 0.511103i
\(378\) −25.1265 + 18.7970i −1.29237 + 0.966811i
\(379\) 5.57935 + 2.31104i 0.286592 + 0.118710i 0.521348 0.853344i \(-0.325429\pi\)
−0.234756 + 0.972054i \(0.575429\pi\)
\(380\) −0.213677 + 0.116499i −0.0109614 + 0.00597627i
\(381\) −2.77195 + 6.69209i −0.142011 + 0.342846i
\(382\) −1.21708 4.77486i −0.0622714 0.244303i
\(383\) 19.7375 19.7375i 1.00854 1.00854i 0.00857352 0.999963i \(-0.497271\pi\)
0.999963 0.00857352i \(-0.00272907\pi\)
\(384\) −17.2707 3.79749i −0.881341 0.193790i
\(385\) −9.46883 + 9.46883i −0.482576 + 0.482576i
\(386\) 4.27817 7.20523i 0.217753 0.366736i
\(387\) 2.94907 + 1.22154i 0.149909 + 0.0620945i
\(388\) −11.5558 3.40110i −0.586654 0.172665i
\(389\) 7.16766 2.96894i 0.363415 0.150531i −0.193501 0.981100i \(-0.561984\pi\)
0.556916 + 0.830569i \(0.311984\pi\)
\(390\) −17.2490 9.45680i −0.873435 0.478863i
\(391\) 6.92170 + 6.92170i 0.350045 + 0.350045i
\(392\) −18.4987 + 17.1898i −0.934327 + 0.868218i
\(393\) −14.2858 14.2858i −0.720622 0.720622i
\(394\) 3.13796 21.7756i 0.158088 1.09704i
\(395\) 11.1853 27.0037i 0.562794 1.35870i
\(396\) 1.17864 + 0.951049i 0.0592287 + 0.0477920i
\(397\) −6.15623 14.8625i −0.308973 0.745926i −0.999739 0.0228477i \(-0.992727\pi\)
0.690766 0.723078i \(-0.257273\pi\)
\(398\) 14.3646 24.1926i 0.720032 1.21267i
\(399\) −0.307533 −0.0153959
\(400\) −4.27023 + 0.923215i −0.213511 + 0.0461608i
\(401\) 6.79073 + 6.79073i 0.339113 + 0.339113i 0.856033 0.516921i \(-0.172922\pi\)
−0.516921 + 0.856033i \(0.672922\pi\)
\(402\) −3.54150 13.8940i −0.176634 0.692969i
\(403\) 22.9493 24.5811i 1.14319 1.22447i
\(404\) 4.17990 5.18016i 0.207958 0.257723i
\(405\) −16.0048 6.62940i −0.795284 0.329417i
\(406\) 43.8362 + 6.31700i 2.17555 + 0.313507i
\(407\) 2.39398 + 2.39398i 0.118665 + 0.118665i
\(408\) −3.86056 10.3810i −0.191126 0.513934i
\(409\) −22.4604 −1.11060 −0.555298 0.831652i \(-0.687396\pi\)
−0.555298 + 0.831652i \(0.687396\pi\)
\(410\) −27.3502 3.94128i −1.35073 0.194646i
\(411\) −3.59110 + 8.66969i −0.177136 + 0.427644i
\(412\) 6.45042 21.9163i 0.317789 1.07974i
\(413\) 16.5855 40.0410i 0.816121 1.97029i
\(414\) −0.760267 2.98267i −0.0373651 0.146590i
\(415\) 30.3813 1.49136
\(416\) −5.80454 + 19.5527i −0.284591 + 0.958649i
\(417\) 5.16938 0.253146
\(418\) 0.0234099 + 0.0918414i 0.00114501 + 0.00449211i
\(419\) −3.48891 + 8.42297i −0.170444 + 0.411489i −0.985901 0.167329i \(-0.946486\pi\)
0.815457 + 0.578818i \(0.196486\pi\)
\(420\) −29.5405 8.69438i −1.44143 0.424243i
\(421\) −12.9995 + 31.3835i −0.633556 + 1.52954i 0.201567 + 0.979475i \(0.435397\pi\)
−0.835122 + 0.550064i \(0.814603\pi\)
\(422\) 14.1089 + 2.03316i 0.686810 + 0.0989724i
\(423\) −1.18105 −0.0574244
\(424\) 9.29522 20.3022i 0.451416 0.985960i
\(425\) −1.93490 1.93490i −0.0938567 0.0938567i
\(426\) −34.4556 4.96520i −1.66938 0.240565i
\(427\) 14.8836 + 6.16500i 0.720269 + 0.298345i
\(428\) 5.36810 + 4.33155i 0.259477 + 0.209374i
\(429\) −5.22790 + 5.59962i −0.252405 + 0.270352i
\(430\) 4.94046 + 19.3824i 0.238250 + 0.934702i
\(431\) −24.0861 24.0861i −1.16019 1.16019i −0.984434 0.175754i \(-0.943764\pi\)
−0.175754 0.984434i \(-0.556236\pi\)
\(432\) −3.97651 + 21.8802i −0.191320 + 1.05271i
\(433\) 10.6659 0.512571 0.256285 0.966601i \(-0.417501\pi\)
0.256285 + 0.966601i \(0.417501\pi\)
\(434\) 26.8765 45.2649i 1.29011 2.17278i
\(435\) 11.5847 + 27.9678i 0.555442 + 1.34096i
\(436\) −11.9724 + 14.8374i −0.573374 + 0.710584i
\(437\) 0.0737149 0.177964i 0.00352626 0.00851315i
\(438\) −3.25355 + 22.5777i −0.155461 + 1.07880i
\(439\) −22.9852 22.9852i −1.09702 1.09702i −0.994757 0.102267i \(-0.967390\pi\)
−0.102267 0.994757i \(-0.532610\pi\)
\(440\) −0.347819 + 9.48378i −0.0165816 + 0.452122i
\(441\) 3.51675 + 3.51675i 0.167464 + 0.167464i
\(442\) −12.2633 + 3.57818i −0.583308 + 0.170197i
\(443\) 17.0012 7.04213i 0.807752 0.334582i 0.0596951 0.998217i \(-0.480987\pi\)
0.748057 + 0.663635i \(0.230987\pi\)
\(444\) −2.19818 + 7.46865i −0.104321 + 0.354447i
\(445\) −29.1176 12.0609i −1.38031 0.571742i
\(446\) 3.64986 6.14703i 0.172826 0.291070i
\(447\) −5.59727 + 5.59727i −0.264742 + 0.264742i
\(448\) −2.33878 + 31.8423i −0.110497 + 1.50441i
\(449\) 2.64543 2.64543i 0.124846 0.124846i −0.641923 0.766769i \(-0.721863\pi\)
0.766769 + 0.641923i \(0.221863\pi\)
\(450\) 0.212526 + 0.833782i 0.0100186 + 0.0393049i
\(451\) −4.11813 + 9.94206i −0.193915 + 0.468153i
\(452\) −2.48338 4.55488i −0.116808 0.214244i
\(453\) 18.1144 + 7.50322i 0.851087 + 0.352532i
\(454\) −13.2495 + 9.91183i −0.621829 + 0.465185i
\(455\) −12.4581 + 33.2609i −0.584044 + 1.55929i
\(456\) −0.159658 + 0.148361i −0.00747665 + 0.00694764i
\(457\) 35.3190i 1.65215i 0.563559 + 0.826076i \(0.309432\pi\)
−0.563559 + 0.826076i \(0.690568\pi\)
\(458\) −21.8799 3.15299i −1.02238 0.147330i
\(459\) −12.8685 + 5.33029i −0.600648 + 0.248797i
\(460\) 12.1121 15.0105i 0.564728 0.699869i
\(461\) 28.8366 11.9445i 1.34306 0.556312i 0.408705 0.912667i \(-0.365980\pi\)
0.934351 + 0.356355i \(0.115980\pi\)
\(462\) −6.12251 + 10.3114i −0.284845 + 0.479731i
\(463\) 19.9050 19.9050i 0.925065 0.925065i −0.0723166 0.997382i \(-0.523039\pi\)
0.997382 + 0.0723166i \(0.0230392\pi\)
\(464\) 25.8053 17.8681i 1.19798 0.829506i
\(465\) 35.9820 1.66863
\(466\) 10.7826 18.1598i 0.499492 0.841236i
\(467\) −10.1495 + 24.5031i −0.469663 + 1.13387i 0.494648 + 0.869094i \(0.335297\pi\)
−0.964311 + 0.264773i \(0.914703\pi\)
\(468\) 3.89016 + 1.00129i 0.179823 + 0.0462845i
\(469\) −23.9178 + 9.90708i −1.10442 + 0.457467i
\(470\) −4.43319 5.92600i −0.204488 0.273346i
\(471\) 24.8226 24.8226i 1.14377 1.14377i
\(472\) −10.7062 28.7888i −0.492794 1.32511i
\(473\) 7.78958 0.358165
\(474\) 3.73342 25.9077i 0.171482 1.18998i
\(475\) −0.0206064 + 0.0497483i −0.000945487 + 0.00228261i
\(476\) −17.5575 + 9.57258i −0.804748 + 0.438758i
\(477\) −4.06287 1.68290i −0.186026 0.0770545i
\(478\) −22.5978 13.4177i −1.03360 0.613711i
\(479\) −2.03700 2.03700i −0.0930728 0.0930728i 0.659037 0.752110i \(-0.270964\pi\)
−0.752110 + 0.659037i \(0.770964\pi\)
\(480\) −19.5305 + 9.73728i −0.891442 + 0.444444i
\(481\) 8.40928 + 3.14975i 0.383430 + 0.143616i
\(482\) 6.59745 + 3.91730i 0.300506 + 0.178428i
\(483\) 22.5174 9.32703i 1.02458 0.424395i
\(484\) −17.5594 5.16811i −0.798156 0.234914i
\(485\) −13.7344 + 5.68899i −0.623649 + 0.258324i
\(486\) 7.99122 + 1.15157i 0.362489 + 0.0522363i
\(487\) 22.1626i 1.00428i 0.864786 + 0.502141i \(0.167454\pi\)
−0.864786 + 0.502141i \(0.832546\pi\)
\(488\) 10.7011 3.97961i 0.484415 0.180148i
\(489\) 16.9895 0.768292
\(490\) −4.44507 + 30.8461i −0.200808 + 1.39349i
\(491\) −5.11912 + 2.12041i −0.231023 + 0.0956927i −0.495192 0.868784i \(-0.664902\pi\)
0.264169 + 0.964476i \(0.414902\pi\)
\(492\) −24.6060 + 2.62951i −1.10933 + 0.118548i
\(493\) 18.1626 + 7.52319i 0.818002 + 0.338827i
\(494\) 0.157403 + 0.196007i 0.00708188 + 0.00881875i
\(495\) 1.86906 0.0840082
\(496\) −7.88375 36.4654i −0.353991 1.63734i
\(497\) 62.8540i 2.81939i
\(498\) 26.3646 6.72019i 1.18143 0.301139i
\(499\) 5.20650 + 12.5696i 0.233075 + 0.562693i 0.996536 0.0831611i \(-0.0265016\pi\)
−0.763461 + 0.645854i \(0.776502\pi\)
\(500\) 12.1139 15.0128i 0.541750 0.671393i
\(501\) −6.62818 + 16.0018i −0.296125 + 0.714909i
\(502\) −0.986483 1.31867i −0.0440289 0.0588549i
\(503\) −24.7473 + 24.7473i −1.10343 + 1.10343i −0.109433 + 0.993994i \(0.534904\pi\)
−0.993994 + 0.109433i \(0.965096\pi\)
\(504\) 6.28393 + 0.230464i 0.279909 + 0.0102657i
\(505\) 8.21462i 0.365546i
\(506\) −4.49948 6.01461i −0.200026 0.267382i
\(507\) −6.46999 + 19.2613i −0.287342 + 0.855424i
\(508\) 8.13779 4.43682i 0.361056 0.196852i
\(509\) 4.70711 + 11.3640i 0.208639 + 0.503699i 0.993209 0.116341i \(-0.0371164\pi\)
−0.784570 + 0.620040i \(0.787116\pi\)
\(510\) −11.7530 6.97843i −0.520430 0.309010i
\(511\) 41.1863 1.82198
\(512\) 14.1473 + 17.6594i 0.625227 + 0.780443i
\(513\) 0.193814 + 0.193814i 0.00855708 + 0.00855708i
\(514\) −0.722610 2.83494i −0.0318730 0.125044i
\(515\) −10.7896 26.0483i −0.475445 1.14783i
\(516\) 8.57458 + 15.7271i 0.377475 + 0.692345i
\(517\) −2.66273 + 1.10294i −0.117107 + 0.0485072i
\(518\) 13.9133 + 2.00497i 0.611314 + 0.0880932i
\(519\) 24.4894 24.4894i 1.07497 1.07497i
\(520\) 9.57814 + 23.2777i 0.420029 + 1.02079i
\(521\) 15.8642 + 15.8642i 0.695024 + 0.695024i 0.963333 0.268309i \(-0.0864649\pi\)
−0.268309 + 0.963333i \(0.586465\pi\)
\(522\) −3.70298 4.94990i −0.162075 0.216651i
\(523\) −9.94596 24.0117i −0.434906 1.04996i −0.977684 0.210081i \(-0.932627\pi\)
0.542778 0.839876i \(-0.317373\pi\)
\(524\) 2.74701 + 25.7055i 0.120004 + 1.12295i
\(525\) −6.29457 + 2.60729i −0.274717 + 0.113792i
\(526\) 11.7547 + 6.97947i 0.512530 + 0.304319i
\(527\) 16.5230 16.5230i 0.719754 0.719754i
\(528\) 1.79593 + 8.30688i 0.0781580 + 0.361511i
\(529\) 7.73390i 0.336257i
\(530\) −6.80638 26.7027i −0.295650 1.15989i
\(531\) −5.58879 + 2.31495i −0.242533 + 0.100460i
\(532\) 0.306251 + 0.247116i 0.0132777 + 0.0107138i
\(533\) 0.979307 + 28.5257i 0.0424185 + 1.23558i
\(534\) −27.9358 4.02568i −1.20890 0.174208i
\(535\) 8.51266 0.368034
\(536\) −7.63768 + 16.6818i −0.329898 + 0.720546i
\(537\) −9.01881 9.01881i −0.389191 0.389191i
\(538\) −1.90494 + 13.2192i −0.0821279 + 0.569919i
\(539\) 11.2129 + 4.64453i 0.482973 + 0.200054i
\(540\) 13.1376 + 24.0964i 0.565354 + 1.03694i
\(541\) −33.3080 + 13.7966i −1.43202 + 0.593163i −0.957850 0.287269i \(-0.907253\pi\)
−0.474172 + 0.880432i \(0.657253\pi\)
\(542\) 9.97701 16.8031i 0.428549 0.721756i
\(543\) −24.3757 −1.04606
\(544\) −4.49707 + 13.4398i −0.192810 + 0.576228i
\(545\) 23.5290i 1.00787i
\(546\) −3.45387 + 31.6192i −0.147812 + 1.35318i
\(547\) 0.238358 0.575447i 0.0101915 0.0246043i −0.918702 0.394952i \(-0.870761\pi\)
0.928893 + 0.370347i \(0.120761\pi\)
\(548\) 10.5426 5.74796i 0.450358 0.245540i
\(549\) −0.860491 2.07741i −0.0367248 0.0886616i
\(550\) 1.25779 + 1.68133i 0.0536325 + 0.0716923i
\(551\) 0.386857i 0.0164807i
\(552\) 7.19050 15.7051i 0.306048 0.668455i
\(553\) −47.2610 −2.00974
\(554\) −19.2717 25.7611i −0.818776 1.09449i
\(555\) 3.67688 + 8.87678i 0.156075 + 0.376798i
\(556\) −5.14784 4.15382i −0.218317 0.176161i
\(557\) 9.18486 + 22.1742i 0.389175 + 0.939552i 0.990115 + 0.140258i \(0.0447931\pi\)
−0.600940 + 0.799294i \(0.705207\pi\)
\(558\) −7.12004 + 1.81486i −0.301415 + 0.0768291i
\(559\) 18.8055 8.55677i 0.795387 0.361913i
\(560\) 22.4311 + 32.3952i 0.947886 + 1.36895i
\(561\) −3.76397 + 3.76397i −0.158915 + 0.158915i
\(562\) −6.79057 26.6407i −0.286443 1.12377i
\(563\) 5.70650 13.7767i 0.240500 0.580619i −0.756832 0.653609i \(-0.773254\pi\)
0.997333 + 0.0729898i \(0.0232540\pi\)
\(564\) −5.15789 4.16193i −0.217186 0.175249i
\(565\) −5.91512 2.45012i −0.248851 0.103077i
\(566\) −1.92883 2.57833i −0.0810746 0.108375i
\(567\) 28.0110i 1.17635i
\(568\) 30.3222 + 32.6310i 1.27229 + 1.36917i
\(569\) −1.97766 1.97766i −0.0829080 0.0829080i 0.664437 0.747345i \(-0.268672\pi\)
−0.747345 + 0.664437i \(0.768672\pi\)
\(570\) −0.0383642 + 0.266225i −0.00160690 + 0.0111509i
\(571\) −2.59622 6.26783i −0.108649 0.262301i 0.860199 0.509958i \(-0.170339\pi\)
−0.968848 + 0.247658i \(0.920339\pi\)
\(572\) 9.70565 1.37544i 0.405814 0.0575100i
\(573\) −5.03137 2.08406i −0.210189 0.0870630i
\(574\) 11.0359 + 43.2961i 0.460631 + 1.80714i
\(575\) 4.26751i 0.177968i
\(576\) 3.37352 2.91187i 0.140563 0.121328i
\(577\) 28.0044 + 28.0044i 1.16584 + 1.16584i 0.983176 + 0.182661i \(0.0584711\pi\)
0.182661 + 0.983176i \(0.441529\pi\)
\(578\) 14.6952 3.74573i 0.611241 0.155802i
\(579\) −3.54410 8.55622i −0.147288 0.355584i
\(580\) 10.9370 37.1601i 0.454134 1.54299i
\(581\) −18.7992 45.3854i −0.779924 1.88290i
\(582\) −10.6603 + 7.97485i −0.441882 + 0.330568i
\(583\) −10.7316 −0.444456
\(584\) 21.3822 19.8693i 0.884800 0.822196i
\(585\) 4.51227 2.05315i 0.186559 0.0848872i
\(586\) 15.3470 + 2.21157i 0.633977 + 0.0913589i
\(587\) −3.71049 + 8.95791i −0.153148 + 0.369732i −0.981769 0.190078i \(-0.939126\pi\)
0.828621 + 0.559810i \(0.189126\pi\)
\(588\) 2.96563 + 27.7512i 0.122300 + 1.14444i
\(589\) −0.424823 0.175967i −0.0175045 0.00725061i
\(590\) −32.5937 19.3528i −1.34186 0.796742i
\(591\) −17.1933 17.1933i −0.707240 0.707240i
\(592\) 8.19041 5.67120i 0.336624 0.233085i
\(593\) −14.5157 14.5157i −0.596089 0.596089i 0.343180 0.939270i \(-0.388496\pi\)
−0.939270 + 0.343180i \(0.888496\pi\)
\(594\) 10.3570 2.63994i 0.424953 0.108318i
\(595\) −9.44439 + 22.8008i −0.387182 + 0.934741i
\(596\) 10.0716 1.07630i 0.412549 0.0440868i
\(597\) −11.8998 28.7288i −0.487028 1.17579i
\(598\) −17.4696 9.57774i −0.714383 0.391663i
\(599\) −19.4724 + 19.4724i −0.795620 + 0.795620i −0.982402 0.186781i \(-0.940194\pi\)
0.186781 + 0.982402i \(0.440194\pi\)
\(600\) −2.01004 + 4.39024i −0.0820597 + 0.179231i
\(601\) 21.2213 21.2213i 0.865636 0.865636i −0.126350 0.991986i \(-0.540326\pi\)
0.991986 + 0.126350i \(0.0403262\pi\)
\(602\) 25.8975 19.3737i 1.05550 0.789615i
\(603\) 3.33837 + 1.38280i 0.135949 + 0.0563119i
\(604\) −12.0097 22.0276i −0.488669 0.896292i
\(605\) −20.8700 + 8.64465i −0.848488 + 0.351455i
\(606\) −1.81703 7.12857i −0.0738119 0.289578i
\(607\) 24.3906i 0.989984i −0.868898 0.494992i \(-0.835171\pi\)
0.868898 0.494992i \(-0.164829\pi\)
\(608\) 0.278207 0.0194510i 0.0112828 0.000788841i
\(609\) 34.6117 34.6117i 1.40254 1.40254i
\(610\) 7.19362 12.1154i 0.291261 0.490537i
\(611\) −5.21675 + 5.58768i −0.211047 + 0.226053i
\(612\) 2.67762 + 0.788081i 0.108237 + 0.0318563i
\(613\) 10.2175 24.6671i 0.412679 0.996295i −0.571737 0.820437i \(-0.693730\pi\)
0.984416 0.175858i \(-0.0562699\pi\)
\(614\) 20.8647 15.6087i 0.842030 0.629916i
\(615\) −21.5948 + 21.5948i −0.870788 + 0.870788i
\(616\) 14.3827 5.34876i 0.579494 0.215508i
\(617\) 3.03840i 0.122321i 0.998128 + 0.0611607i \(0.0194802\pi\)
−0.998128 + 0.0611607i \(0.980520\pi\)
\(618\) −15.1249 20.2179i −0.608411 0.813283i
\(619\) 3.26323 + 1.35167i 0.131160 + 0.0543284i 0.447298 0.894385i \(-0.352386\pi\)
−0.316138 + 0.948713i \(0.602386\pi\)
\(620\) −35.8321 28.9131i −1.43905 1.16118i
\(621\) −20.0690 8.31287i −0.805343 0.333584i
\(622\) 23.4877 + 13.9461i 0.941771 + 0.559186i
\(623\) 50.9607i 2.04170i
\(624\) 13.4607 + 18.0815i 0.538861 + 0.723841i
\(625\) 29.2682i 1.17073i
\(626\) −16.9991 + 28.6295i −0.679419 + 1.14427i
\(627\) 0.0967754 + 0.0400857i 0.00386484 + 0.00160087i
\(628\) −44.6652 + 4.77313i −1.78234 + 0.190469i
\(629\) 5.76467 + 2.38780i 0.229852 + 0.0952080i
\(630\) 6.21396 4.64862i 0.247570 0.185205i
\(631\) 13.5342i 0.538788i 0.963030 + 0.269394i \(0.0868233\pi\)
−0.963030 + 0.269394i \(0.913177\pi\)
\(632\) −24.5358 + 22.7998i −0.975984 + 0.906928i
\(633\) 11.1399 11.1399i 0.442773 0.442773i
\(634\) 29.3031 + 39.1705i 1.16378 + 1.55566i
\(635\) 4.37740 10.5680i 0.173712 0.419378i
\(636\) −11.8130 21.6669i −0.468417 0.859148i
\(637\) 32.1719 1.10449i 1.27470 0.0437613i
\(638\) −12.9711 7.70173i −0.513532 0.304914i
\(639\) 6.20342 6.20342i 0.245403 0.245403i
\(640\) 27.2735 + 5.99691i 1.07808 + 0.237049i
\(641\) 25.6960i 1.01493i −0.861672 0.507466i \(-0.830582\pi\)
0.861672 0.507466i \(-0.169418\pi\)
\(642\) 7.38721 1.88296i 0.291550 0.0743144i
\(643\) −23.9769 + 9.93155i −0.945556 + 0.391662i −0.801559 0.597916i \(-0.795996\pi\)
−0.143997 + 0.989578i \(0.545996\pi\)
\(644\) −29.9183 8.80558i −1.17895 0.346988i
\(645\) 20.4237 + 8.45976i 0.804181 + 0.333103i
\(646\) 0.104634 + 0.139868i 0.00411677 + 0.00550303i
\(647\) 21.0878 21.0878i 0.829046 0.829046i −0.158339 0.987385i \(-0.550614\pi\)
0.987385 + 0.158339i \(0.0506138\pi\)
\(648\) 13.5132 + 14.5421i 0.530848 + 0.571268i
\(649\) −10.4384 + 10.4384i −0.409742 + 0.409742i
\(650\) 4.88347 + 2.67738i 0.191545 + 0.105015i
\(651\) −22.2649 53.7521i −0.872629 2.10671i
\(652\) −16.9187 13.6518i −0.662588 0.534646i
\(653\) 5.74269 13.8641i 0.224729 0.542543i −0.770792 0.637087i \(-0.780139\pi\)
0.995521 + 0.0945436i \(0.0301392\pi\)
\(654\) 5.20449 + 20.4182i 0.203512 + 0.798416i
\(655\) 22.5598 + 22.5598i 0.881483 + 0.881483i
\(656\) 26.6164 + 17.1535i 1.03920 + 0.669730i
\(657\) −4.06491 4.06491i −0.158587 0.158587i
\(658\) −6.10945 + 10.2894i −0.238171 + 0.401124i
\(659\) −3.85239 1.59571i −0.150068 0.0621601i 0.306385 0.951908i \(-0.400880\pi\)
−0.456453 + 0.889747i \(0.650880\pi\)
\(660\) 8.16262 + 6.58646i 0.317729 + 0.256378i
\(661\) −15.8872 + 38.3551i −0.617941 + 1.49184i 0.236150 + 0.971717i \(0.424114\pi\)
−0.854091 + 0.520124i \(0.825886\pi\)
\(662\) −2.71747 + 18.8576i −0.105617 + 0.732922i
\(663\) −4.95224 + 13.2216i −0.192329 + 0.513485i
\(664\) −31.6547 14.4929i −1.22844 0.562434i
\(665\) 0.485649 0.0188326
\(666\) −1.17530 1.57106i −0.0455419 0.0608774i
\(667\) 11.7328 + 28.3255i 0.454296 + 1.09677i
\(668\) 19.4587 10.6091i 0.752881 0.410480i
\(669\) −3.02359 7.29960i −0.116899 0.282219i
\(670\) 5.59265 + 21.9411i 0.216063 + 0.847657i
\(671\) −3.88004 3.88004i −0.149787 0.149787i
\(672\) 26.6312 + 23.1507i 1.02732 + 0.893056i
\(673\) 36.3609i 1.40161i −0.713353 0.700805i \(-0.752824\pi\)
0.713353 0.700805i \(-0.247176\pi\)
\(674\) −28.7893 + 7.33823i −1.10892 + 0.282658i
\(675\) 5.61014 + 2.32379i 0.215934 + 0.0894429i
\(676\) 21.9203 13.9821i 0.843089 0.537774i
\(677\) −16.3965 39.5845i −0.630167 1.52136i −0.839413 0.543494i \(-0.817101\pi\)
0.209246 0.977863i \(-0.432899\pi\)
\(678\) −5.67504 0.817799i −0.217949 0.0314074i
\(679\) 16.9971 + 16.9971i 0.652290 + 0.652290i
\(680\) 6.09651 + 16.3934i 0.233791 + 0.628657i
\(681\) 18.2875i 0.700777i
\(682\) −14.3577 + 10.7409i −0.549784 + 0.411289i
\(683\) 29.8010 + 12.3440i 1.14030 + 0.472329i 0.871271 0.490802i \(-0.163296\pi\)
0.269032 + 0.963131i \(0.413296\pi\)
\(684\) −0.00583641 0.0546150i −0.000223161 0.00208826i
\(685\) 5.67098 13.6910i 0.216677 0.523105i
\(686\) 10.5455 2.68799i 0.402630 0.102628i
\(687\) −17.2757 + 17.2757i −0.659109 + 0.659109i
\(688\) 4.09853 22.5516i 0.156255 0.859771i
\(689\) −25.9080 + 11.7885i −0.987015 + 0.449106i
\(690\) −5.26521 20.6564i −0.200443 0.786376i
\(691\) −4.33850 10.4741i −0.165045 0.398453i 0.819621 0.572906i \(-0.194184\pi\)
−0.984665 + 0.174454i \(0.944184\pi\)
\(692\) −44.0657 + 4.70906i −1.67513 + 0.179012i
\(693\) −1.15653 2.79212i −0.0439331 0.106064i
\(694\) −8.87680 + 6.64067i −0.336959 + 0.252076i
\(695\) −8.16337 −0.309654
\(696\) 1.27139 34.6664i 0.0481921 1.31403i
\(697\) 19.8328i 0.751221i
\(698\) 26.1880 19.5910i 0.991231 0.741532i
\(699\) −8.93243 21.5648i −0.337855 0.815655i
\(700\) 8.36341 + 2.46153i 0.316107 + 0.0930370i
\(701\) −5.34799 + 12.9112i −0.201991 + 0.487649i −0.992120 0.125292i \(-0.960013\pi\)
0.790129 + 0.612940i \(0.210013\pi\)
\(702\) 22.1038 17.7504i 0.834253 0.669944i
\(703\) 0.122785i 0.00463094i
\(704\) 4.88649 9.71538i 0.184167 0.366162i
\(705\) −8.17930 −0.308050
\(706\) 19.0872 + 11.3332i 0.718355 + 0.426530i
\(707\) −12.2715 + 5.08302i −0.461517 + 0.191167i
\(708\) −32.5652 9.58463i −1.22388 0.360213i
\(709\) −10.5623 4.37503i −0.396674 0.164308i 0.175424 0.984493i \(-0.443870\pi\)
−0.572098 + 0.820185i \(0.693870\pi\)
\(710\) 54.4114 + 7.84093i 2.04202 + 0.294265i
\(711\) 4.66446 + 4.66446i 0.174931 + 0.174931i
\(712\) 24.5846 + 26.4566i 0.921348 + 0.991502i
\(713\) 36.4422 1.36477
\(714\) −3.15234 + 21.8754i −0.117973 + 0.818665i
\(715\) 8.25578 8.84278i 0.308749 0.330701i
\(716\) 1.73422 + 16.2282i 0.0648110 + 0.606478i
\(717\) −26.8350 + 11.1154i −1.00217 + 0.415113i
\(718\) 45.3611 11.5623i 1.69286 0.431501i
\(719\) 20.6911i 0.771646i −0.922573 0.385823i \(-0.873917\pi\)
0.922573 0.385823i \(-0.126083\pi\)
\(720\) 0.983418 5.41112i 0.0366498 0.201661i
\(721\) −32.2362 + 32.2362i −1.20054 + 1.20054i
\(722\) −13.7166 + 23.1013i −0.510480 + 0.859741i
\(723\) 7.83449 3.24515i 0.291368 0.120688i
\(724\) 24.2742 + 19.5870i 0.902142 + 0.727943i
\(725\) −3.27981 7.91817i −0.121809 0.294073i
\(726\) −16.1987 + 12.1181i −0.601190 + 0.449745i
\(727\) −4.67967 4.67967i −0.173559 0.173559i 0.614982 0.788541i \(-0.289163\pi\)
−0.788541 + 0.614982i \(0.789163\pi\)
\(728\) 28.8469 28.7121i 1.06914 1.06414i
\(729\) 21.1982 21.1982i 0.785118 0.785118i
\(730\) 5.13793 35.6542i 0.190163 1.31962i
\(731\) 13.2633 5.49385i 0.490562 0.203197i
\(732\) 3.56270 12.1048i 0.131681 0.447407i
\(733\) −6.76484 16.3318i −0.249865 0.603228i 0.748327 0.663330i \(-0.230857\pi\)
−0.998192 + 0.0601022i \(0.980857\pi\)
\(734\) 17.3788 4.42977i 0.641465 0.163506i
\(735\) 24.3552 + 24.3552i 0.898354 + 0.898354i
\(736\) −19.7803 + 9.86181i −0.729111 + 0.363511i
\(737\) 8.81788 0.324811
\(738\) 3.18394 5.36234i 0.117202 0.197390i
\(739\) 16.4515 + 39.7173i 0.605177 + 1.46103i 0.868189 + 0.496233i \(0.165284\pi\)
−0.263013 + 0.964792i \(0.584716\pi\)
\(740\) 3.47132 11.7943i 0.127608 0.433568i
\(741\) 0.277667 0.00953252i 0.0102004 0.000350186i
\(742\) −35.6786 + 26.6908i −1.30980 + 0.979852i
\(743\) 5.56777i 0.204262i −0.994771 0.102131i \(-0.967434\pi\)
0.994771 0.102131i \(-0.0325661\pi\)
\(744\) −37.4902 17.1647i −1.37446 0.629287i
\(745\) 8.83908 8.83908i 0.323839 0.323839i
\(746\) −30.6381 + 22.9201i −1.12174 + 0.839164i
\(747\) −2.62394 + 6.33475i −0.0960049 + 0.231776i
\(748\) 6.77281 0.723774i 0.247638 0.0264638i
\(749\) −5.26744 12.7167i −0.192468 0.464659i
\(750\) −5.26601 20.6596i −0.192287 0.754380i
\(751\) 4.44081i 0.162047i −0.996712 0.0810237i \(-0.974181\pi\)
0.996712 0.0810237i \(-0.0258189\pi\)
\(752\) 1.79210 + 8.28917i 0.0653513 + 0.302275i
\(753\) −1.82007 −0.0663272
\(754\) −39.7749 4.34475i −1.44852 0.158227i
\(755\) −28.6058 11.8489i −1.04107 0.431226i
\(756\) 27.8674 34.5361i 1.01353 1.25607i
\(757\) 26.6022 11.0190i 0.966874 0.400493i 0.157327 0.987547i \(-0.449712\pi\)
0.809548 + 0.587054i \(0.199712\pi\)
\(758\) −8.45318 1.21814i −0.307033 0.0442449i
\(759\) −8.30160 −0.301329
\(760\) 0.252128 0.234288i 0.00914563 0.00849853i
\(761\) 11.2799i 0.408897i −0.978877 0.204449i \(-0.934460\pi\)
0.978877 0.204449i \(-0.0655401\pi\)
\(762\) 1.46109 10.1391i 0.0529295 0.367300i
\(763\) 35.1490 14.5592i 1.27248 0.527078i
\(764\) 3.33577 + 6.11831i 0.120684 + 0.221353i
\(765\) 3.18246 1.31822i 0.115062 0.0476603i
\(766\) −20.1537 + 33.9425i −0.728183 + 1.22639i
\(767\) −13.7337 + 36.6666i −0.495896 + 1.32395i
\(768\) 24.9942 0.828690i 0.901899 0.0299028i
\(769\) 37.3630 + 37.3630i 1.3473