Properties

Label 416.2.bi.a.99.19
Level $416$
Weight $2$
Character 416.99
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(99,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bi (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 99.19
Character \(\chi\) \(=\) 416.99
Dual form 416.2.bi.a.395.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.717929 - 1.21843i) q^{2} +(0.172072 - 0.415418i) q^{3} +(-0.969155 + 1.74950i) q^{4} +(-0.252815 + 0.610350i) q^{5} +(-0.629694 + 0.0885829i) q^{6} -3.40059 q^{7} +(2.82743 - 0.0751652i) q^{8} +(1.97836 + 1.97836i) q^{9} +O(q^{10})\) \(q+(-0.717929 - 1.21843i) q^{2} +(0.172072 - 0.415418i) q^{3} +(-0.969155 + 1.74950i) q^{4} +(-0.252815 + 0.610350i) q^{5} +(-0.629694 + 0.0885829i) q^{6} -3.40059 q^{7} +(2.82743 - 0.0751652i) q^{8} +(1.97836 + 1.97836i) q^{9} +(0.925174 - 0.130150i) q^{10} +(-1.70054 - 0.704385i) q^{11} +(0.560008 + 0.703643i) q^{12} +(3.28856 + 1.47831i) q^{13} +(2.44138 + 4.14338i) q^{14} +(0.210048 + 0.210048i) q^{15} +(-2.12148 - 3.39107i) q^{16} +2.30613 q^{17} +(0.990174 - 3.83081i) q^{18} +(2.92152 + 7.05316i) q^{19} +(-0.822788 - 1.03382i) q^{20} +(-0.585145 + 1.41266i) q^{21} +(0.362619 + 2.57769i) q^{22} +(1.96093 + 1.96093i) q^{23} +(0.455296 - 1.18750i) q^{24} +(3.22692 + 3.22692i) q^{25} +(-0.559734 - 5.06820i) q^{26} +(2.40852 - 0.997641i) q^{27} +(3.29569 - 5.94931i) q^{28} +(0.820481 + 0.339854i) q^{29} +(0.105130 - 0.406729i) q^{30} +(-1.78963 + 1.78963i) q^{31} +(-2.60871 + 5.01942i) q^{32} +(-0.585228 + 0.585228i) q^{33} +(-1.65564 - 2.80986i) q^{34} +(0.859720 - 2.07555i) q^{35} +(-5.37846 + 1.54379i) q^{36} +(-6.76868 - 2.80368i) q^{37} +(6.49636 - 8.62334i) q^{38} +(1.17998 - 1.11175i) q^{39} +(-0.668940 + 1.74472i) q^{40} +5.14448i q^{41} +(2.14133 - 0.301234i) q^{42} +(0.493483 - 0.204407i) q^{43} +(2.88040 - 2.29242i) q^{44} +(-1.70765 + 0.707332i) q^{45} +(0.981451 - 3.79707i) q^{46} +(1.59703 - 1.59703i) q^{47} +(-1.77376 + 0.297793i) q^{48} +4.56399 q^{49} +(1.61508 - 6.24849i) q^{50} +(0.396819 - 0.958006i) q^{51} +(-5.77342 + 4.32061i) q^{52} +(5.87165 - 2.43212i) q^{53} +(-2.94470 - 2.21838i) q^{54} +(0.859843 - 0.859843i) q^{55} +(-9.61491 + 0.255606i) q^{56} +3.43272 q^{57} +(-0.174958 - 1.24369i) q^{58} +(2.54758 - 6.15040i) q^{59} +(-0.571048 + 0.163909i) q^{60} +(-5.74492 - 2.37962i) q^{61} +(3.46538 + 0.895717i) q^{62} +(-6.72757 - 6.72757i) q^{63} +(7.98870 - 0.425049i) q^{64} +(-1.73368 + 1.63343i) q^{65} +(1.13321 + 0.292908i) q^{66} +(-2.69444 + 1.11607i) q^{67} +(-2.23499 + 4.03456i) q^{68} +(1.15203 - 0.477185i) q^{69} +(-3.14613 + 0.442586i) q^{70} +7.20252i q^{71} +(5.74237 + 5.44496i) q^{72} +6.22518 q^{73} +(1.44334 + 10.2600i) q^{74} +(1.89578 - 0.785259i) q^{75} +(-15.1709 - 1.72443i) q^{76} +(5.78282 + 2.39532i) q^{77} +(-2.20174 - 0.639571i) q^{78} -16.4481 q^{79} +(2.60608 - 0.437531i) q^{80} +7.22125i q^{81} +(6.26820 - 3.69337i) q^{82} +(0.384907 + 0.929247i) q^{83} +(-1.90436 - 2.39280i) q^{84} +(-0.583024 + 1.40754i) q^{85} +(-0.603342 - 0.454525i) q^{86} +(0.282363 - 0.282363i) q^{87} +(-4.86109 - 1.86378i) q^{88} +9.50377i q^{89} +(2.08781 + 1.57284i) q^{90} +(-11.1830 - 5.02711i) q^{91} +(-5.33109 + 1.53020i) q^{92} +(0.435500 + 1.05139i) q^{93} +(-3.09243 - 0.799318i) q^{94} -5.04350 q^{95} +(1.63627 + 1.94741i) q^{96} +(-8.56996 - 8.56996i) q^{97} +(-3.27662 - 5.56091i) q^{98} +(-1.97074 - 4.75779i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9} - 4 q^{11} + 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} + 4 q^{18} - 4 q^{19} - 20 q^{20} - 16 q^{21} - 24 q^{22} + 28 q^{24} - 4 q^{26} - 8 q^{27} - 24 q^{28} - 8 q^{29} + 16 q^{30} - 4 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} + 20 q^{39} - 8 q^{40} - 48 q^{42} + 32 q^{43} - 20 q^{44} + 4 q^{45} - 24 q^{46} - 8 q^{47} - 8 q^{48} + 168 q^{49} + 20 q^{50} - 4 q^{52} - 8 q^{53} + 20 q^{54} - 40 q^{55} - 56 q^{56} - 8 q^{57} + 32 q^{58} + 4 q^{59} - 36 q^{60} - 8 q^{61} - 72 q^{62} - 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} - 4 q^{70} + 56 q^{72} - 8 q^{73} - 8 q^{74} - 4 q^{76} - 56 q^{77} - 136 q^{78} - 16 q^{79} + 28 q^{80} + 88 q^{82} - 44 q^{83} + 44 q^{84} - 24 q^{85} + 64 q^{86} - 8 q^{87} - 64 q^{88} + 64 q^{90} + 16 q^{91} - 8 q^{92} + 56 q^{93} - 56 q^{94} - 28 q^{96} - 8 q^{97} - 76 q^{98} - 116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.717929 1.21843i −0.507653 0.861562i
\(3\) 0.172072 0.415418i 0.0993457 0.239842i −0.866391 0.499367i \(-0.833566\pi\)
0.965736 + 0.259525i \(0.0835660\pi\)
\(4\) −0.969155 + 1.74950i −0.484577 + 0.874748i
\(5\) −0.252815 + 0.610350i −0.113062 + 0.272957i −0.970275 0.242006i \(-0.922194\pi\)
0.857212 + 0.514963i \(0.172194\pi\)
\(6\) −0.629694 + 0.0885829i −0.257072 + 0.0361638i
\(7\) −3.40059 −1.28530 −0.642650 0.766160i \(-0.722165\pi\)
−0.642650 + 0.766160i \(0.722165\pi\)
\(8\) 2.82743 0.0751652i 0.999647 0.0265749i
\(9\) 1.97836 + 1.97836i 0.659452 + 0.659452i
\(10\) 0.925174 0.130150i 0.292566 0.0411570i
\(11\) −1.70054 0.704385i −0.512731 0.212380i 0.111290 0.993788i \(-0.464502\pi\)
−0.624020 + 0.781408i \(0.714502\pi\)
\(12\) 0.560008 + 0.703643i 0.161660 + 0.203124i
\(13\) 3.28856 + 1.47831i 0.912082 + 0.410009i
\(14\) 2.44138 + 4.14338i 0.652486 + 1.10737i
\(15\) 0.210048 + 0.210048i 0.0542342 + 0.0542342i
\(16\) −2.12148 3.39107i −0.530369 0.847767i
\(17\) 2.30613 0.559318 0.279659 0.960099i \(-0.409779\pi\)
0.279659 + 0.960099i \(0.409779\pi\)
\(18\) 0.990174 3.83081i 0.233386 0.902932i
\(19\) 2.92152 + 7.05316i 0.670242 + 1.61811i 0.781200 + 0.624281i \(0.214608\pi\)
−0.110958 + 0.993825i \(0.535392\pi\)
\(20\) −0.822788 1.03382i −0.183981 0.231170i
\(21\) −0.585145 + 1.41266i −0.127689 + 0.308269i
\(22\) 0.362619 + 2.57769i 0.0773106 + 0.549564i
\(23\) 1.96093 + 1.96093i 0.408882 + 0.408882i 0.881349 0.472466i \(-0.156636\pi\)
−0.472466 + 0.881349i \(0.656636\pi\)
\(24\) 0.455296 1.18750i 0.0929368 0.242397i
\(25\) 3.22692 + 3.22692i 0.645384 + 0.645384i
\(26\) −0.559734 5.06820i −0.109773 0.993957i
\(27\) 2.40852 0.997641i 0.463520 0.191996i
\(28\) 3.29569 5.94931i 0.622828 1.12431i
\(29\) 0.820481 + 0.339854i 0.152359 + 0.0631093i 0.457560 0.889179i \(-0.348724\pi\)
−0.305201 + 0.952288i \(0.598724\pi\)
\(30\) 0.105130 0.406729i 0.0191940 0.0742582i
\(31\) −1.78963 + 1.78963i −0.321428 + 0.321428i −0.849315 0.527887i \(-0.822984\pi\)
0.527887 + 0.849315i \(0.322984\pi\)
\(32\) −2.60871 + 5.01942i −0.461160 + 0.887317i
\(33\) −0.585228 + 0.585228i −0.101875 + 0.101875i
\(34\) −1.65564 2.80986i −0.283939 0.481887i
\(35\) 0.859720 2.07555i 0.145319 0.350832i
\(36\) −5.37846 + 1.54379i −0.896411 + 0.257299i
\(37\) −6.76868 2.80368i −1.11276 0.460922i −0.250876 0.968019i \(-0.580719\pi\)
−0.861889 + 0.507097i \(0.830719\pi\)
\(38\) 6.49636 8.62334i 1.05385 1.39889i
\(39\) 1.17998 1.11175i 0.188949 0.178023i
\(40\) −0.668940 + 1.74472i −0.105769 + 0.275865i
\(41\) 5.14448i 0.803433i 0.915764 + 0.401716i \(0.131586\pi\)
−0.915764 + 0.401716i \(0.868414\pi\)
\(42\) 2.14133 0.301234i 0.330414 0.0464814i
\(43\) 0.493483 0.204407i 0.0752554 0.0311718i −0.344738 0.938699i \(-0.612032\pi\)
0.419994 + 0.907527i \(0.362032\pi\)
\(44\) 2.88040 2.29242i 0.434237 0.345596i
\(45\) −1.70765 + 0.707332i −0.254561 + 0.105443i
\(46\) 0.981451 3.79707i 0.144707 0.559847i
\(47\) 1.59703 1.59703i 0.232951 0.232951i −0.580972 0.813923i \(-0.697328\pi\)
0.813923 + 0.580972i \(0.197328\pi\)
\(48\) −1.77376 + 0.297793i −0.256020 + 0.0429827i
\(49\) 4.56399 0.651998
\(50\) 1.61508 6.24849i 0.228407 0.883670i
\(51\) 0.396819 0.958006i 0.0555658 0.134148i
\(52\) −5.77342 + 4.32061i −0.800629 + 0.599161i
\(53\) 5.87165 2.43212i 0.806533 0.334077i 0.0589634 0.998260i \(-0.481220\pi\)
0.747570 + 0.664183i \(0.231220\pi\)
\(54\) −2.94470 2.21838i −0.400723 0.301883i
\(55\) 0.859843 0.859843i 0.115941 0.115941i
\(56\) −9.61491 + 0.255606i −1.28485 + 0.0341568i
\(57\) 3.43272 0.454675
\(58\) −0.174958 1.24369i −0.0229731 0.163305i
\(59\) 2.54758 6.15040i 0.331666 0.800714i −0.666794 0.745242i \(-0.732334\pi\)
0.998460 0.0554714i \(-0.0176662\pi\)
\(60\) −0.571048 + 0.163909i −0.0737219 + 0.0211606i
\(61\) −5.74492 2.37962i −0.735562 0.304680i −0.0167264 0.999860i \(-0.505324\pi\)
−0.718835 + 0.695181i \(0.755324\pi\)
\(62\) 3.46538 + 0.895717i 0.440103 + 0.113756i
\(63\) −6.72757 6.72757i −0.847595 0.847595i
\(64\) 7.98870 0.425049i 0.998588 0.0531311i
\(65\) −1.73368 + 1.63343i −0.215037 + 0.202602i
\(66\) 1.13321 + 0.292908i 0.139489 + 0.0360545i
\(67\) −2.69444 + 1.11607i −0.329178 + 0.136350i −0.541151 0.840926i \(-0.682011\pi\)
0.211973 + 0.977276i \(0.432011\pi\)
\(68\) −2.23499 + 4.03456i −0.271033 + 0.489262i
\(69\) 1.15203 0.477185i 0.138688 0.0574463i
\(70\) −3.14613 + 0.442586i −0.376035 + 0.0528992i
\(71\) 7.20252i 0.854782i 0.904067 + 0.427391i \(0.140567\pi\)
−0.904067 + 0.427391i \(0.859433\pi\)
\(72\) 5.74237 + 5.44496i 0.676744 + 0.641695i
\(73\) 6.22518 0.728602 0.364301 0.931281i \(-0.381308\pi\)
0.364301 + 0.931281i \(0.381308\pi\)
\(74\) 1.44334 + 10.2600i 0.167785 + 1.19270i
\(75\) 1.89578 0.785259i 0.218906 0.0906739i
\(76\) −15.1709 1.72443i −1.74022 0.197805i
\(77\) 5.78282 + 2.39532i 0.659013 + 0.272972i
\(78\) −2.20174 0.639571i −0.249298 0.0724172i
\(79\) −16.4481 −1.85056 −0.925280 0.379285i \(-0.876170\pi\)
−0.925280 + 0.379285i \(0.876170\pi\)
\(80\) 2.60608 0.437531i 0.291369 0.0489174i
\(81\) 7.22125i 0.802361i
\(82\) 6.26820 3.69337i 0.692207 0.407865i
\(83\) 0.384907 + 0.929247i 0.0422490 + 0.101998i 0.943595 0.331101i \(-0.107420\pi\)
−0.901346 + 0.433099i \(0.857420\pi\)
\(84\) −1.90436 2.39280i −0.207782 0.261076i
\(85\) −0.583024 + 1.40754i −0.0632378 + 0.152670i
\(86\) −0.603342 0.454525i −0.0650601 0.0490127i
\(87\) 0.282363 0.282363i 0.0302725 0.0302725i
\(88\) −4.86109 1.86378i −0.518194 0.198679i
\(89\) 9.50377i 1.00740i 0.863879 + 0.503699i \(0.168028\pi\)
−0.863879 + 0.503699i \(0.831972\pi\)
\(90\) 2.08781 + 1.57284i 0.220074 + 0.165792i
\(91\) −11.1830 5.02711i −1.17230 0.526984i
\(92\) −5.33109 + 1.53020i −0.555804 + 0.159534i
\(93\) 0.435500 + 1.05139i 0.0451593 + 0.109024i
\(94\) −3.09243 0.799318i −0.318960 0.0824434i
\(95\) −5.04350 −0.517453
\(96\) 1.63627 + 1.94741i 0.167001 + 0.198756i
\(97\) −8.56996 8.56996i −0.870148 0.870148i 0.122340 0.992488i \(-0.460960\pi\)
−0.992488 + 0.122340i \(0.960960\pi\)
\(98\) −3.27662 5.56091i −0.330989 0.561737i
\(99\) −1.97074 4.75779i −0.198067 0.478176i
\(100\) −8.77288 + 2.51810i −0.877288 + 0.251810i
\(101\) 13.9080 5.76089i 1.38390 0.573230i 0.438379 0.898790i \(-0.355553\pi\)
0.945521 + 0.325560i \(0.105553\pi\)
\(102\) −1.45215 + 0.204283i −0.143785 + 0.0202271i
\(103\) −4.88383 + 4.88383i −0.481219 + 0.481219i −0.905521 0.424302i \(-0.860519\pi\)
0.424302 + 0.905521i \(0.360519\pi\)
\(104\) 9.40928 + 3.93262i 0.922655 + 0.385625i
\(105\) −0.714287 0.714287i −0.0697072 0.0697072i
\(106\) −7.17880 5.40812i −0.697267 0.525283i
\(107\) −1.35736 3.27695i −0.131220 0.316794i 0.844590 0.535414i \(-0.179844\pi\)
−0.975810 + 0.218620i \(0.929844\pi\)
\(108\) −0.588858 + 5.18056i −0.0566629 + 0.498500i
\(109\) −8.36265 + 3.46392i −0.800996 + 0.331784i −0.745355 0.666667i \(-0.767720\pi\)
−0.0556410 + 0.998451i \(0.517720\pi\)
\(110\) −1.66497 0.430354i −0.158748 0.0410326i
\(111\) −2.32940 + 2.32940i −0.221097 + 0.221097i
\(112\) 7.21427 + 11.5316i 0.681684 + 1.08964i
\(113\) 19.6832i 1.85164i 0.377970 + 0.925818i \(0.376622\pi\)
−0.377970 + 0.925818i \(0.623378\pi\)
\(114\) −2.46445 4.18254i −0.230817 0.391731i
\(115\) −1.69261 + 0.701101i −0.157836 + 0.0653780i
\(116\) −1.38975 + 1.10606i −0.129035 + 0.102695i
\(117\) 3.58132 + 9.43056i 0.331093 + 0.871856i
\(118\) −9.32283 + 1.31150i −0.858236 + 0.120733i
\(119\) −7.84218 −0.718892
\(120\) 0.609684 + 0.578108i 0.0556563 + 0.0527738i
\(121\) −5.38251 5.38251i −0.489319 0.489319i
\(122\) 1.22504 + 8.70820i 0.110910 + 0.788403i
\(123\) 2.13711 + 0.885220i 0.192697 + 0.0798176i
\(124\) −1.39653 4.86539i −0.125412 0.436925i
\(125\) −5.83712 + 2.41781i −0.522088 + 0.216256i
\(126\) −3.36717 + 13.0270i −0.299971 + 1.16054i
\(127\) 17.8776 1.58638 0.793190 0.608975i \(-0.208419\pi\)
0.793190 + 0.608975i \(0.208419\pi\)
\(128\) −6.25322 9.42854i −0.552711 0.833373i
\(129\) 0.240174i 0.0211462i
\(130\) 3.23489 + 0.939686i 0.283719 + 0.0824159i
\(131\) 6.64831 16.0504i 0.580866 1.40233i −0.311164 0.950356i \(-0.600719\pi\)
0.892029 0.451977i \(-0.149281\pi\)
\(132\) −0.456678 1.59103i −0.0397487 0.138482i
\(133\) −9.93487 23.9849i −0.861462 2.07975i
\(134\) 3.29427 + 2.48173i 0.284582 + 0.214389i
\(135\) 1.72226i 0.148228i
\(136\) 6.52041 0.173341i 0.559120 0.0148638i
\(137\) 8.75003 0.747566 0.373783 0.927516i \(-0.378061\pi\)
0.373783 + 0.927516i \(0.378061\pi\)
\(138\) −1.40849 1.06108i −0.119899 0.0903252i
\(139\) 0.706590 + 1.70586i 0.0599322 + 0.144689i 0.951009 0.309164i \(-0.100049\pi\)
−0.891077 + 0.453853i \(0.850049\pi\)
\(140\) 2.79796 + 3.51561i 0.236471 + 0.297123i
\(141\) −0.388631 0.938239i −0.0327286 0.0790139i
\(142\) 8.77579 5.17090i 0.736448 0.433932i
\(143\) −4.55101 4.83032i −0.380575 0.403932i
\(144\) 2.51170 10.9058i 0.209308 0.908815i
\(145\) −0.414860 + 0.414860i −0.0344523 + 0.0344523i
\(146\) −4.46924 7.58496i −0.369877 0.627736i
\(147\) 0.785333 1.89596i 0.0647732 0.156376i
\(148\) 11.4649 9.12459i 0.942412 0.750037i
\(149\) 1.40665 + 0.582652i 0.115237 + 0.0477327i 0.439557 0.898215i \(-0.355135\pi\)
−0.324320 + 0.945947i \(0.605135\pi\)
\(150\) −2.31782 1.74612i −0.189250 0.142570i
\(151\) 3.45100i 0.280838i −0.990092 0.140419i \(-0.955155\pi\)
0.990092 0.140419i \(-0.0448450\pi\)
\(152\) 8.79053 + 19.7227i 0.713006 + 1.59972i
\(153\) 4.56234 + 4.56234i 0.368843 + 0.368843i
\(154\) −1.23312 8.76564i −0.0993674 0.706356i
\(155\) −0.639856 1.54475i −0.0513945 0.124077i
\(156\) 0.801418 + 3.14184i 0.0641648 + 0.251548i
\(157\) 13.4412 + 5.56752i 1.07272 + 0.444336i 0.847951 0.530075i \(-0.177836\pi\)
0.224772 + 0.974411i \(0.427836\pi\)
\(158\) 11.8086 + 20.0409i 0.939442 + 1.59437i
\(159\) 2.85769i 0.226629i
\(160\) −2.40408 2.86122i −0.190059 0.226199i
\(161\) −6.66831 6.66831i −0.525537 0.525537i
\(162\) 8.79861 5.18435i 0.691284 0.407321i
\(163\) −6.27132 15.1403i −0.491208 1.18588i −0.954106 0.299469i \(-0.903191\pi\)
0.462899 0.886411i \(-0.346809\pi\)
\(164\) −9.00025 4.98580i −0.702801 0.389325i
\(165\) −0.209239 0.505149i −0.0162893 0.0393258i
\(166\) 0.855889 1.13612i 0.0664299 0.0881798i
\(167\) 14.6308 1.13216 0.566081 0.824349i \(-0.308459\pi\)
0.566081 + 0.824349i \(0.308459\pi\)
\(168\) −1.54827 + 4.03819i −0.119452 + 0.311553i
\(169\) 8.62922 + 9.72300i 0.663786 + 0.747923i
\(170\) 2.13357 0.300142i 0.163637 0.0230199i
\(171\) −8.17387 + 19.7335i −0.625072 + 1.50906i
\(172\) −0.120651 + 1.06145i −0.00919959 + 0.0809347i
\(173\) −20.7811 8.60780i −1.57996 0.654439i −0.591549 0.806269i \(-0.701483\pi\)
−0.988407 + 0.151831i \(0.951483\pi\)
\(174\) −0.546757 0.141324i −0.0414495 0.0107137i
\(175\) −10.9734 10.9734i −0.829513 0.829513i
\(176\) 1.21903 + 7.26097i 0.0918880 + 0.547316i
\(177\) −2.11662 2.11662i −0.159095 0.159095i
\(178\) 11.5797 6.82303i 0.867935 0.511408i
\(179\) 7.07175 17.0727i 0.528567 1.27607i −0.403895 0.914805i \(-0.632344\pi\)
0.932462 0.361268i \(-0.117656\pi\)
\(180\) 0.417503 3.67304i 0.0311188 0.273772i
\(181\) −4.48926 10.8380i −0.333684 0.805584i −0.998294 0.0583932i \(-0.981402\pi\)
0.664610 0.747190i \(-0.268598\pi\)
\(182\) 1.90342 + 17.2349i 0.141091 + 1.27753i
\(183\) −1.97708 + 1.97708i −0.146150 + 0.146150i
\(184\) 5.69178 + 5.39699i 0.419604 + 0.397872i
\(185\) 3.42245 3.42245i 0.251624 0.251624i
\(186\) 0.968390 1.28545i 0.0710058 0.0942539i
\(187\) −3.92165 1.62440i −0.286779 0.118788i
\(188\) 1.24623 + 4.34177i 0.0908906 + 0.316656i
\(189\) −8.19037 + 3.39256i −0.595762 + 0.246773i
\(190\) 3.62088 + 6.14517i 0.262686 + 0.445817i
\(191\) 13.3198i 0.963785i 0.876230 + 0.481892i \(0.160050\pi\)
−0.876230 + 0.481892i \(0.839950\pi\)
\(192\) 1.19806 3.39179i 0.0864623 0.244781i
\(193\) 8.91036 8.91036i 0.641382 0.641382i −0.309513 0.950895i \(-0.600166\pi\)
0.950895 + 0.309513i \(0.100166\pi\)
\(194\) −4.28929 + 16.5945i −0.307953 + 1.19142i
\(195\) 0.380239 + 1.00127i 0.0272295 + 0.0717025i
\(196\) −4.42321 + 7.98468i −0.315944 + 0.570334i
\(197\) 8.50167 20.5249i 0.605719 1.46234i −0.261895 0.965096i \(-0.584347\pi\)
0.867614 0.497239i \(-0.165653\pi\)
\(198\) −4.38219 + 5.81697i −0.311429 + 0.413394i
\(199\) −11.1716 + 11.1716i −0.791934 + 0.791934i −0.981808 0.189875i \(-0.939192\pi\)
0.189875 + 0.981808i \(0.439192\pi\)
\(200\) 9.36644 + 8.88134i 0.662308 + 0.628005i
\(201\) 1.31136i 0.0924963i
\(202\) −17.0042 12.8101i −1.19641 0.901314i
\(203\) −2.79012 1.15570i −0.195828 0.0811145i
\(204\) 1.29145 + 1.62269i 0.0904195 + 0.113611i
\(205\) −3.13993 1.30060i −0.219303 0.0908381i
\(206\) 9.45687 + 2.44437i 0.658891 + 0.170308i
\(207\) 7.75884i 0.539277i
\(208\) −1.96356 14.2879i −0.136148 0.990688i
\(209\) 14.0520i 0.971999i
\(210\) −0.357503 + 1.38312i −0.0246700 + 0.0954442i
\(211\) 24.6305 + 10.2023i 1.69563 + 0.702354i 0.999873 0.0159218i \(-0.00506830\pi\)
0.695759 + 0.718276i \(0.255068\pi\)
\(212\) −1.43556 + 12.6295i −0.0985945 + 0.867400i
\(213\) 2.99206 + 1.23935i 0.205012 + 0.0849189i
\(214\) −3.01825 + 4.00646i −0.206323 + 0.273876i
\(215\) 0.352875i 0.0240658i
\(216\) 6.73492 3.00179i 0.458254 0.204246i
\(217\) 6.08580 6.08580i 0.413131 0.413131i
\(218\) 10.2243 + 7.70247i 0.692480 + 0.521677i
\(219\) 1.07118 2.58605i 0.0723835 0.174749i
\(220\) 0.670971 + 2.33761i 0.0452369 + 0.157602i
\(221\) 7.58383 + 3.40916i 0.510143 + 0.229325i
\(222\) 4.51056 + 1.16587i 0.302729 + 0.0782482i
\(223\) 13.5893 13.5893i 0.910005 0.910005i −0.0862671 0.996272i \(-0.527494\pi\)
0.996272 + 0.0862671i \(0.0274939\pi\)
\(224\) 8.87116 17.0690i 0.592729 1.14047i
\(225\) 12.7680i 0.851201i
\(226\) 23.9826 14.1311i 1.59530 0.939988i
\(227\) 25.5762 10.5940i 1.69755 0.703150i 0.697643 0.716446i \(-0.254232\pi\)
0.999912 + 0.0132956i \(0.00423223\pi\)
\(228\) −3.32684 + 6.00553i −0.220325 + 0.397726i
\(229\) −16.7224 6.92665i −1.10505 0.457726i −0.245818 0.969316i \(-0.579057\pi\)
−0.859230 + 0.511590i \(0.829057\pi\)
\(230\) 2.06942 + 1.55899i 0.136453 + 0.102797i
\(231\) 1.99012 1.99012i 0.130940 0.130940i
\(232\) 2.34540 + 0.899242i 0.153983 + 0.0590381i
\(233\) 10.4559 10.4559i 0.684989 0.684989i −0.276131 0.961120i \(-0.589052\pi\)
0.961120 + 0.276131i \(0.0890523\pi\)
\(234\) 8.91936 11.1341i 0.583077 0.727857i
\(235\) 0.570994 + 1.37850i 0.0372475 + 0.0899235i
\(236\) 8.29110 + 10.4177i 0.539705 + 0.678132i
\(237\) −2.83026 + 6.83285i −0.183845 + 0.443841i
\(238\) 5.63013 + 9.55517i 0.364947 + 0.619369i
\(239\) −6.19274 6.19274i −0.400575 0.400575i 0.477860 0.878436i \(-0.341412\pi\)
−0.878436 + 0.477860i \(0.841412\pi\)
\(240\) 0.266675 1.15790i 0.0172138 0.0747421i
\(241\) −0.149765 0.149765i −0.00964720 0.00964720i 0.702267 0.711914i \(-0.252171\pi\)
−0.711914 + 0.702267i \(0.752171\pi\)
\(242\) −2.69396 + 10.4225i −0.173175 + 0.669983i
\(243\) 10.2254 + 4.23550i 0.655959 + 0.271707i
\(244\) 9.73086 7.74449i 0.622955 0.495790i
\(245\) −1.15385 + 2.78563i −0.0737165 + 0.177967i
\(246\) −0.455713 3.23945i −0.0290552 0.206540i
\(247\) −0.819171 + 27.5136i −0.0521226 + 1.75065i
\(248\) −4.92554 + 5.19458i −0.312772 + 0.329856i
\(249\) 0.452258 0.0286607
\(250\) 7.13658 + 5.37632i 0.451357 + 0.340028i
\(251\) −3.96411 9.57020i −0.250212 0.604066i 0.748009 0.663689i \(-0.231010\pi\)
−0.998221 + 0.0596232i \(0.981010\pi\)
\(252\) 18.2899 5.24981i 1.15216 0.330707i
\(253\) −1.95338 4.71588i −0.122808 0.296485i
\(254\) −12.8348 21.7826i −0.805330 1.36676i
\(255\) 0.484397 + 0.484397i 0.0303341 + 0.0303341i
\(256\) −6.99867 + 14.3881i −0.437417 + 0.899259i
\(257\) 9.29667i 0.579910i 0.957040 + 0.289955i \(0.0936404\pi\)
−0.957040 + 0.289955i \(0.906360\pi\)
\(258\) −0.292636 + 0.172428i −0.0182187 + 0.0107349i
\(259\) 23.0175 + 9.53416i 1.43024 + 0.592424i
\(260\) −1.17748 4.61612i −0.0730241 0.286280i
\(261\) 0.950851 + 2.29556i 0.0588562 + 0.142091i
\(262\) −24.3294 + 3.42257i −1.50308 + 0.211447i
\(263\) 2.37080 + 2.37080i 0.146190 + 0.146190i 0.776414 0.630224i \(-0.217037\pi\)
−0.630224 + 0.776414i \(0.717037\pi\)
\(264\) −1.61070 + 1.69868i −0.0991318 + 0.104546i
\(265\) 4.19864i 0.257920i
\(266\) −22.0914 + 29.3244i −1.35451 + 1.79800i
\(267\) 3.94804 + 1.63533i 0.241616 + 0.100081i
\(268\) 0.658762 5.79555i 0.0402403 0.354020i
\(269\) −5.70729 + 13.7786i −0.347980 + 0.840097i 0.648879 + 0.760892i \(0.275238\pi\)
−0.996858 + 0.0792051i \(0.974762\pi\)
\(270\) 2.09846 1.23646i 0.127708 0.0752486i
\(271\) −16.1128 + 16.1128i −0.978786 + 0.978786i −0.999780 0.0209937i \(-0.993317\pi\)
0.0209937 + 0.999780i \(0.493317\pi\)
\(272\) −4.89239 7.82023i −0.296645 0.474171i
\(273\) −4.01263 + 3.78060i −0.242856 + 0.228813i
\(274\) −6.28190 10.6613i −0.379504 0.644074i
\(275\) −3.21450 7.76049i −0.193842 0.467975i
\(276\) −0.281659 + 2.47793i −0.0169538 + 0.149154i
\(277\) −4.63920 11.2000i −0.278742 0.672943i 0.721059 0.692874i \(-0.243656\pi\)
−0.999801 + 0.0199303i \(0.993656\pi\)
\(278\) 1.57119 2.08562i 0.0942339 0.125087i
\(279\) −7.08107 −0.423932
\(280\) 2.27479 5.93309i 0.135945 0.354570i
\(281\) 23.3537i 1.39317i −0.717475 0.696584i \(-0.754702\pi\)
0.717475 0.696584i \(-0.245298\pi\)
\(282\) −0.864171 + 1.14711i −0.0514606 + 0.0683094i
\(283\) 4.97353 + 12.0072i 0.295646 + 0.713753i 0.999992 + 0.00389612i \(0.00124018\pi\)
−0.704346 + 0.709856i \(0.748760\pi\)
\(284\) −12.6008 6.98036i −0.747719 0.414208i
\(285\) −0.867844 + 2.09516i −0.0514067 + 0.124107i
\(286\) −2.61812 + 9.01293i −0.154813 + 0.532946i
\(287\) 17.4942i 1.03265i
\(288\) −15.0912 + 4.76924i −0.889256 + 0.281030i
\(289\) −11.6818 −0.687164
\(290\) 0.803319 + 0.207639i 0.0471725 + 0.0121930i
\(291\) −5.03476 + 2.08547i −0.295143 + 0.122252i
\(292\) −6.03317 + 10.8909i −0.353064 + 0.637344i
\(293\) −0.188210 0.0779592i −0.0109953 0.00455442i 0.377179 0.926140i \(-0.376894\pi\)
−0.388174 + 0.921586i \(0.626894\pi\)
\(294\) −2.87392 + 0.404291i −0.167610 + 0.0235788i
\(295\) 3.10983 + 3.10983i 0.181061 + 0.181061i
\(296\) −19.3487 7.41844i −1.12462 0.431188i
\(297\) −4.79849 −0.278437
\(298\) −0.299951 2.13221i −0.0173757 0.123515i
\(299\) 3.54977 + 9.34749i 0.205289 + 0.540579i
\(300\) −0.463499 + 4.07770i −0.0267602 + 0.235426i
\(301\) −1.67813 + 0.695104i −0.0967258 + 0.0400652i
\(302\) −4.20481 + 2.47757i −0.241959 + 0.142568i
\(303\) 6.76893i 0.388865i
\(304\) 17.7198 24.8702i 1.01630 1.42640i
\(305\) 2.90481 2.90481i 0.166329 0.166329i
\(306\) 2.28347 8.83434i 0.130537 0.505026i
\(307\) −12.6429 + 5.23684i −0.721566 + 0.298882i −0.713081 0.701082i \(-0.752701\pi\)
−0.00848496 + 0.999964i \(0.502701\pi\)
\(308\) −9.79505 + 7.79558i −0.558125 + 0.444195i
\(309\) 1.18846 + 2.86920i 0.0676093 + 0.163223i
\(310\) −1.42280 + 1.88864i −0.0808097 + 0.107268i
\(311\) −11.4931 11.4931i −0.651713 0.651713i 0.301692 0.953405i \(-0.402448\pi\)
−0.953405 + 0.301692i \(0.902448\pi\)
\(312\) 3.25275 3.23209i 0.184151 0.182981i
\(313\) 1.14448 1.14448i 0.0646896 0.0646896i −0.674022 0.738711i \(-0.735435\pi\)
0.738711 + 0.674022i \(0.235435\pi\)
\(314\) −2.86617 20.3743i −0.161747 1.14979i
\(315\) 5.80701 2.40534i 0.327188 0.135526i
\(316\) 15.9408 28.7760i 0.896740 1.61877i
\(317\) −0.198608 0.479482i −0.0111549 0.0269304i 0.918204 0.396108i \(-0.129639\pi\)
−0.929359 + 0.369178i \(0.879639\pi\)
\(318\) −3.48190 + 2.05162i −0.195255 + 0.115049i
\(319\) −1.15587 1.15587i −0.0647162 0.0647162i
\(320\) −1.76024 + 4.98336i −0.0984003 + 0.278579i
\(321\) −1.59486 −0.0890167
\(322\) −3.33751 + 12.9123i −0.185992 + 0.719572i
\(323\) 6.73738 + 16.2655i 0.374878 + 0.905036i
\(324\) −12.6336 6.99851i −0.701864 0.388806i
\(325\) 5.84154 + 15.3823i 0.324030 + 0.853256i
\(326\) −13.9451 + 18.5108i −0.772346 + 1.02522i
\(327\) 4.07004i 0.225074i
\(328\) 0.386686 + 14.5456i 0.0213512 + 0.803149i
\(329\) −5.43084 + 5.43084i −0.299412 + 0.299412i
\(330\) −0.465271 + 0.617605i −0.0256123 + 0.0339981i
\(331\) −0.386013 + 0.931919i −0.0212172 + 0.0512229i −0.934133 0.356925i \(-0.883825\pi\)
0.912916 + 0.408148i \(0.133825\pi\)
\(332\) −1.99875 0.227191i −0.109696 0.0124687i
\(333\) −7.84419 18.9376i −0.429859 1.03777i
\(334\) −10.5039 17.8266i −0.574745 0.975428i
\(335\) 1.92671i 0.105267i
\(336\) 6.03181 1.01267i 0.329062 0.0552457i
\(337\) 17.0973 0.931350 0.465675 0.884956i \(-0.345812\pi\)
0.465675 + 0.884956i \(0.345812\pi\)
\(338\) 5.65165 17.4945i 0.307409 0.951577i
\(339\) 8.17674 + 3.38692i 0.444099 + 0.183952i
\(340\) −1.89745 2.38413i −0.102904 0.129297i
\(341\) 4.30393 1.78274i 0.233071 0.0965410i
\(342\) 29.9122 4.20793i 1.61746 0.227539i
\(343\) 8.28387 0.447287
\(344\) 1.37992 0.615040i 0.0744004 0.0331607i
\(345\) 0.823779i 0.0443508i
\(346\) 4.43132 + 31.5001i 0.238229 + 1.69346i
\(347\) −25.9917 + 10.7661i −1.39531 + 0.577955i −0.948529 0.316690i \(-0.897428\pi\)
−0.446777 + 0.894645i \(0.647428\pi\)
\(348\) 0.220340 + 0.767647i 0.0118114 + 0.0411502i
\(349\) 3.94269 1.63311i 0.211047 0.0874186i −0.274655 0.961543i \(-0.588564\pi\)
0.485703 + 0.874124i \(0.338564\pi\)
\(350\) −5.49223 + 21.2485i −0.293572 + 1.13578i
\(351\) 9.39537 + 0.279731i 0.501488 + 0.0149309i
\(352\) 7.97182 6.69817i 0.424899 0.357014i
\(353\) −24.3697 24.3697i −1.29707 1.29707i −0.930319 0.366751i \(-0.880470\pi\)
−0.366751 0.930319i \(-0.619530\pi\)
\(354\) −1.05937 + 4.09854i −0.0563051 + 0.217835i
\(355\) −4.39606 1.82091i −0.233319 0.0966438i
\(356\) −16.6268 9.21062i −0.881219 0.488162i
\(357\) −1.34942 + 3.25778i −0.0714188 + 0.172420i
\(358\) −25.8790 + 3.64055i −1.36775 + 0.192409i
\(359\) 9.52678 0.502804 0.251402 0.967883i \(-0.419108\pi\)
0.251402 + 0.967883i \(0.419108\pi\)
\(360\) −4.77509 + 2.12829i −0.251669 + 0.112170i
\(361\) −27.7768 + 27.7768i −1.46194 + 1.46194i
\(362\) −9.98243 + 13.2508i −0.524665 + 0.696446i
\(363\) −3.16217 + 1.30981i −0.165971 + 0.0687474i
\(364\) 19.6330 14.6926i 1.02905 0.770102i
\(365\) −1.57382 + 3.79954i −0.0823776 + 0.198877i
\(366\) 3.82834 + 0.989533i 0.200110 + 0.0517237i
\(367\) −0.0916274 −0.00478291 −0.00239145 0.999997i \(-0.500761\pi\)
−0.00239145 + 0.999997i \(0.500761\pi\)
\(368\) 2.48958 10.8097i 0.129778 0.563495i
\(369\) −10.1776 + 10.1776i −0.529826 + 0.529826i
\(370\) −6.62711 1.71295i −0.344527 0.0890520i
\(371\) −19.9671 + 8.27063i −1.03664 + 0.429390i
\(372\) −2.26147 0.257054i −0.117252 0.0133276i
\(373\) 25.4495 10.5415i 1.31772 0.545819i 0.390595 0.920563i \(-0.372269\pi\)
0.927128 + 0.374744i \(0.122269\pi\)
\(374\) 0.836245 + 5.94447i 0.0432412 + 0.307381i
\(375\) 2.84088i 0.146702i
\(376\) 4.39545 4.63553i 0.226678 0.239059i
\(377\) 2.19579 + 2.33055i 0.113089 + 0.120030i
\(378\) 10.0137 + 7.54380i 0.515050 + 0.388011i
\(379\) −6.77456 2.80611i −0.347986 0.144140i 0.201843 0.979418i \(-0.435307\pi\)
−0.549829 + 0.835278i \(0.685307\pi\)
\(380\) 4.88794 8.82359i 0.250746 0.452641i
\(381\) 3.07623 7.42667i 0.157600 0.380480i
\(382\) 16.2292 9.56265i 0.830360 0.489268i
\(383\) 4.67681 4.67681i 0.238974 0.238974i −0.577451 0.816425i \(-0.695953\pi\)
0.816425 + 0.577451i \(0.195953\pi\)
\(384\) −4.99278 + 0.975313i −0.254787 + 0.0497712i
\(385\) −2.92397 + 2.92397i −0.149019 + 0.149019i
\(386\) −17.2537 4.45966i −0.878189 0.226991i
\(387\) 1.38068 + 0.571895i 0.0701837 + 0.0290710i
\(388\) 23.2987 6.68750i 1.18281 0.339506i
\(389\) −17.6920 + 7.32826i −0.897019 + 0.371557i −0.783073 0.621930i \(-0.786349\pi\)
−0.113946 + 0.993487i \(0.536349\pi\)
\(390\) 0.946995 1.18214i 0.0479530 0.0598599i
\(391\) 4.52215 + 4.52215i 0.228695 + 0.228695i
\(392\) 12.9043 0.343053i 0.651768 0.0173268i
\(393\) −5.52366 5.52366i −0.278632 0.278632i
\(394\) −31.1117 + 4.37668i −1.56739 + 0.220494i
\(395\) 4.15834 10.0391i 0.209229 0.505123i
\(396\) 10.2337 + 1.16323i 0.514262 + 0.0584545i
\(397\) −1.10213 2.66077i −0.0553141 0.133540i 0.893807 0.448453i \(-0.148025\pi\)
−0.949121 + 0.314913i \(0.898025\pi\)
\(398\) 21.6323 + 5.59142i 1.08433 + 0.280273i
\(399\) −11.6733 −0.584394
\(400\) 4.09687 17.7886i 0.204843 0.889428i
\(401\) −2.30638 2.30638i −0.115175 0.115175i 0.647170 0.762345i \(-0.275952\pi\)
−0.762345 + 0.647170i \(0.775952\pi\)
\(402\) 1.59781 0.941465i 0.0796913 0.0469560i
\(403\) −8.53094 + 3.23968i −0.424956 + 0.161380i
\(404\) −3.40037 + 29.9152i −0.169175 + 1.48834i
\(405\) −4.40749 1.82564i −0.219010 0.0907169i
\(406\) 0.594959 + 4.22928i 0.0295273 + 0.209896i
\(407\) 9.53552 + 9.53552i 0.472658 + 0.472658i
\(408\) 1.04997 2.73852i 0.0519812 0.135577i
\(409\) 0.489647 0.0242115 0.0121058 0.999927i \(-0.496147\pi\)
0.0121058 + 0.999927i \(0.496147\pi\)
\(410\) 0.669554 + 4.75954i 0.0330669 + 0.235057i
\(411\) 1.50563 3.63492i 0.0742674 0.179297i
\(412\) −3.81106 13.2774i −0.187757 0.654133i
\(413\) −8.66326 + 20.9150i −0.426291 + 1.02916i
\(414\) 9.45362 5.57030i 0.464620 0.273765i
\(415\) −0.664477 −0.0326179
\(416\) −15.9992 + 12.6502i −0.784423 + 0.620226i
\(417\) 0.830229 0.0406565
\(418\) −17.1214 + 10.0884i −0.837437 + 0.493438i
\(419\) 0.555172 1.34030i 0.0271219 0.0654781i −0.909738 0.415182i \(-0.863718\pi\)
0.936860 + 0.349704i \(0.113718\pi\)
\(420\) 1.94190 0.557388i 0.0947548 0.0271977i
\(421\) 5.91298 14.2752i 0.288181 0.695730i −0.711797 0.702385i \(-0.752118\pi\)
0.999978 + 0.00665495i \(0.00211835\pi\)
\(422\) −5.25216 37.3351i −0.255671 1.81744i
\(423\) 6.31899 0.307240
\(424\) 16.4189 7.31798i 0.797370 0.355393i
\(425\) 7.44169 + 7.44169i 0.360975 + 0.360975i
\(426\) −0.638021 4.53538i −0.0309122 0.219740i
\(427\) 19.5361 + 8.09212i 0.945418 + 0.391605i
\(428\) 7.04849 + 0.801179i 0.340702 + 0.0387265i
\(429\) −2.78970 + 1.05941i −0.134688 + 0.0511488i
\(430\) 0.429954 0.253339i 0.0207342 0.0122171i
\(431\) 25.0157 + 25.0157i 1.20497 + 1.20497i 0.972637 + 0.232328i \(0.0746344\pi\)
0.232328 + 0.972637i \(0.425366\pi\)
\(432\) −8.49268 6.05097i −0.408604 0.291128i
\(433\) −25.9657 −1.24783 −0.623917 0.781491i \(-0.714460\pi\)
−0.623917 + 0.781491i \(0.714460\pi\)
\(434\) −11.7843 3.04596i −0.565665 0.146211i
\(435\) 0.100955 + 0.243726i 0.00484041 + 0.0116858i
\(436\) 2.04458 17.9875i 0.0979177 0.861445i
\(437\) −8.10187 + 19.5596i −0.387565 + 0.935665i
\(438\) −3.91996 + 0.551445i −0.187303 + 0.0263491i
\(439\) 9.97603 + 9.97603i 0.476130 + 0.476130i 0.903892 0.427762i \(-0.140698\pi\)
−0.427762 + 0.903892i \(0.640698\pi\)
\(440\) 2.36651 2.49577i 0.112819 0.118981i
\(441\) 9.02920 + 9.02920i 0.429962 + 0.429962i
\(442\) −1.29082 11.6879i −0.0613979 0.555938i
\(443\) −13.0432 + 5.40266i −0.619700 + 0.256688i −0.670369 0.742027i \(-0.733864\pi\)
0.0506699 + 0.998715i \(0.483864\pi\)
\(444\) −1.81773 6.33282i −0.0862655 0.300543i
\(445\) −5.80063 2.40270i −0.274976 0.113899i
\(446\) −26.3137 6.80147i −1.24599 0.322059i
\(447\) 0.484088 0.484088i 0.0228966 0.0228966i
\(448\) −27.1663 + 1.44541i −1.28349 + 0.0682894i
\(449\) 9.92247 9.92247i 0.468270 0.468270i −0.433083 0.901354i \(-0.642574\pi\)
0.901354 + 0.433083i \(0.142574\pi\)
\(450\) 15.5570 9.16653i 0.733362 0.432114i
\(451\) 3.62369 8.74837i 0.170633 0.411945i
\(452\) −34.4356 19.0760i −1.61972 0.897261i
\(453\) −1.43361 0.593819i −0.0673567 0.0279001i
\(454\) −31.2700 23.5572i −1.46758 1.10559i
\(455\) 5.89554 5.55463i 0.276387 0.260405i
\(456\) 9.70577 0.258021i 0.454514 0.0120830i
\(457\) 32.3591i 1.51370i 0.653591 + 0.756848i \(0.273262\pi\)
−0.653591 + 0.756848i \(0.726738\pi\)
\(458\) 3.56585 + 25.3480i 0.166621 + 1.18443i
\(459\) 5.55435 2.30069i 0.259255 0.107387i
\(460\) 0.413825 3.64069i 0.0192947 0.169748i
\(461\) 28.1483 11.6594i 1.31100 0.543033i 0.385823 0.922573i \(-0.373918\pi\)
0.925175 + 0.379540i \(0.123918\pi\)
\(462\) −3.85359 0.996061i −0.179285 0.0463409i
\(463\) 21.4899 21.4899i 0.998723 0.998723i −0.00127656 0.999999i \(-0.500406\pi\)
0.999999 + 0.00127656i \(0.000406342\pi\)
\(464\) −0.588163 3.50330i −0.0273048 0.162637i
\(465\) −0.751818 −0.0348647
\(466\) −20.2464 5.23321i −0.937897 0.242424i
\(467\) −3.23133 + 7.80113i −0.149528 + 0.360993i −0.980840 0.194813i \(-0.937590\pi\)
0.831312 + 0.555806i \(0.187590\pi\)
\(468\) −19.9696 2.87417i −0.923094 0.132858i
\(469\) 9.16266 3.79530i 0.423092 0.175251i
\(470\) 1.26968 1.68538i 0.0585658 0.0777410i
\(471\) 4.62569 4.62569i 0.213141 0.213141i
\(472\) 6.74080 17.5813i 0.310270 0.809245i
\(473\) −0.983166 −0.0452060
\(474\) 10.3573 1.45702i 0.475726 0.0669233i
\(475\) −13.3325 + 32.1875i −0.611737 + 1.47686i
\(476\) 7.60029 13.7199i 0.348359 0.628849i
\(477\) 16.4278 + 6.80463i 0.752178 + 0.311562i
\(478\) −3.09949 + 11.9914i −0.141767 + 0.548473i
\(479\) 10.6065 + 10.6065i 0.484625 + 0.484625i 0.906605 0.421980i \(-0.138665\pi\)
−0.421980 + 0.906605i \(0.638665\pi\)
\(480\) −1.60228 + 0.506365i −0.0731335 + 0.0231123i
\(481\) −18.1145 19.2263i −0.825950 0.876642i
\(482\) −0.0749578 + 0.289999i −0.00341423 + 0.0132091i
\(483\) −3.91756 + 1.62271i −0.178255 + 0.0738358i
\(484\) 14.6332 4.20020i 0.665144 0.190918i
\(485\) 7.39730 3.06406i 0.335894 0.139132i
\(486\) −2.18044 15.4997i −0.0989069 0.703082i
\(487\) 31.4816i 1.42657i 0.700876 + 0.713284i \(0.252793\pi\)
−0.700876 + 0.713284i \(0.747207\pi\)
\(488\) −16.4222 6.29640i −0.743399 0.285024i
\(489\) −7.36867 −0.333223
\(490\) 4.22248 0.594003i 0.190752 0.0268343i
\(491\) 20.8989 8.65659i 0.943152 0.390667i 0.142499 0.989795i \(-0.454486\pi\)
0.800653 + 0.599128i \(0.204486\pi\)
\(492\) −3.61988 + 2.88095i −0.163197 + 0.129883i
\(493\) 1.89213 + 0.783747i 0.0852173 + 0.0352982i
\(494\) 34.1116 18.7547i 1.53475 0.843815i
\(495\) 3.40215 0.152915
\(496\) 9.86543 + 2.27210i 0.442971 + 0.102020i
\(497\) 24.4928i 1.09865i
\(498\) −0.324689 0.551045i −0.0145497 0.0246929i
\(499\) 5.63502 + 13.6041i 0.252258 + 0.609005i 0.998386 0.0567981i \(-0.0180891\pi\)
−0.746128 + 0.665803i \(0.768089\pi\)
\(500\) 1.42712 12.5553i 0.0638225 0.561488i
\(501\) 2.51754 6.07788i 0.112475 0.271540i
\(502\) −8.81469 + 11.7007i −0.393419 + 0.522229i
\(503\) 6.38116 6.38116i 0.284522 0.284522i −0.550387 0.834909i \(-0.685520\pi\)
0.834909 + 0.550387i \(0.185520\pi\)
\(504\) −19.5274 18.5161i −0.869820 0.824770i
\(505\) 9.94521i 0.442556i
\(506\) −4.34359 + 5.76573i −0.193096 + 0.256318i
\(507\) 5.52395 1.91168i 0.245327 0.0849006i
\(508\) −17.3262 + 31.2768i −0.768724 + 1.38768i
\(509\) −2.60654 6.29276i −0.115533 0.278922i 0.855526 0.517759i \(-0.173234\pi\)
−0.971060 + 0.238838i \(0.923234\pi\)
\(510\) 0.242442 0.937968i 0.0107355 0.0415339i
\(511\) −21.1693 −0.936473
\(512\) 22.5555 1.80227i 0.996823 0.0796497i
\(513\) 14.0730 + 14.0730i 0.621340 + 0.621340i
\(514\) 11.3274 6.67435i 0.499629 0.294393i
\(515\) −1.74614 4.21556i −0.0769442 0.185760i
\(516\) 0.420184 + 0.232766i 0.0184976 + 0.0102470i
\(517\) −3.84073 + 1.59088i −0.168915 + 0.0699669i
\(518\) −4.90821 34.8901i −0.215654 1.53298i
\(519\) −7.15167 + 7.15167i −0.313923 + 0.313923i
\(520\) −4.77909 + 4.74873i −0.209577 + 0.208245i
\(521\) −23.4900 23.4900i −1.02912 1.02912i −0.999563 0.0295537i \(-0.990591\pi\)
−0.0295537 0.999563i \(-0.509409\pi\)
\(522\) 2.11434 2.80659i 0.0925420 0.122841i
\(523\) −10.0627 24.2934i −0.440010 1.06228i −0.975945 0.218018i \(-0.930041\pi\)
0.535935 0.844259i \(-0.319959\pi\)
\(524\) 21.6370 + 27.1866i 0.945215 + 1.18765i
\(525\) −6.44678 + 2.67034i −0.281360 + 0.116543i
\(526\) 1.18659 4.59072i 0.0517379 0.200165i
\(527\) −4.12712 + 4.12712i −0.179780 + 0.179780i
\(528\) 3.22610 + 0.742999i 0.140398 + 0.0323349i
\(529\) 15.3095i 0.665631i
\(530\) 5.11576 3.01433i 0.222214 0.130934i
\(531\) 17.2077 7.12766i 0.746751 0.309314i
\(532\) 51.5899 + 5.86406i 2.23671 + 0.254239i
\(533\) −7.60512 + 16.9179i −0.329414 + 0.732796i
\(534\) −0.841872 5.98447i −0.0364314 0.258973i
\(535\) 2.34324 0.101307
\(536\) −7.53443 + 3.35814i −0.325438 + 0.145050i
\(537\) −5.87546 5.87546i −0.253545 0.253545i
\(538\) 20.8857 2.93813i 0.900448 0.126672i
\(539\) −7.76122 3.21480i −0.334299 0.138471i
\(540\) −3.01309 1.66914i −0.129663 0.0718282i
\(541\) −6.05041 + 2.50616i −0.260128 + 0.107748i −0.508936 0.860804i \(-0.669961\pi\)
0.248808 + 0.968553i \(0.419961\pi\)
\(542\) 31.2003 + 8.06453i 1.34017 + 0.346401i
\(543\) −5.27478 −0.226363
\(544\) −6.01602 + 11.5754i −0.257935 + 0.496292i
\(545\) 5.97988i 0.256150i
\(546\) 7.48720 + 2.17492i 0.320423 + 0.0930779i
\(547\) −0.708406 + 1.71024i −0.0302893 + 0.0731247i −0.938300 0.345821i \(-0.887600\pi\)
0.908011 + 0.418946i \(0.137600\pi\)
\(548\) −8.48014 + 15.3082i −0.362253 + 0.653932i
\(549\) −6.65776 16.0732i −0.284146 0.685989i
\(550\) −7.14785 + 9.48813i −0.304785 + 0.404575i
\(551\) 6.77987i 0.288832i
\(552\) 3.22140 1.43580i 0.137112 0.0611116i
\(553\) 55.9333 2.37853
\(554\) −10.3158 + 13.6934i −0.438278 + 0.581775i
\(555\) −0.832841 2.01066i −0.0353521 0.0853476i
\(556\) −3.66919 0.417065i −0.155608 0.0176875i
\(557\) 13.0146 + 31.4201i 0.551448 + 1.33131i 0.916391 + 0.400284i \(0.131088\pi\)
−0.364943 + 0.931030i \(0.618912\pi\)
\(558\) 5.08371 + 8.62780i 0.215210 + 0.365244i
\(559\) 1.92502 + 0.0573142i 0.0814198 + 0.00242413i
\(560\) −8.86220 + 1.48786i −0.374496 + 0.0628736i
\(561\) −1.34961 + 1.34961i −0.0569806 + 0.0569806i
\(562\) −28.4550 + 16.7663i −1.20030 + 0.707245i
\(563\) −1.40721 + 3.39730i −0.0593067 + 0.143179i −0.950755 0.309943i \(-0.899690\pi\)
0.891448 + 0.453122i \(0.149690\pi\)
\(564\) 2.01809 + 0.229390i 0.0849769 + 0.00965905i
\(565\) −12.0136 4.97621i −0.505417 0.209351i
\(566\) 11.0593 14.6802i 0.464856 0.617056i
\(567\) 24.5565i 1.03128i
\(568\) 0.541379 + 20.3646i 0.0227158 + 0.854480i
\(569\) 19.3966 + 19.3966i 0.813149 + 0.813149i 0.985105 0.171956i \(-0.0550087\pi\)
−0.171956 + 0.985105i \(0.555009\pi\)
\(570\) 3.17586 0.446768i 0.133022 0.0187131i
\(571\) −1.86440 4.50106i −0.0780227 0.188363i 0.880055 0.474871i \(-0.157505\pi\)
−0.958078 + 0.286508i \(0.907505\pi\)
\(572\) 12.8613 3.28065i 0.537757 0.137171i
\(573\) 5.53327 + 2.29196i 0.231156 + 0.0957478i
\(574\) −21.3156 + 12.5596i −0.889694 + 0.524229i
\(575\) 12.6555i 0.527772i
\(576\) 16.6454 + 14.9636i 0.693558 + 0.623483i
\(577\) −16.1153 16.1153i −0.670890 0.670890i 0.287031 0.957921i \(-0.407332\pi\)
−0.957921 + 0.287031i \(0.907332\pi\)
\(578\) 8.38669 + 14.2335i 0.348840 + 0.592034i
\(579\) −2.16830 5.23475i −0.0901116 0.217549i
\(580\) −0.323733 1.12786i −0.0134423 0.0468319i
\(581\) −1.30891 3.15999i −0.0543027 0.131098i
\(582\) 6.15561 + 4.63730i 0.255158 + 0.192222i
\(583\) −11.6981 −0.484486
\(584\) 17.6013 0.467917i 0.728345 0.0193626i
\(585\) −6.66136 0.198330i −0.275413 0.00819995i
\(586\) 0.0401336 + 0.285290i 0.00165790 + 0.0117852i
\(587\) −16.6196 + 40.1233i −0.685965 + 1.65607i 0.0667926 + 0.997767i \(0.478723\pi\)
−0.752757 + 0.658298i \(0.771277\pi\)
\(588\) 2.55587 + 3.21142i 0.105402 + 0.132437i
\(589\) −17.8510 7.39413i −0.735538 0.304670i
\(590\) 1.55648 6.02176i 0.0640792 0.247912i
\(591\) −7.06350 7.06350i −0.290553 0.290553i
\(592\) 4.85214 + 28.9010i 0.199422 + 1.18782i
\(593\) −22.3950 22.3950i −0.919651 0.919651i 0.0773526 0.997004i \(-0.475353\pi\)
−0.997004 + 0.0773526i \(0.975353\pi\)
\(594\) 3.44498 + 5.84664i 0.141349 + 0.239891i
\(595\) 1.98262 4.78648i 0.0812796 0.196226i
\(596\) −2.38261 + 1.89624i −0.0975954 + 0.0776732i
\(597\) 2.71857 + 6.56320i 0.111264 + 0.268614i
\(598\) 8.84079 11.0360i 0.361527 0.451295i
\(599\) 24.5659 24.5659i 1.00374 1.00374i 0.00374357 0.999993i \(-0.498808\pi\)
0.999993 0.00374357i \(-0.00119162\pi\)
\(600\) 5.30117 2.36276i 0.216419 0.0964593i
\(601\) 29.6868 29.6868i 1.21095 1.21095i 0.240234 0.970715i \(-0.422776\pi\)
0.970715 0.240234i \(-0.0772242\pi\)
\(602\) 2.05172 + 1.54565i 0.0836217 + 0.0629961i
\(603\) −7.53854 3.12257i −0.306993 0.127161i
\(604\) 6.03751 + 3.34455i 0.245663 + 0.136088i
\(605\) 4.64600 1.92444i 0.188887 0.0782394i
\(606\) −8.24748 + 4.85961i −0.335031 + 0.197408i
\(607\) 17.9597i 0.728962i −0.931211 0.364481i \(-0.881246\pi\)
0.931211 0.364481i \(-0.118754\pi\)
\(608\) −43.0242 3.73537i −1.74486 0.151489i
\(609\) −0.960200 + 0.960200i −0.0389093 + 0.0389093i
\(610\) −5.62476 1.45387i −0.227740 0.0588653i
\(611\) 7.61282 2.89102i 0.307982 0.116958i
\(612\) −12.4034 + 3.56018i −0.501378 + 0.143912i
\(613\) −9.16072 + 22.1159i −0.369998 + 0.893255i 0.623751 + 0.781623i \(0.285608\pi\)
−0.993750 + 0.111632i \(0.964392\pi\)
\(614\) 15.4574 + 11.6448i 0.623811 + 0.469945i
\(615\) −1.08059 + 1.08059i −0.0435735 + 0.0435735i
\(616\) 16.5305 + 6.33793i 0.666035 + 0.255363i
\(617\) 7.98738i 0.321560i −0.986990 0.160780i \(-0.948599\pi\)
0.986990 0.160780i \(-0.0514010\pi\)
\(618\) 2.64270 3.50795i 0.106305 0.141110i
\(619\) 11.1547 + 4.62041i 0.448343 + 0.185710i 0.595419 0.803415i \(-0.296986\pi\)
−0.147076 + 0.989125i \(0.546986\pi\)
\(620\) 3.32265 + 0.377675i 0.133441 + 0.0151678i
\(621\) 6.67924 + 2.76663i 0.268029 + 0.111021i
\(622\) −5.75232 + 22.2548i −0.230647 + 0.892335i
\(623\) 32.3184i 1.29481i
\(624\) −6.27333 1.64285i −0.251134 0.0657665i
\(625\) 18.6438i 0.745753i
\(626\) −2.21612 0.572813i −0.0885739 0.0228942i
\(627\) −5.83746 2.41796i −0.233126 0.0965639i
\(628\) −22.7669 + 18.1195i −0.908500 + 0.723047i
\(629\) −15.6094 6.46564i −0.622389 0.257802i
\(630\) −7.09977 5.34858i −0.282862 0.213093i
\(631\) 39.9918i 1.59205i 0.605265 + 0.796024i \(0.293067\pi\)
−0.605265 + 0.796024i \(0.706933\pi\)
\(632\) −46.5059 + 1.23633i −1.84991 + 0.0491785i
\(633\) 8.47642 8.47642i 0.336907 0.336907i
\(634\) −0.441630 + 0.586224i −0.0175394 + 0.0232819i
\(635\) −4.51973 + 10.9116i −0.179360 + 0.433013i
\(636\) 4.99952 + 2.76954i 0.198244 + 0.109820i
\(637\) 15.0089 + 6.74698i 0.594676 + 0.267325i
\(638\) −0.578516 + 2.23818i −0.0229036 + 0.0886104i
\(639\) −14.2492 + 14.2492i −0.563688 + 0.563688i
\(640\) 7.33562 1.43297i 0.289966 0.0566432i
\(641\) 31.4366i 1.24167i 0.783942 + 0.620835i \(0.213206\pi\)
−0.783942 + 0.620835i \(0.786794\pi\)
\(642\) 1.14500 + 1.94323i 0.0451895 + 0.0766934i
\(643\) 16.2332 6.72401i 0.640174 0.265169i −0.0388946 0.999243i \(-0.512384\pi\)
0.679069 + 0.734074i \(0.262384\pi\)
\(644\) 18.1288 5.20356i 0.714375 0.205049i
\(645\) 0.146590 + 0.0607198i 0.00577199 + 0.00239084i
\(646\) 14.9814 19.8865i 0.589436 0.782424i
\(647\) 29.9899 29.9899i 1.17902 1.17902i 0.199031 0.979993i \(-0.436220\pi\)
0.979993 0.199031i \(-0.0637796\pi\)
\(648\) 0.542787 + 20.4176i 0.0213227 + 0.802078i
\(649\) −8.66449 + 8.66449i −0.340111 + 0.340111i
\(650\) 14.5485 18.1609i 0.570638 0.712330i
\(651\) −1.48096 3.57535i −0.0580433 0.140129i
\(652\) 32.5658 + 3.70165i 1.27537 + 0.144968i
\(653\) −15.7093 + 37.9255i −0.614751 + 1.48414i 0.242975 + 0.970033i \(0.421877\pi\)
−0.857726 + 0.514107i \(0.828123\pi\)
\(654\) 4.95907 2.92200i 0.193915 0.114259i
\(655\) 8.11560 + 8.11560i 0.317103 + 0.317103i
\(656\) 17.4453 10.9139i 0.681123 0.426116i
\(657\) 12.3156 + 12.3156i 0.480479 + 0.480479i
\(658\) 10.5161 + 2.71815i 0.409959 + 0.105965i
\(659\) −45.5783 18.8792i −1.77548 0.735428i −0.993726 0.111840i \(-0.964325\pi\)
−0.781754 0.623588i \(-0.785675\pi\)
\(660\) 1.08654 + 0.123504i 0.0422936 + 0.00480737i
\(661\) 7.17032 17.3107i 0.278893 0.673307i −0.720912 0.693026i \(-0.756277\pi\)
0.999806 + 0.0197186i \(0.00627704\pi\)
\(662\) 1.41261 0.198721i 0.0549027 0.00772350i
\(663\) 2.72119 2.56384i 0.105682 0.0995712i
\(664\) 1.15814 + 2.59845i 0.0449447 + 0.100839i
\(665\) 17.1509 0.665082
\(666\) −17.4426 + 23.1534i −0.675885 + 0.897178i
\(667\) 0.942475 + 2.27534i 0.0364928 + 0.0881013i
\(668\) −14.1795 + 25.5965i −0.548621 + 0.990358i
\(669\) −3.30690 7.98356i −0.127852 0.308662i
\(670\) −2.34757 + 1.38324i −0.0906944 + 0.0534393i
\(671\) 8.09327 + 8.09327i 0.312437 + 0.312437i
\(672\) −5.56429 6.62233i −0.214647 0.255462i
\(673\) 10.0231i 0.386361i 0.981163 + 0.193180i \(0.0618802\pi\)
−0.981163 + 0.193180i \(0.938120\pi\)
\(674\) −12.2747 20.8319i −0.472803 0.802416i
\(675\) 10.9914 + 4.55279i 0.423060 + 0.175237i
\(676\) −25.3734 + 5.67369i −0.975900 + 0.218219i
\(677\) 8.67765 + 20.9497i 0.333509 + 0.805162i 0.998308 + 0.0581403i \(0.0185171\pi\)
−0.664799 + 0.747022i \(0.731483\pi\)
\(678\) −1.74359 12.3944i −0.0669623 0.476003i
\(679\) 29.1429 + 29.1429i 1.11840 + 1.11840i
\(680\) −1.54266 + 4.02355i −0.0591583 + 0.154296i
\(681\) 12.4478i 0.476999i
\(682\) −5.26207 3.96416i −0.201495 0.151795i
\(683\) −26.2418 10.8697i −1.00412 0.415918i −0.180811 0.983518i \(-0.557872\pi\)
−0.823305 + 0.567600i \(0.807872\pi\)
\(684\) −26.6019 33.4250i −1.01715 1.27804i
\(685\) −2.21214 + 5.34058i −0.0845216 + 0.204053i
\(686\) −5.94724 10.0933i −0.227066 0.385365i
\(687\) −5.75491 + 5.75491i −0.219563 + 0.219563i
\(688\) −1.74007 1.23979i −0.0663396 0.0472665i
\(689\) 22.9047 + 0.681947i 0.872599 + 0.0259801i
\(690\) 1.00372 0.591415i 0.0382109 0.0225148i
\(691\) 6.84764 + 16.5317i 0.260496 + 0.628894i 0.998969 0.0453890i \(-0.0144527\pi\)
−0.738473 + 0.674283i \(0.764453\pi\)
\(692\) 35.1994 28.0141i 1.33808 1.06494i
\(693\) 6.70168 + 16.1793i 0.254576 + 0.614600i
\(694\) 31.7780 + 23.9398i 1.20627 + 0.908742i
\(695\) −1.21981 −0.0462700
\(696\) 0.777137 0.819585i 0.0294573 0.0310663i
\(697\) 11.8638i 0.449374i
\(698\) −4.82041 3.63144i −0.182455 0.137452i
\(699\) −2.54441 6.14274i −0.0962383 0.232340i
\(700\) 29.8329 8.56302i 1.12758 0.323652i
\(701\) 11.1852 27.0035i 0.422460 1.01991i −0.559160 0.829060i \(-0.688876\pi\)
0.981620 0.190848i \(-0.0611238\pi\)
\(702\) −6.40438 11.6484i −0.241718 0.439642i
\(703\) 55.9316i 2.10950i
\(704\) −13.8845 4.90431i −0.523290 0.184838i
\(705\) 0.670906 0.0252678
\(706\) −12.1971 + 47.1886i −0.459045 + 1.77597i
\(707\) −47.2954 + 19.5904i −1.77873 + 0.736773i
\(708\) 5.75435 1.65169i 0.216262 0.0620742i
\(709\) 38.1352 + 15.7961i 1.43220 + 0.593236i 0.957893 0.287124i \(-0.0926993\pi\)
0.474305 + 0.880360i \(0.342699\pi\)
\(710\) 0.937408 + 6.66359i 0.0351803 + 0.250080i
\(711\) −32.5403 32.5403i −1.22036 1.22036i
\(712\) 0.714353 + 26.8712i 0.0267715 + 1.00704i
\(713\) −7.01869 −0.262852
\(714\) 4.93817 0.694683i 0.184807 0.0259979i
\(715\) 4.09875 1.55653i 0.153285 0.0582109i
\(716\) 23.0150 + 28.9181i 0.860112 + 1.08072i
\(717\) −3.63817 + 1.50698i −0.135870 + 0.0562792i
\(718\) −6.83955 11.6077i −0.255250 0.433197i
\(719\) 30.7036i 1.14505i −0.819887 0.572526i \(-0.805964\pi\)
0.819887 0.572526i \(-0.194036\pi\)
\(720\) 6.02135 + 4.29017i 0.224402 + 0.159885i
\(721\) 16.6079 16.6079i 0.618511 0.618511i
\(722\) 53.7860 + 13.9024i 2.00171 + 0.517393i
\(723\) −0.0879853 + 0.0364447i −0.00327221 + 0.00135539i
\(724\) 23.3119 + 2.64978i 0.866379 + 0.0984785i
\(725\) 1.55094 + 3.74431i 0.0576006 + 0.139060i
\(726\) 3.86613 + 2.91254i 0.143486 + 0.108094i
\(727\) −11.7525 11.7525i −0.435876 0.435876i 0.454746 0.890621i \(-0.349730\pi\)
−0.890621 + 0.454746i \(0.849730\pi\)
\(728\) −31.9971 13.3732i −1.18589 0.495645i
\(729\) −11.7996 + 11.7996i −0.437022 + 0.437022i
\(730\) 5.75938 0.810207i 0.213164 0.0299871i
\(731\) 1.13803 0.471389i 0.0420917 0.0174349i
\(732\) −1.54280 5.37498i −0.0570234 0.198665i
\(733\) 16.0107 + 38.6533i 0.591369 + 1.42769i 0.882180 + 0.470912i \(0.156075\pi\)
−0.290811 + 0.956781i \(0.593925\pi\)
\(734\) 0.0657820 + 0.111642i 0.00242806 + 0.00412077i
\(735\) 0.958657 + 0.958657i 0.0353606 + 0.0353606i
\(736\) −14.9582 + 4.72723i −0.551368 + 0.174248i
\(737\) 5.36813 0.197738
\(738\) 19.7075 + 5.09393i 0.725445 + 0.187510i
\(739\) 7.55717 + 18.2446i 0.277995 + 0.671140i 0.999780 0.0209779i \(-0.00667796\pi\)
−0.721785 + 0.692118i \(0.756678\pi\)
\(740\) 2.67068 + 9.30446i 0.0981763 + 0.342039i
\(741\) 11.2887 + 5.07462i 0.414701 + 0.186421i
\(742\) 24.4121 + 18.3908i 0.896198 + 0.675147i
\(743\) 5.38877i 0.197695i −0.995103 0.0988473i \(-0.968484\pi\)
0.995103 0.0988473i \(-0.0315155\pi\)
\(744\) 1.31037 + 2.94000i 0.0480407 + 0.107786i
\(745\) −0.711244 + 0.711244i −0.0260580 + 0.0260580i
\(746\) −31.1150 23.4404i −1.13920 0.858214i
\(747\) −1.07690 + 2.59987i −0.0394017 + 0.0951241i
\(748\) 6.64257 5.28662i 0.242876 0.193298i
\(749\) 4.61580 + 11.1435i 0.168658 + 0.407176i
\(750\) 3.46142 2.03955i 0.126393 0.0744739i
\(751\) 16.8043i 0.613198i −0.951839 0.306599i \(-0.900809\pi\)
0.951839 0.306599i \(-0.0991910\pi\)
\(752\) −8.80370 2.02757i −0.321038 0.0739379i
\(753\) −4.65774 −0.169738
\(754\) 1.26320 4.34859i 0.0460030 0.158366i
\(755\) 2.10632 + 0.872465i 0.0766567 + 0.0317523i
\(756\) 2.00246 17.6170i 0.0728288 0.640722i
\(757\) −6.65507 + 2.75662i −0.241882 + 0.100191i −0.500332 0.865834i \(-0.666789\pi\)
0.258449 + 0.966025i \(0.416789\pi\)
\(758\) 1.44459 + 10.2689i 0.0524700 + 0.372984i
\(759\) −2.29518 −0.0833099
\(760\) −14.2601 + 0.379096i −0.517270 + 0.0137513i
\(761\) 47.0672i 1.70618i −0.521761 0.853092i \(-0.674725\pi\)
0.521761 0.853092i \(-0.325275\pi\)
\(762\) −11.2574 + 1.58365i −0.407813 + 0.0573696i
\(763\) 28.4379 11.7794i 1.02952 0.426442i
\(764\) −23.3029 12.9089i −0.843069 0.467028i
\(765\) −3.93806 + 1.63120i −0.142381 + 0.0589760i
\(766\) −9.05600 2.34076i −0.327207 0.0845751i
\(767\) 17.4700 16.4598i 0.630806 0.594330i
\(768\) 4.77282 + 5.38316i 0.172224 + 0.194248i
\(769\) −34.4629