Properties

Label 416.2.bi.a.99.13
Level $416$
Weight $2$
Character 416.99
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(99,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bi (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 99.13
Character \(\chi\) \(=\) 416.99
Dual form 416.2.bi.a.395.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13109 - 0.848900i) q^{2} +(-0.351936 + 0.849649i) q^{3} +(0.558737 + 1.92037i) q^{4} +(0.415158 - 1.00228i) q^{5} +(1.11934 - 0.662272i) q^{6} +0.957261 q^{7} +(0.998218 - 2.64642i) q^{8} +(1.52328 + 1.52328i) q^{9} +O(q^{10})\) \(q+(-1.13109 - 0.848900i) q^{2} +(-0.351936 + 0.849649i) q^{3} +(0.558737 + 1.92037i) q^{4} +(0.415158 - 1.00228i) q^{5} +(1.11934 - 0.662272i) q^{6} +0.957261 q^{7} +(0.998218 - 2.64642i) q^{8} +(1.52328 + 1.52328i) q^{9} +(-1.32042 + 0.781243i) q^{10} +(-0.121420 - 0.0502938i) q^{11} +(-1.82828 - 0.201117i) q^{12} +(-2.56521 + 2.53371i) q^{13} +(-1.08275 - 0.812619i) q^{14} +(0.705477 + 0.705477i) q^{15} +(-3.37563 + 2.14596i) q^{16} +3.70614 q^{17} +(-0.429855 - 3.01607i) q^{18} +(-2.48152 - 5.99092i) q^{19} +(2.15671 + 0.237245i) q^{20} +(-0.336895 + 0.813336i) q^{21} +(0.0946427 + 0.159960i) q^{22} +(4.57103 + 4.57103i) q^{23} +(1.89722 + 1.77951i) q^{24} +(2.70333 + 2.70333i) q^{25} +(5.05236 - 0.688248i) q^{26} +(-4.37929 + 1.81396i) q^{27} +(0.534857 + 1.83829i) q^{28} +(9.11980 + 3.77755i) q^{29} +(-0.199080 - 1.39684i) q^{30} +(-3.03946 + 3.03946i) q^{31} +(5.63985 + 0.438292i) q^{32} +(0.0854641 - 0.0854641i) q^{33} +(-4.19199 - 3.14614i) q^{34} +(0.397414 - 0.959443i) q^{35} +(-2.07414 + 3.77636i) q^{36} +(7.35715 + 3.04743i) q^{37} +(-2.27887 + 8.88284i) q^{38} +(-1.24997 - 3.07123i) q^{39} +(-2.23804 - 2.09918i) q^{40} -3.06914i q^{41} +(1.07150 - 0.633967i) q^{42} +(9.42738 - 3.90495i) q^{43} +(0.0287408 - 0.261272i) q^{44} +(2.15915 - 0.894349i) q^{45} +(-1.28991 - 9.05061i) q^{46} +(-0.622246 + 0.622246i) q^{47} +(-0.635308 - 3.62334i) q^{48} -6.08365 q^{49} +(-0.762855 - 5.35256i) q^{50} +(-1.30433 + 3.14892i) q^{51} +(-6.29893 - 3.51048i) q^{52} +(6.77811 - 2.80758i) q^{53} +(6.49326 + 1.66583i) q^{54} +(-0.100817 + 0.100817i) q^{55} +(0.955555 - 2.53332i) q^{56} +5.96351 q^{57} +(-7.10857 - 12.0146i) q^{58} +(-1.69013 + 4.08034i) q^{59} +(-0.960600 + 1.74895i) q^{60} +(-10.8215 - 4.48241i) q^{61} +(6.01811 - 0.857710i) q^{62} +(1.45817 + 1.45817i) q^{63} +(-6.00712 - 5.28342i) q^{64} +(1.47452 + 3.62295i) q^{65} +(-0.169218 + 0.0241172i) q^{66} +(-11.5267 + 4.77452i) q^{67} +(2.07076 + 7.11715i) q^{68} +(-5.49249 + 2.27506i) q^{69} +(-1.26398 + 0.747853i) q^{70} +6.47615i q^{71} +(5.55180 - 2.51067i) q^{72} +7.95235 q^{73} +(-5.73465 - 9.69242i) q^{74} +(-3.24828 + 1.34548i) q^{75} +(10.1182 - 8.11277i) q^{76} +(-0.116231 - 0.0481443i) q^{77} +(-1.19334 + 4.53495i) q^{78} +3.25595 q^{79} +(0.749435 + 4.27423i) q^{80} +2.10345i q^{81} +(-2.60539 + 3.47148i) q^{82} +(-6.73901 - 16.2694i) q^{83} +(-1.75014 - 0.192521i) q^{84} +(1.53863 - 3.71459i) q^{85} +(-13.9781 - 3.58605i) q^{86} +(-6.41918 + 6.41918i) q^{87} +(-0.254302 + 0.271124i) q^{88} -9.26746i q^{89} +(-3.20141 - 0.821311i) q^{90} +(-2.45558 + 2.42542i) q^{91} +(-6.22406 + 11.3321i) q^{92} +(-1.51278 - 3.65217i) q^{93} +(1.23204 - 0.175592i) q^{94} -7.03480 q^{95} +(-2.35726 + 4.63764i) q^{96} +(8.08287 + 8.08287i) q^{97} +(6.88117 + 5.16441i) q^{98} +(-0.108345 - 0.261567i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9} - 4 q^{11} + 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} + 4 q^{18} - 4 q^{19} - 20 q^{20} - 16 q^{21} - 24 q^{22} + 28 q^{24} - 4 q^{26} - 8 q^{27} - 24 q^{28} - 8 q^{29} + 16 q^{30} - 4 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} + 20 q^{39} - 8 q^{40} - 48 q^{42} + 32 q^{43} - 20 q^{44} + 4 q^{45} - 24 q^{46} - 8 q^{47} - 8 q^{48} + 168 q^{49} + 20 q^{50} - 4 q^{52} - 8 q^{53} + 20 q^{54} - 40 q^{55} - 56 q^{56} - 8 q^{57} + 32 q^{58} + 4 q^{59} - 36 q^{60} - 8 q^{61} - 72 q^{62} - 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} - 4 q^{70} + 56 q^{72} - 8 q^{73} - 8 q^{74} - 4 q^{76} - 56 q^{77} - 136 q^{78} - 16 q^{79} + 28 q^{80} + 88 q^{82} - 44 q^{83} + 44 q^{84} - 24 q^{85} + 64 q^{86} - 8 q^{87} - 64 q^{88} + 64 q^{90} + 16 q^{91} - 8 q^{92} + 56 q^{93} - 56 q^{94} - 28 q^{96} - 8 q^{97} - 76 q^{98} - 116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13109 0.848900i −0.799803 0.600263i
\(3\) −0.351936 + 0.849649i −0.203190 + 0.490545i −0.992322 0.123679i \(-0.960531\pi\)
0.789132 + 0.614224i \(0.210531\pi\)
\(4\) 0.558737 + 1.92037i 0.279368 + 0.960184i
\(5\) 0.415158 1.00228i 0.185664 0.448233i −0.803452 0.595370i \(-0.797006\pi\)
0.989116 + 0.147136i \(0.0470056\pi\)
\(6\) 1.11934 0.662272i 0.456968 0.270372i
\(7\) 0.957261 0.361811 0.180905 0.983501i \(-0.442097\pi\)
0.180905 + 0.983501i \(0.442097\pi\)
\(8\) 0.998218 2.64642i 0.352923 0.935652i
\(9\) 1.52328 + 1.52328i 0.507759 + 0.507759i
\(10\) −1.32042 + 0.781243i −0.417553 + 0.247051i
\(11\) −0.121420 0.0502938i −0.0366095 0.0151641i 0.364304 0.931280i \(-0.381307\pi\)
−0.400913 + 0.916116i \(0.631307\pi\)
\(12\) −1.82828 0.201117i −0.527779 0.0580574i
\(13\) −2.56521 + 2.53371i −0.711462 + 0.702725i
\(14\) −1.08275 0.812619i −0.289377 0.217182i
\(15\) 0.705477 + 0.705477i 0.182153 + 0.182153i
\(16\) −3.37563 + 2.14596i −0.843907 + 0.536490i
\(17\) 3.70614 0.898871 0.449436 0.893313i \(-0.351625\pi\)
0.449436 + 0.893313i \(0.351625\pi\)
\(18\) −0.429855 3.01607i −0.101318 0.710895i
\(19\) −2.48152 5.99092i −0.569299 1.37441i −0.902147 0.431430i \(-0.858009\pi\)
0.332847 0.942981i \(-0.391991\pi\)
\(20\) 2.15671 + 0.237245i 0.482255 + 0.0530497i
\(21\) −0.336895 + 0.813336i −0.0735165 + 0.177484i
\(22\) 0.0946427 + 0.159960i 0.0201779 + 0.0341036i
\(23\) 4.57103 + 4.57103i 0.953126 + 0.953126i 0.998950 0.0458231i \(-0.0145910\pi\)
−0.0458231 + 0.998950i \(0.514591\pi\)
\(24\) 1.89722 + 1.77951i 0.387269 + 0.363241i
\(25\) 2.70333 + 2.70333i 0.540665 + 0.540665i
\(26\) 5.05236 0.688248i 0.990849 0.134977i
\(27\) −4.37929 + 1.81396i −0.842795 + 0.349097i
\(28\) 0.534857 + 1.83829i 0.101078 + 0.347405i
\(29\) 9.11980 + 3.77755i 1.69351 + 0.701473i 0.999823 0.0188084i \(-0.00598726\pi\)
0.693682 + 0.720281i \(0.255987\pi\)
\(30\) −0.199080 1.39684i −0.0363468 0.255027i
\(31\) −3.03946 + 3.03946i −0.545903 + 0.545903i −0.925253 0.379350i \(-0.876148\pi\)
0.379350 + 0.925253i \(0.376148\pi\)
\(32\) 5.63985 + 0.438292i 0.996994 + 0.0774798i
\(33\) 0.0854641 0.0854641i 0.0148774 0.0148774i
\(34\) −4.19199 3.14614i −0.718920 0.539559i
\(35\) 0.397414 0.959443i 0.0671753 0.162175i
\(36\) −2.07414 + 3.77636i −0.345690 + 0.629393i
\(37\) 7.35715 + 3.04743i 1.20951 + 0.500995i 0.894060 0.447948i \(-0.147845\pi\)
0.315449 + 0.948943i \(0.397845\pi\)
\(38\) −2.27887 + 8.88284i −0.369681 + 1.44099i
\(39\) −1.24997 3.07123i −0.200156 0.491791i
\(40\) −2.23804 2.09918i −0.353865 0.331909i
\(41\) 3.06914i 0.479319i −0.970857 0.239659i \(-0.922964\pi\)
0.970857 0.239659i \(-0.0770358\pi\)
\(42\) 1.07150 0.633967i 0.165336 0.0978233i
\(43\) 9.42738 3.90495i 1.43766 0.595499i 0.478432 0.878125i \(-0.341205\pi\)
0.959230 + 0.282625i \(0.0912053\pi\)
\(44\) 0.0287408 0.261272i 0.00433284 0.0393882i
\(45\) 2.15915 0.894349i 0.321867 0.133322i
\(46\) −1.28991 9.05061i −0.190186 1.33444i
\(47\) −0.622246 + 0.622246i −0.0907639 + 0.0907639i −0.751031 0.660267i \(-0.770443\pi\)
0.660267 + 0.751031i \(0.270443\pi\)
\(48\) −0.635308 3.62334i −0.0916989 0.522984i
\(49\) −6.08365 −0.869093
\(50\) −0.762855 5.35256i −0.107884 0.756967i
\(51\) −1.30433 + 3.14892i −0.182642 + 0.440937i
\(52\) −6.29893 3.51048i −0.873505 0.486815i
\(53\) 6.77811 2.80758i 0.931045 0.385651i 0.134970 0.990850i \(-0.456906\pi\)
0.796075 + 0.605198i \(0.206906\pi\)
\(54\) 6.49326 + 1.66583i 0.883620 + 0.226690i
\(55\) −0.100817 + 0.100817i −0.0135941 + 0.0135941i
\(56\) 0.955555 2.53332i 0.127691 0.338529i
\(57\) 5.96351 0.789887
\(58\) −7.10857 12.0146i −0.933402 1.57759i
\(59\) −1.69013 + 4.08034i −0.220036 + 0.531215i −0.994895 0.100920i \(-0.967821\pi\)
0.774858 + 0.632135i \(0.217821\pi\)
\(60\) −0.960600 + 1.74895i −0.124013 + 0.225789i
\(61\) −10.8215 4.48241i −1.38555 0.573913i −0.439590 0.898198i \(-0.644876\pi\)
−0.945959 + 0.324285i \(0.894876\pi\)
\(62\) 6.01811 0.857710i 0.764300 0.108929i
\(63\) 1.45817 + 1.45817i 0.183712 + 0.183712i
\(64\) −6.00712 5.28342i −0.750890 0.660427i
\(65\) 1.47452 + 3.62295i 0.182891 + 0.449372i
\(66\) −0.169218 + 0.0241172i −0.0208293 + 0.00296863i
\(67\) −11.5267 + 4.77452i −1.40821 + 0.583300i −0.951869 0.306505i \(-0.900841\pi\)
−0.456342 + 0.889805i \(0.650841\pi\)
\(68\) 2.07076 + 7.11715i 0.251116 + 0.863082i
\(69\) −5.49249 + 2.27506i −0.661218 + 0.273885i
\(70\) −1.26398 + 0.747853i −0.151075 + 0.0893855i
\(71\) 6.47615i 0.768578i 0.923213 + 0.384289i \(0.125553\pi\)
−0.923213 + 0.384289i \(0.874447\pi\)
\(72\) 5.55180 2.51067i 0.654285 0.295885i
\(73\) 7.95235 0.930752 0.465376 0.885113i \(-0.345919\pi\)
0.465376 + 0.885113i \(0.345919\pi\)
\(74\) −5.73465 9.69242i −0.666639 1.12672i
\(75\) −3.24828 + 1.34548i −0.375079 + 0.155363i
\(76\) 10.1182 8.11277i 1.16064 0.930599i
\(77\) −0.116231 0.0481443i −0.0132457 0.00548655i
\(78\) −1.19334 + 4.53495i −0.135119 + 0.513482i
\(79\) 3.25595 0.366323 0.183162 0.983083i \(-0.441367\pi\)
0.183162 + 0.983083i \(0.441367\pi\)
\(80\) 0.749435 + 4.27423i 0.0837894 + 0.477874i
\(81\) 2.10345i 0.233717i
\(82\) −2.60539 + 3.47148i −0.287717 + 0.383360i
\(83\) −6.73901 16.2694i −0.739703 1.78580i −0.607090 0.794633i \(-0.707663\pi\)
−0.132613 0.991168i \(-0.542337\pi\)
\(84\) −1.75014 0.192521i −0.190956 0.0210058i
\(85\) 1.53863 3.71459i 0.166888 0.402904i
\(86\) −13.9781 3.58605i −1.50730 0.386694i
\(87\) −6.41918 + 6.41918i −0.688208 + 0.688208i
\(88\) −0.254302 + 0.271124i −0.0271087 + 0.0289020i
\(89\) 9.26746i 0.982349i −0.871061 0.491175i \(-0.836568\pi\)
0.871061 0.491175i \(-0.163432\pi\)
\(90\) −3.20141 0.821311i −0.337458 0.0865738i
\(91\) −2.45558 + 2.42542i −0.257414 + 0.254253i
\(92\) −6.22406 + 11.3321i −0.648903 + 1.18145i
\(93\) −1.51278 3.65217i −0.156868 0.378712i
\(94\) 1.23204 0.175592i 0.127075 0.0181110i
\(95\) −7.03480 −0.721755
\(96\) −2.35726 + 4.63764i −0.240587 + 0.473327i
\(97\) 8.08287 + 8.08287i 0.820691 + 0.820691i 0.986207 0.165516i \(-0.0529289\pi\)
−0.165516 + 0.986207i \(0.552929\pi\)
\(98\) 6.88117 + 5.16441i 0.695103 + 0.521685i
\(99\) −0.108345 0.261567i −0.0108891 0.0262885i
\(100\) −3.68093 + 6.70183i −0.368093 + 0.670183i
\(101\) −16.9772 + 7.03219i −1.68929 + 0.699729i −0.999701 0.0244676i \(-0.992211\pi\)
−0.689594 + 0.724196i \(0.742211\pi\)
\(102\) 4.14843 2.45447i 0.410756 0.243029i
\(103\) −2.34312 + 2.34312i −0.230874 + 0.230874i −0.813058 0.582183i \(-0.802199\pi\)
0.582183 + 0.813058i \(0.302199\pi\)
\(104\) 4.14463 + 9.31784i 0.406414 + 0.913689i
\(105\) 0.675326 + 0.675326i 0.0659050 + 0.0659050i
\(106\) −10.0500 2.57830i −0.976144 0.250427i
\(107\) −0.0984637 0.237712i −0.00951884 0.0229805i 0.919049 0.394144i \(-0.128959\pi\)
−0.928567 + 0.371164i \(0.878959\pi\)
\(108\) −5.93035 7.39633i −0.570648 0.711712i
\(109\) −3.48153 + 1.44210i −0.333470 + 0.138128i −0.543135 0.839645i \(-0.682763\pi\)
0.209665 + 0.977773i \(0.432763\pi\)
\(110\) 0.199617 0.0284497i 0.0190327 0.00271257i
\(111\) −5.17850 + 5.17850i −0.491521 + 0.491521i
\(112\) −3.23135 + 2.05424i −0.305334 + 0.194108i
\(113\) 11.7709i 1.10732i −0.832744 0.553659i \(-0.813231\pi\)
0.832744 0.553659i \(-0.186769\pi\)
\(114\) −6.74528 5.06243i −0.631753 0.474140i
\(115\) 6.47916 2.68375i 0.604184 0.250261i
\(116\) −2.15871 + 19.6240i −0.200431 + 1.82205i
\(117\) −7.76706 0.0479874i −0.718065 0.00443643i
\(118\) 5.37549 3.18048i 0.494854 0.292787i
\(119\) 3.54774 0.325221
\(120\) 2.57121 1.16277i 0.234718 0.106146i
\(121\) −7.76596 7.76596i −0.705996 0.705996i
\(122\) 8.43498 + 14.2564i 0.763667 + 1.29071i
\(123\) 2.60769 + 1.08014i 0.235128 + 0.0973930i
\(124\) −7.53514 4.13862i −0.676676 0.371659i
\(125\) 8.84319 3.66297i 0.790959 0.327626i
\(126\) −0.411484 2.88717i −0.0366579 0.257209i
\(127\) −16.1340 −1.43166 −0.715831 0.698273i \(-0.753952\pi\)
−0.715831 + 0.698273i \(0.753952\pi\)
\(128\) 2.30951 + 11.0755i 0.204134 + 0.978943i
\(129\) 9.38426i 0.826238i
\(130\) 1.40771 5.34961i 0.123464 0.469192i
\(131\) 2.01920 4.87479i 0.176419 0.425912i −0.810792 0.585335i \(-0.800963\pi\)
0.987210 + 0.159422i \(0.0509632\pi\)
\(132\) 0.211875 + 0.116371i 0.0184413 + 0.0101288i
\(133\) −2.37546 5.73487i −0.205979 0.497276i
\(134\) 17.0908 + 4.38460i 1.47642 + 0.378772i
\(135\) 5.14236i 0.442584i
\(136\) 3.69954 9.80802i 0.317233 0.841031i
\(137\) 8.20841 0.701292 0.350646 0.936508i \(-0.385962\pi\)
0.350646 + 0.936508i \(0.385962\pi\)
\(138\) 8.14381 + 2.08927i 0.693247 + 0.177850i
\(139\) −3.83069 9.24809i −0.324915 0.784413i −0.998954 0.0457181i \(-0.985442\pi\)
0.674040 0.738695i \(-0.264558\pi\)
\(140\) 2.06453 + 0.227106i 0.174485 + 0.0191939i
\(141\) −0.309700 0.747682i −0.0260814 0.0629661i
\(142\) 5.49760 7.32512i 0.461349 0.614710i
\(143\) 0.438898 0.178629i 0.0367025 0.0149377i
\(144\) −8.41090 1.87312i −0.700908 0.156093i
\(145\) 7.57232 7.57232i 0.628847 0.628847i
\(146\) −8.99484 6.75075i −0.744418 0.558696i
\(147\) 2.14106 5.16897i 0.176591 0.426329i
\(148\) −1.74148 + 15.8312i −0.143149 + 1.30131i
\(149\) −6.62044 2.74228i −0.542368 0.224656i 0.0946427 0.995511i \(-0.469829\pi\)
−0.637010 + 0.770855i \(0.719829\pi\)
\(150\) 4.81628 + 1.23560i 0.393247 + 0.100886i
\(151\) 4.38485i 0.356834i 0.983955 + 0.178417i \(0.0570976\pi\)
−0.983955 + 0.178417i \(0.942902\pi\)
\(152\) −18.3316 + 0.586908i −1.48689 + 0.0476046i
\(153\) 5.64547 + 5.64547i 0.456410 + 0.456410i
\(154\) 0.0905977 + 0.153124i 0.00730057 + 0.0123391i
\(155\) 1.78453 + 4.30825i 0.143337 + 0.346047i
\(156\) 5.19950 4.11642i 0.416293 0.329577i
\(157\) 7.57662 + 3.13834i 0.604680 + 0.250467i 0.663952 0.747775i \(-0.268878\pi\)
−0.0592719 + 0.998242i \(0.518878\pi\)
\(158\) −3.68278 2.76398i −0.292986 0.219890i
\(159\) 6.74710i 0.535080i
\(160\) 2.78072 5.47075i 0.219835 0.432500i
\(161\) 4.37567 + 4.37567i 0.344851 + 0.344851i
\(162\) 1.78562 2.37919i 0.140291 0.186927i
\(163\) −7.52543 18.1680i −0.589437 1.42303i −0.884042 0.467408i \(-0.845188\pi\)
0.294604 0.955619i \(-0.404812\pi\)
\(164\) 5.89387 1.71484i 0.460234 0.133907i
\(165\) −0.0501779 0.121140i −0.00390634 0.00943074i
\(166\) −6.18867 + 24.1230i −0.480334 + 1.87230i
\(167\) 8.07531 0.624886 0.312443 0.949936i \(-0.398853\pi\)
0.312443 + 0.949936i \(0.398853\pi\)
\(168\) 1.81614 + 1.70345i 0.140118 + 0.131424i
\(169\) 0.160630 12.9990i 0.0123562 0.999924i
\(170\) −4.89365 + 2.89540i −0.375326 + 0.222067i
\(171\) 5.34578 12.9059i 0.408802 0.986935i
\(172\) 12.7664 + 15.9222i 0.973426 + 1.21406i
\(173\) 7.39122 + 3.06154i 0.561944 + 0.232765i 0.645529 0.763736i \(-0.276637\pi\)
−0.0835849 + 0.996501i \(0.526637\pi\)
\(174\) 12.7099 1.81144i 0.963537 0.137325i
\(175\) 2.58779 + 2.58779i 0.195618 + 0.195618i
\(176\) 0.517797 0.0907893i 0.0390304 0.00684350i
\(177\) −2.87204 2.87204i −0.215876 0.215876i
\(178\) −7.86715 + 10.4824i −0.589668 + 0.785685i
\(179\) −1.22526 + 2.95805i −0.0915805 + 0.221095i −0.963032 0.269387i \(-0.913179\pi\)
0.871452 + 0.490481i \(0.163179\pi\)
\(180\) 2.92387 + 3.64665i 0.217933 + 0.271806i
\(181\) −4.18268 10.0979i −0.310896 0.750569i −0.999672 0.0255956i \(-0.991852\pi\)
0.688776 0.724974i \(-0.258148\pi\)
\(182\) 4.83642 0.658833i 0.358500 0.0488360i
\(183\) 7.61695 7.61695i 0.563061 0.563061i
\(184\) 16.6598 7.53400i 1.22818 0.555414i
\(185\) 6.10876 6.10876i 0.449125 0.449125i
\(186\) −1.38924 + 5.41514i −0.101864 + 0.397057i
\(187\) −0.449999 0.186396i −0.0329072 0.0136306i
\(188\) −1.54261 0.847269i −0.112507 0.0617935i
\(189\) −4.19213 + 1.73644i −0.304932 + 0.126307i
\(190\) 7.95700 + 5.97184i 0.577261 + 0.433243i
\(191\) 21.7679i 1.57507i −0.616268 0.787536i \(-0.711356\pi\)
0.616268 0.787536i \(-0.288644\pi\)
\(192\) 6.60317 3.24452i 0.476543 0.234153i
\(193\) −11.8878 + 11.8878i −0.855704 + 0.855704i −0.990829 0.135125i \(-0.956856\pi\)
0.135125 + 0.990829i \(0.456856\pi\)
\(194\) −2.28092 16.0040i −0.163760 1.14902i
\(195\) −3.59717 0.0222245i −0.257599 0.00159153i
\(196\) −3.39916 11.6829i −0.242797 0.834489i
\(197\) −2.88502 + 6.96506i −0.205549 + 0.496240i −0.992713 0.120505i \(-0.961549\pi\)
0.787164 + 0.616744i \(0.211549\pi\)
\(198\) −0.0994967 + 0.387830i −0.00707092 + 0.0275619i
\(199\) 15.1623 15.1623i 1.07482 1.07482i 0.0778600 0.996964i \(-0.475191\pi\)
0.996964 0.0778600i \(-0.0248087\pi\)
\(200\) 9.85265 4.45564i 0.696688 0.315061i
\(201\) 11.4740i 0.809312i
\(202\) 25.1724 + 6.45790i 1.77112 + 0.454376i
\(203\) 8.73003 + 3.61610i 0.612728 + 0.253800i
\(204\) −6.77586 0.745367i −0.474405 0.0521861i
\(205\) −3.07613 1.27418i −0.214847 0.0889924i
\(206\) 4.63936 0.661208i 0.323239 0.0460686i
\(207\) 13.9259i 0.967916i
\(208\) 3.22196 14.0577i 0.223403 0.974726i
\(209\) 0.852221i 0.0589494i
\(210\) −0.190571 1.33714i −0.0131507 0.0922714i
\(211\) 5.79136 + 2.39886i 0.398693 + 0.165144i 0.573016 0.819544i \(-0.305773\pi\)
−0.174322 + 0.984689i \(0.555773\pi\)
\(212\) 9.17877 + 11.4478i 0.630401 + 0.786235i
\(213\) −5.50245 2.27919i −0.377022 0.156168i
\(214\) −0.0904226 + 0.352460i −0.00618116 + 0.0240937i
\(215\) 11.0700i 0.754971i
\(216\) 0.429023 + 13.4002i 0.0291914 + 0.911768i
\(217\) −2.90956 + 2.90956i −0.197514 + 0.197514i
\(218\) 5.16213 + 1.32433i 0.349624 + 0.0896949i
\(219\) −2.79872 + 6.75671i −0.189120 + 0.456576i
\(220\) −0.249936 0.137275i −0.0168507 0.00925511i
\(221\) −9.50704 + 9.39029i −0.639513 + 0.631659i
\(222\) 10.2534 1.46133i 0.688162 0.0980779i
\(223\) −14.8548 + 14.8548i −0.994750 + 0.994750i −0.999986 0.00523657i \(-0.998333\pi\)
0.00523657 + 0.999986i \(0.498333\pi\)
\(224\) 5.39881 + 0.419560i 0.360723 + 0.0280330i
\(225\) 8.23582i 0.549055i
\(226\) −9.99236 + 13.3140i −0.664682 + 0.885636i
\(227\) −3.97531 + 1.64663i −0.263851 + 0.109291i −0.510687 0.859767i \(-0.670609\pi\)
0.246836 + 0.969057i \(0.420609\pi\)
\(228\) 3.33203 + 11.4521i 0.220669 + 0.758437i
\(229\) −14.7384 6.10483i −0.973939 0.403419i −0.161762 0.986830i \(-0.551718\pi\)
−0.812177 + 0.583411i \(0.801718\pi\)
\(230\) −9.60676 2.46458i −0.633451 0.162510i
\(231\) 0.0818115 0.0818115i 0.00538280 0.00538280i
\(232\) 19.1005 20.3641i 1.25401 1.33697i
\(233\) 11.6511 11.6511i 0.763288 0.763288i −0.213627 0.976915i \(-0.568528\pi\)
0.976915 + 0.213627i \(0.0685277\pi\)
\(234\) 8.74453 + 6.64774i 0.571648 + 0.434576i
\(235\) 0.365334 + 0.881995i 0.0238318 + 0.0575350i
\(236\) −8.78009 0.965839i −0.571535 0.0628708i
\(237\) −1.14589 + 2.76642i −0.0744334 + 0.179698i
\(238\) −4.01282 3.01168i −0.260113 0.195218i
\(239\) 7.80066 + 7.80066i 0.504583 + 0.504583i 0.912859 0.408276i \(-0.133870\pi\)
−0.408276 + 0.912859i \(0.633870\pi\)
\(240\) −3.89535 0.867501i −0.251444 0.0559970i
\(241\) 6.36691 + 6.36691i 0.410129 + 0.410129i 0.881783 0.471655i \(-0.156343\pi\)
−0.471655 + 0.881783i \(0.656343\pi\)
\(242\) 2.19149 + 15.3765i 0.140874 + 0.988441i
\(243\) −14.9251 6.18217i −0.957444 0.396586i
\(244\) 2.56151 23.2857i 0.163984 1.49072i
\(245\) −2.52568 + 6.09752i −0.161360 + 0.389556i
\(246\) −2.03261 3.43541i −0.129594 0.219034i
\(247\) 21.5449 + 9.08053i 1.37087 + 0.577780i
\(248\) 5.00966 + 11.0777i 0.318113 + 0.703438i
\(249\) 16.1950 1.02632
\(250\) −13.1120 3.36383i −0.829273 0.212748i
\(251\) −3.31115 7.99381i −0.208998 0.504565i 0.784268 0.620422i \(-0.213039\pi\)
−0.993266 + 0.115857i \(0.963039\pi\)
\(252\) −1.98549 + 3.61496i −0.125074 + 0.227721i
\(253\) −0.325120 0.784909i −0.0204401 0.0493468i
\(254\) 18.2491 + 13.6962i 1.14505 + 0.859374i
\(255\) 2.61460 + 2.61460i 0.163732 + 0.163732i
\(256\) 6.78971 14.4879i 0.424357 0.905495i
\(257\) 7.28584i 0.454478i 0.973839 + 0.227239i \(0.0729699\pi\)
−0.973839 + 0.227239i \(0.927030\pi\)
\(258\) 7.96630 10.6145i 0.495960 0.660827i
\(259\) 7.04271 + 2.91719i 0.437613 + 0.181265i
\(260\) −6.13353 + 4.85589i −0.380385 + 0.301150i
\(261\) 8.13773 + 19.6462i 0.503713 + 1.21607i
\(262\) −6.42211 + 3.79973i −0.396759 + 0.234748i
\(263\) −8.48876 8.48876i −0.523439 0.523439i 0.395169 0.918608i \(-0.370686\pi\)
−0.918608 + 0.395169i \(0.870686\pi\)
\(264\) −0.140862 0.311486i −0.00866948 0.0191706i
\(265\) 7.95915i 0.488927i
\(266\) −2.18147 + 8.50319i −0.133754 + 0.521364i
\(267\) 7.87409 + 3.26156i 0.481887 + 0.199604i
\(268\) −15.6092 19.4678i −0.953485 1.18919i
\(269\) −5.25512 + 12.6870i −0.320410 + 0.773539i 0.678820 + 0.734305i \(0.262492\pi\)
−0.999230 + 0.0392337i \(0.987508\pi\)
\(270\) 4.36535 5.81648i 0.265667 0.353980i
\(271\) −6.56086 + 6.56086i −0.398544 + 0.398544i −0.877719 0.479175i \(-0.840936\pi\)
0.479175 + 0.877719i \(0.340936\pi\)
\(272\) −12.5105 + 7.95323i −0.758563 + 0.482235i
\(273\) −1.19655 2.93997i −0.0724185 0.177935i
\(274\) −9.28447 6.96812i −0.560895 0.420960i
\(275\) −0.192277 0.464198i −0.0115947 0.0279922i
\(276\) −7.43781 9.27644i −0.447704 0.558376i
\(277\) −6.86507 16.5737i −0.412482 0.995819i −0.984469 0.175557i \(-0.943827\pi\)
0.571987 0.820262i \(-0.306173\pi\)
\(278\) −3.51785 + 13.7123i −0.210987 + 0.822410i
\(279\) −9.25987 −0.554374
\(280\) −2.14239 2.00946i −0.128032 0.120088i
\(281\) 7.38871i 0.440773i −0.975413 0.220387i \(-0.929268\pi\)
0.975413 0.220387i \(-0.0707319\pi\)
\(282\) −0.284408 + 1.10860i −0.0169363 + 0.0660162i
\(283\) 12.1906 + 29.4307i 0.724657 + 1.74948i 0.659628 + 0.751592i \(0.270714\pi\)
0.0650286 + 0.997883i \(0.479286\pi\)
\(284\) −12.4366 + 3.61846i −0.737976 + 0.214716i
\(285\) 2.47580 5.97711i 0.146654 0.354053i
\(286\) −0.648071 0.170535i −0.0383213 0.0100839i
\(287\) 2.93797i 0.173423i
\(288\) 7.92341 + 9.25869i 0.466891 + 0.545573i
\(289\) −3.26452 −0.192031
\(290\) −14.9931 + 2.13684i −0.880427 + 0.125480i
\(291\) −9.71226 + 4.02295i −0.569343 + 0.235829i
\(292\) 4.44327 + 15.2714i 0.260023 + 0.893694i
\(293\) 2.75547 + 1.14135i 0.160976 + 0.0666784i 0.461716 0.887028i \(-0.347234\pi\)
−0.300740 + 0.953706i \(0.597234\pi\)
\(294\) −6.80967 + 4.02903i −0.397148 + 0.234978i
\(295\) 3.38797 + 3.38797i 0.197255 + 0.197255i
\(296\) 15.4088 16.4281i 0.895621 0.954866i
\(297\) 0.622964 0.0361481
\(298\) 5.16041 + 8.72186i 0.298934 + 0.505244i
\(299\) −23.3073 0.144000i −1.34790 0.00832774i
\(300\) −4.39875 5.48612i −0.253962 0.316741i
\(301\) 9.02446 3.73806i 0.520161 0.215458i
\(302\) 3.72230 4.95967i 0.214194 0.285397i
\(303\) 16.8995i 0.970854i
\(304\) 21.2329 + 14.8979i 1.21779 + 0.854451i
\(305\) −8.98525 + 8.98525i −0.514494 + 0.514494i
\(306\) −1.59310 11.1780i −0.0910717 0.639003i
\(307\) 26.5331 10.9904i 1.51432 0.627254i 0.537880 0.843022i \(-0.319225\pi\)
0.976445 + 0.215768i \(0.0692254\pi\)
\(308\) 0.0275124 0.250105i 0.00156767 0.0142511i
\(309\) −1.16620 2.81546i −0.0663429 0.160166i
\(310\) 1.63880 6.38791i 0.0930776 0.362809i
\(311\) −4.84055 4.84055i −0.274483 0.274483i 0.556419 0.830902i \(-0.312175\pi\)
−0.830902 + 0.556419i \(0.812175\pi\)
\(312\) −9.37554 + 0.242196i −0.530785 + 0.0137117i
\(313\) −4.69858 + 4.69858i −0.265579 + 0.265579i −0.827316 0.561737i \(-0.810133\pi\)
0.561737 + 0.827316i \(0.310133\pi\)
\(314\) −5.90572 9.98154i −0.333279 0.563291i
\(315\) 2.06687 0.856125i 0.116455 0.0482372i
\(316\) 1.81922 + 6.25263i 0.102339 + 0.351738i
\(317\) −2.75961 6.66228i −0.154995 0.374191i 0.827239 0.561850i \(-0.189910\pi\)
−0.982234 + 0.187659i \(0.939910\pi\)
\(318\) 5.72762 7.63159i 0.321189 0.427958i
\(319\) −0.917339 0.917339i −0.0513611 0.0513611i
\(320\) −7.78937 + 3.82736i −0.435439 + 0.213956i
\(321\) 0.236625 0.0132071
\(322\) −1.23478 8.66379i −0.0688114 0.482814i
\(323\) −9.19686 22.2032i −0.511727 1.23542i
\(324\) −4.03940 + 1.17527i −0.224411 + 0.0652930i
\(325\) −13.7840 0.0851622i −0.764601 0.00472395i
\(326\) −6.91086 + 26.9380i −0.382757 + 1.49196i
\(327\) 3.46561i 0.191649i
\(328\) −8.12224 3.06367i −0.448476 0.169163i
\(329\) −0.595652 + 0.595652i −0.0328393 + 0.0328393i
\(330\) −0.0460801 + 0.179617i −0.00253662 + 0.00988756i
\(331\) −5.54207 + 13.3797i −0.304619 + 0.735416i 0.695242 + 0.718776i \(0.255297\pi\)
−0.999862 + 0.0166408i \(0.994703\pi\)
\(332\) 27.4779 22.0317i 1.50805 1.20915i
\(333\) 6.56489 + 15.8491i 0.359754 + 0.868523i
\(334\) −9.13392 6.85513i −0.499786 0.375096i
\(335\) 13.5352i 0.739505i
\(336\) −0.608156 3.46848i −0.0331776 0.189221i
\(337\) −15.0519 −0.819927 −0.409964 0.912102i \(-0.634459\pi\)
−0.409964 + 0.912102i \(0.634459\pi\)
\(338\) −11.2165 + 14.5667i −0.610100 + 0.792325i
\(339\) 10.0012 + 4.14262i 0.543189 + 0.224996i
\(340\) 7.99307 + 0.879265i 0.433485 + 0.0476848i
\(341\) 0.521917 0.216185i 0.0282634 0.0117071i
\(342\) −17.0024 + 10.0597i −0.919382 + 0.543965i
\(343\) −12.5245 −0.676258
\(344\) −0.923566 28.8468i −0.0497954 1.55532i
\(345\) 6.44952i 0.347230i
\(346\) −5.76120 9.73730i −0.309724 0.523480i
\(347\) 12.3817 5.12866i 0.664684 0.275321i −0.0247240 0.999694i \(-0.507871\pi\)
0.689408 + 0.724373i \(0.257871\pi\)
\(348\) −15.9138 8.74055i −0.853070 0.468543i
\(349\) −11.6840 + 4.83967i −0.625430 + 0.259061i −0.672810 0.739816i \(-0.734913\pi\)
0.0473803 + 0.998877i \(0.484913\pi\)
\(350\) −0.730251 5.12380i −0.0390336 0.273879i
\(351\) 6.63776 15.7491i 0.354298 0.840623i
\(352\) −0.662747 0.336867i −0.0353245 0.0179551i
\(353\) −16.2204 16.2204i −0.863325 0.863325i 0.128398 0.991723i \(-0.459016\pi\)
−0.991723 + 0.128398i \(0.959016\pi\)
\(354\) 0.810464 + 5.68661i 0.0430757 + 0.302240i
\(355\) 6.49091 + 2.68862i 0.344502 + 0.142697i
\(356\) 17.7969 5.17807i 0.943236 0.274437i
\(357\) −1.24858 + 3.01434i −0.0660818 + 0.159536i
\(358\) 3.89697 2.30570i 0.205961 0.121860i
\(359\) 21.1809 1.11788 0.558942 0.829207i \(-0.311208\pi\)
0.558942 + 0.829207i \(0.311208\pi\)
\(360\) −0.211524 6.60678i −0.0111483 0.348208i
\(361\) −16.2981 + 16.2981i −0.857795 + 0.857795i
\(362\) −3.84110 + 14.9723i −0.201884 + 0.786927i
\(363\) 9.33147 3.86522i 0.489775 0.202871i
\(364\) −6.02972 3.36044i −0.316043 0.176135i
\(365\) 3.30148 7.97048i 0.172807 0.417194i
\(366\) −15.0815 + 2.14944i −0.788322 + 0.112353i
\(367\) 27.2791 1.42396 0.711979 0.702201i \(-0.247799\pi\)
0.711979 + 0.702201i \(0.247799\pi\)
\(368\) −25.2394 5.62085i −1.31569 0.293007i
\(369\) 4.67514 4.67514i 0.243378 0.243378i
\(370\) −12.0953 + 1.72384i −0.628805 + 0.0896182i
\(371\) 6.48842 2.68759i 0.336862 0.139533i
\(372\) 6.16827 4.94569i 0.319810 0.256422i
\(373\) −22.2551 + 9.21838i −1.15233 + 0.477310i −0.875313 0.483556i \(-0.839345\pi\)
−0.277014 + 0.960866i \(0.589345\pi\)
\(374\) 0.350759 + 0.592835i 0.0181373 + 0.0306548i
\(375\) 8.80274i 0.454572i
\(376\) 1.02559 + 2.26786i 0.0528907 + 0.116956i
\(377\) −32.9654 + 13.4167i −1.69781 + 0.690997i
\(378\) 6.21574 + 1.59463i 0.319703 + 0.0820189i
\(379\) 9.99310 + 4.13928i 0.513311 + 0.212620i 0.624276 0.781204i \(-0.285394\pi\)
−0.110965 + 0.993824i \(0.535394\pi\)
\(380\) −3.93060 13.5094i −0.201636 0.693018i
\(381\) 5.67815 13.7083i 0.290900 0.702295i
\(382\) −18.4788 + 24.6215i −0.945458 + 1.25975i
\(383\) −3.95097 + 3.95097i −0.201885 + 0.201885i −0.800807 0.598922i \(-0.795596\pi\)
0.598922 + 0.800807i \(0.295596\pi\)
\(384\) −10.2231 1.93559i −0.521694 0.0987751i
\(385\) −0.0965080 + 0.0965080i −0.00491850 + 0.00491850i
\(386\) 23.5378 3.35464i 1.19804 0.170747i
\(387\) 20.3088 + 8.41219i 1.03236 + 0.427616i
\(388\) −11.0059 + 20.0383i −0.558739 + 1.01729i
\(389\) −3.34997 + 1.38760i −0.169850 + 0.0703542i −0.465988 0.884791i \(-0.654301\pi\)
0.296138 + 0.955145i \(0.404301\pi\)
\(390\) 4.04987 + 3.07878i 0.205073 + 0.155900i
\(391\) 16.9409 + 16.9409i 0.856738 + 0.856738i
\(392\) −6.07281 + 16.0999i −0.306723 + 0.813169i
\(393\) 3.43123 + 3.43123i 0.173083 + 0.173083i
\(394\) 9.17586 5.42902i 0.462273 0.273510i
\(395\) 1.35173 3.26337i 0.0680131 0.164198i
\(396\) 0.441769 0.354209i 0.0221997 0.0177997i
\(397\) 7.93698 + 19.1616i 0.398346 + 0.961692i 0.988059 + 0.154079i \(0.0492410\pi\)
−0.589713 + 0.807613i \(0.700759\pi\)
\(398\) −30.0212 + 4.27866i −1.50482 + 0.214470i
\(399\) 5.70864 0.285789
\(400\) −14.9266 3.32419i −0.746332 0.166209i
\(401\) 0.755052 + 0.755052i 0.0377055 + 0.0377055i 0.725708 0.688003i \(-0.241512\pi\)
−0.688003 + 0.725708i \(0.741512\pi\)
\(402\) −9.74026 + 12.9781i −0.485800 + 0.647290i
\(403\) 0.0957514 15.4980i 0.00476971 0.772009i
\(404\) −22.9902 28.6733i −1.14380 1.42655i
\(405\) 2.10824 + 0.873264i 0.104760 + 0.0433928i
\(406\) −6.80476 11.5011i −0.337715 0.570788i
\(407\) −0.740038 0.740038i −0.0366823 0.0366823i
\(408\) 7.03137 + 6.59511i 0.348105 + 0.326506i
\(409\) 0.0318678 0.00157576 0.000787881 1.00000i \(-0.499749\pi\)
0.000787881 1.00000i \(0.499749\pi\)
\(410\) 2.39774 + 4.05254i 0.118416 + 0.200141i
\(411\) −2.88884 + 6.97427i −0.142496 + 0.344015i
\(412\) −5.80884 3.19047i −0.286181 0.157183i
\(413\) −1.61790 + 3.90595i −0.0796115 + 0.192199i
\(414\) 11.8217 15.7515i 0.581004 0.774142i
\(415\) −19.1043 −0.937792
\(416\) −15.5779 + 13.1654i −0.763770 + 0.645488i
\(417\) 9.20579 0.450810
\(418\) 0.723451 0.963941i 0.0353851 0.0471479i
\(419\) −4.18129 + 10.0945i −0.204269 + 0.493150i −0.992502 0.122227i \(-0.960996\pi\)
0.788233 + 0.615377i \(0.210996\pi\)
\(420\) −0.919544 + 1.67420i −0.0448692 + 0.0816927i
\(421\) −0.830247 + 2.00439i −0.0404638 + 0.0976882i −0.942819 0.333304i \(-0.891836\pi\)
0.902356 + 0.430992i \(0.141836\pi\)
\(422\) −4.51416 7.62961i −0.219746 0.371404i
\(423\) −1.89570 −0.0921723
\(424\) −0.664027 20.7403i −0.0322480 1.00724i
\(425\) 10.0189 + 10.0189i 0.485988 + 0.485988i
\(426\) 4.28897 + 7.24901i 0.207802 + 0.351216i
\(427\) −10.3590 4.29083i −0.501307 0.207648i
\(428\) 0.401480 0.321905i 0.0194063 0.0155599i
\(429\) −0.00269235 + 0.435775i −0.000129988 + 0.0210394i
\(430\) −9.39736 + 12.5212i −0.453181 + 0.603828i
\(431\) −12.1398 12.1398i −0.584753 0.584753i 0.351453 0.936206i \(-0.385688\pi\)
−0.936206 + 0.351453i \(0.885688\pi\)
\(432\) 10.8902 15.5211i 0.523953 0.746757i
\(433\) 8.31527 0.399607 0.199803 0.979836i \(-0.435970\pi\)
0.199803 + 0.979836i \(0.435970\pi\)
\(434\) 5.76090 0.821052i 0.276532 0.0394117i
\(435\) 3.76884 + 9.09879i 0.180702 + 0.436253i
\(436\) −4.71462 5.88007i −0.225789 0.281604i
\(437\) 16.0416 38.7278i 0.767373 1.85260i
\(438\) 8.90138 5.26662i 0.425325 0.251649i
\(439\) 6.02827 + 6.02827i 0.287714 + 0.287714i 0.836176 0.548462i \(-0.184786\pi\)
−0.548462 + 0.836176i \(0.684786\pi\)
\(440\) 0.166167 + 0.367441i 0.00792170 + 0.0175171i
\(441\) −9.26708 9.26708i −0.441289 0.441289i
\(442\) 18.7247 2.55075i 0.890645 0.121327i
\(443\) −13.1370 + 5.44151i −0.624156 + 0.258534i −0.672268 0.740308i \(-0.734680\pi\)
0.0481116 + 0.998842i \(0.484680\pi\)
\(444\) −12.8380 7.05120i −0.609266 0.334635i
\(445\) −9.28859 3.84746i −0.440321 0.182387i
\(446\) 29.4123 4.19189i 1.39271 0.198492i
\(447\) 4.65995 4.65995i 0.220408 0.220408i
\(448\) −5.75038 5.05761i −0.271680 0.238950i
\(449\) 4.60856 4.60856i 0.217491 0.217491i −0.589949 0.807440i \(-0.700852\pi\)
0.807440 + 0.589949i \(0.200852\pi\)
\(450\) 6.99139 9.31547i 0.329577 0.439135i
\(451\) −0.154359 + 0.372654i −0.00726846 + 0.0175476i
\(452\) 22.6046 6.57686i 1.06323 0.309350i
\(453\) −3.72559 1.54319i −0.175043 0.0725053i
\(454\) 5.89426 + 1.51216i 0.276632 + 0.0709690i
\(455\) 1.41150 + 3.46811i 0.0661721 + 0.162587i
\(456\) 5.95289 15.7820i 0.278770 0.739059i
\(457\) 35.3037i 1.65144i −0.564081 0.825719i \(-0.690769\pi\)
0.564081 0.825719i \(-0.309231\pi\)
\(458\) 11.4881 + 19.4165i 0.536801 + 0.907275i
\(459\) −16.2303 + 6.72280i −0.757565 + 0.313793i
\(460\) 8.77394 + 10.9429i 0.409087 + 0.510213i
\(461\) 21.0076 8.70162i 0.978420 0.405275i 0.164580 0.986364i \(-0.447373\pi\)
0.813840 + 0.581089i \(0.197373\pi\)
\(462\) −0.161986 + 0.0230865i −0.00753627 + 0.00107408i
\(463\) 8.06505 8.06505i 0.374815 0.374815i −0.494413 0.869227i \(-0.664617\pi\)
0.869227 + 0.494413i \(0.164617\pi\)
\(464\) −38.8915 + 6.81915i −1.80549 + 0.316571i
\(465\) −4.28854 −0.198876
\(466\) −23.0691 + 3.28784i −1.06865 + 0.152306i
\(467\) −3.66753 + 8.85420i −0.169713 + 0.409724i −0.985737 0.168295i \(-0.946174\pi\)
0.816024 + 0.578019i \(0.196174\pi\)
\(468\) −4.24759 14.9424i −0.196345 0.690714i
\(469\) −11.0341 + 4.57046i −0.509506 + 0.211044i
\(470\) 0.335499 1.30775i 0.0154754 0.0603220i
\(471\) −5.33297 + 5.33297i −0.245730 + 0.245730i
\(472\) 9.11118 + 8.54587i 0.419376 + 0.393356i
\(473\) −1.34107 −0.0616623
\(474\) 3.64452 2.15633i 0.167398 0.0990434i
\(475\) 9.48704 22.9037i 0.435295 1.05090i
\(476\) 1.98225 + 6.81297i 0.0908565 + 0.312272i
\(477\) 14.6017 + 6.04820i 0.668564 + 0.276928i
\(478\) −2.20128 15.4452i −0.100684 0.706449i
\(479\) −6.59692 6.59692i −0.301421 0.301421i 0.540149 0.841570i \(-0.318368\pi\)
−0.841570 + 0.540149i \(0.818368\pi\)
\(480\) 3.66958 + 4.28799i 0.167493 + 0.195719i
\(481\) −26.5940 + 10.8236i −1.21258 + 0.493513i
\(482\) −1.79669 12.6064i −0.0818369 0.574207i
\(483\) −5.25774 + 2.17783i −0.239236 + 0.0990946i
\(484\) 10.5744 19.2526i 0.480653 0.875120i
\(485\) 11.4570 4.74563i 0.520234 0.215488i
\(486\) 11.6336 + 19.6625i 0.527710 + 0.891909i
\(487\) 2.51008i 0.113743i 0.998382 + 0.0568714i \(0.0181125\pi\)
−0.998382 + 0.0568714i \(0.981888\pi\)
\(488\) −22.6646 + 24.1638i −1.02598 + 1.09385i
\(489\) 18.0849 0.817827
\(490\) 8.03296 4.75281i 0.362892 0.214710i
\(491\) 27.2410 11.2836i 1.22937 0.509221i 0.328991 0.944333i \(-0.393291\pi\)
0.900376 + 0.435112i \(0.143291\pi\)
\(492\) −0.617255 + 5.61124i −0.0278280 + 0.252974i
\(493\) 33.7993 + 14.0001i 1.52224 + 0.630534i
\(494\) −16.6608 28.5603i −0.749603 1.28499i
\(495\) −0.307144 −0.0138051
\(496\) 3.73752 16.7826i 0.167820 0.753563i
\(497\) 6.19936i 0.278079i
\(498\) −18.3180 13.7479i −0.820851 0.616060i
\(499\) 7.40814 + 17.8848i 0.331634 + 0.800635i 0.998463 + 0.0554240i \(0.0176510\pi\)
−0.666829 + 0.745211i \(0.732349\pi\)
\(500\) 11.9753 + 14.9356i 0.535550 + 0.667938i
\(501\) −2.84199 + 6.86118i −0.126971 + 0.306535i
\(502\) −3.04074 + 11.8526i −0.135715 + 0.529006i
\(503\) 28.9653 28.9653i 1.29150 1.29150i 0.357641 0.933859i \(-0.383581\pi\)
0.933859 0.357641i \(-0.116419\pi\)
\(504\) 5.31452 2.40337i 0.236727 0.107054i
\(505\) 19.9354i 0.887112i
\(506\) −0.298569 + 1.16380i −0.0132730 + 0.0517372i
\(507\) 10.9881 + 4.71130i 0.487997 + 0.209236i
\(508\) −9.01467 30.9833i −0.399961 1.37466i
\(509\) 4.91114 + 11.8565i 0.217682 + 0.525532i 0.994565 0.104113i \(-0.0332004\pi\)
−0.776883 + 0.629645i \(0.783200\pi\)
\(510\) −0.737817 5.17688i −0.0326711 0.229236i
\(511\) 7.61248 0.336756
\(512\) −19.9786 + 10.6234i −0.882937 + 0.469492i
\(513\) 21.7346 + 21.7346i 0.959606 + 0.959606i
\(514\) 6.18495 8.24095i 0.272807 0.363493i
\(515\) 1.37570 + 3.32123i 0.0606205 + 0.146351i
\(516\) −18.0212 + 5.24333i −0.793341 + 0.230825i
\(517\) 0.106848 0.0442579i 0.00469918 0.00194646i
\(518\) −5.48955 9.27817i −0.241197 0.407659i
\(519\) −5.20248 + 5.20248i −0.228363 + 0.228363i
\(520\) 11.0598 0.285704i 0.485002 0.0125290i
\(521\) −12.6561 12.6561i −0.554472 0.554472i 0.373256 0.927728i \(-0.378241\pi\)
−0.927728 + 0.373256i \(0.878241\pi\)
\(522\) 7.47316 29.1298i 0.327091 1.27498i
\(523\) 12.2592 + 29.5963i 0.536058 + 1.29416i 0.927455 + 0.373936i \(0.121992\pi\)
−0.391397 + 0.920222i \(0.628008\pi\)
\(524\) 10.4896 + 1.15389i 0.458240 + 0.0504079i
\(525\) −3.10945 + 1.28798i −0.135707 + 0.0562118i
\(526\) 2.39546 + 16.8077i 0.104447 + 0.732850i
\(527\) −11.2647 + 11.2647i −0.490697 + 0.490697i
\(528\) −0.105092 + 0.471898i −0.00457356 + 0.0205367i
\(529\) 18.7887i 0.816900i
\(530\) −6.75653 + 9.00253i −0.293485 + 0.391045i
\(531\) −8.79002 + 3.64094i −0.381454 + 0.158004i
\(532\) 9.68580 7.76604i 0.419933 0.336701i
\(533\) 7.77630 + 7.87299i 0.336829 + 0.341017i
\(534\) −6.13759 10.3734i −0.265599 0.448903i
\(535\) −0.279132 −0.0120679
\(536\) 1.12923 + 35.2706i 0.0487753 + 1.52346i
\(537\) −2.08209 2.08209i −0.0898488 0.0898488i
\(538\) 16.7140 9.88906i 0.720591 0.426348i
\(539\) 0.738676 + 0.305970i 0.0318170 + 0.0131791i
\(540\) −9.87522 + 2.87322i −0.424962 + 0.123644i
\(541\) −25.8839 + 10.7215i −1.11284 + 0.460952i −0.861914 0.507055i \(-0.830734\pi\)
−0.250923 + 0.968007i \(0.580734\pi\)
\(542\) 12.9905 1.85142i 0.557988 0.0795253i
\(543\) 10.0517 0.431359
\(544\) 20.9021 + 1.62437i 0.896169 + 0.0696444i
\(545\) 4.08817i 0.175118i
\(546\) −1.14234 + 4.34113i −0.0488874 + 0.185783i
\(547\) −1.49945 + 3.61999i −0.0641117 + 0.154779i −0.952688 0.303949i \(-0.901695\pi\)
0.888577 + 0.458728i \(0.151695\pi\)
\(548\) 4.58634 + 15.7632i 0.195919 + 0.673369i
\(549\) −9.65617 23.3121i −0.412115 0.994934i
\(550\) −0.176575 + 0.688274i −0.00752917 + 0.0293481i
\(551\) 64.0100i 2.72692i
\(552\) 0.538079 + 16.8065i 0.0229022 + 0.715330i
\(553\) 3.11680 0.132540
\(554\) −6.30443 + 24.5742i −0.267850 + 1.04406i
\(555\) 3.04041 + 7.34020i 0.129058 + 0.311574i
\(556\) 15.6194 12.5236i 0.662410 0.531118i
\(557\) 7.43428 + 17.9479i 0.315000 + 0.760478i 0.999505 + 0.0314695i \(0.0100187\pi\)
−0.684504 + 0.729009i \(0.739981\pi\)
\(558\) 10.4738 + 7.86071i 0.443390 + 0.332770i
\(559\) −14.2892 + 33.9033i −0.604370 + 1.43396i
\(560\) 0.717405 + 4.09156i 0.0303159 + 0.172900i
\(561\) 0.316742 0.316742i 0.0133729 0.0133729i
\(562\) −6.27227 + 8.35730i −0.264580 + 0.352532i
\(563\) 1.17383 2.83387i 0.0494710 0.119434i −0.897212 0.441600i \(-0.854411\pi\)
0.946683 + 0.322166i \(0.104411\pi\)
\(564\) 1.26278 1.01249i 0.0531728 0.0426337i
\(565\) −11.7978 4.88680i −0.496337 0.205589i
\(566\) 11.1951 43.6375i 0.470564 1.83422i
\(567\) 2.01355i 0.0845611i
\(568\) 17.1386 + 6.46461i 0.719121 + 0.271249i
\(569\) −28.1084 28.1084i −1.17836 1.17836i −0.980161 0.198203i \(-0.936489\pi\)
−0.198203 0.980161i \(-0.563511\pi\)
\(570\) −7.87433 + 4.65895i −0.329819 + 0.195142i
\(571\) −6.22639 15.0318i −0.260566 0.629062i 0.738408 0.674355i \(-0.235578\pi\)
−0.998974 + 0.0452923i \(0.985578\pi\)
\(572\) 0.588261 + 0.743039i 0.0245964 + 0.0310680i
\(573\) 18.4951 + 7.66093i 0.772644 + 0.320040i
\(574\) −2.49404 + 3.32311i −0.104099 + 0.138704i
\(575\) 24.7140i 1.03064i
\(576\) −1.10240 17.1986i −0.0459332 0.716608i
\(577\) −11.2012 11.2012i −0.466314 0.466314i 0.434404 0.900718i \(-0.356959\pi\)
−0.900718 + 0.434404i \(0.856959\pi\)
\(578\) 3.69247 + 2.77125i 0.153587 + 0.115269i
\(579\) −5.91672 14.2842i −0.245891 0.593632i
\(580\) 18.7726 + 10.3107i 0.779489 + 0.428129i
\(581\) −6.45099 15.5741i −0.267632 0.646122i
\(582\) 14.4005 + 3.69441i 0.596921 + 0.153138i
\(583\) −0.964201 −0.0399331
\(584\) 7.93818 21.0453i 0.328484 0.870861i
\(585\) −3.27265 + 7.76485i −0.135308 + 0.321037i
\(586\) −2.14779 3.63009i −0.0887244 0.149958i
\(587\) −13.0128 + 31.4157i −0.537097 + 1.29667i 0.389644 + 0.920966i \(0.372598\pi\)
−0.926741 + 0.375701i \(0.877402\pi\)
\(588\) 11.1226 + 1.22352i 0.458689 + 0.0504573i
\(589\) 25.7516 + 10.6667i 1.06108 + 0.439513i
\(590\) −0.956056 6.70815i −0.0393602 0.276170i
\(591\) −4.90251 4.90251i −0.201662 0.201662i
\(592\) −31.3747 + 5.50117i −1.28949 + 0.226097i
\(593\) −10.5782 10.5782i −0.434394 0.434394i 0.455726 0.890120i \(-0.349380\pi\)
−0.890120 + 0.455726i \(0.849380\pi\)
\(594\) −0.704630 0.528835i −0.0289113 0.0216983i
\(595\) 1.47287 3.55583i 0.0603819 0.145775i
\(596\) 1.56710 14.2459i 0.0641908 0.583535i
\(597\) 7.54645 + 18.2188i 0.308856 + 0.745644i
\(598\) 26.2405 + 19.9485i 1.07305 + 0.815754i
\(599\) −3.43937 + 3.43937i −0.140529 + 0.140529i −0.773871 0.633343i \(-0.781682\pi\)
0.633343 + 0.773871i \(0.281682\pi\)
\(600\) 0.318222 + 9.93940i 0.0129914 + 0.405774i
\(601\) 6.69053 6.69053i 0.272913 0.272913i −0.557359 0.830272i \(-0.688185\pi\)
0.830272 + 0.557359i \(0.188185\pi\)
\(602\) −13.3807 3.43279i −0.545358 0.139910i
\(603\) −24.8313 10.2854i −1.01121 0.418856i
\(604\) −8.42053 + 2.44998i −0.342627 + 0.0996882i
\(605\) −11.0078 + 4.55957i −0.447529 + 0.185373i
\(606\) −14.3460 + 19.1149i −0.582768 + 0.776491i
\(607\) 26.6548i 1.08189i 0.841059 + 0.540943i \(0.181933\pi\)
−0.841059 + 0.540943i \(0.818067\pi\)
\(608\) −11.3696 34.8755i −0.461099 1.41439i
\(609\) −6.14483 + 6.14483i −0.249001 + 0.249001i
\(610\) 17.7907 2.53556i 0.720326 0.102662i
\(611\) 0.0196025 3.17278i 0.000793030 0.128357i
\(612\) −7.68705 + 13.9957i −0.310731 + 0.565744i
\(613\) 9.46821 22.8583i 0.382418 0.923238i −0.609080 0.793109i \(-0.708461\pi\)
0.991497 0.130128i \(-0.0415390\pi\)
\(614\) −39.3411 10.0928i −1.58768 0.407314i
\(615\) 2.16521 2.16521i 0.0873096 0.0873096i
\(616\) −0.243434 + 0.259537i −0.00980822 + 0.0104570i
\(617\) 44.5338i 1.79286i 0.443184 + 0.896431i \(0.353849\pi\)
−0.443184 + 0.896431i \(0.646151\pi\)
\(618\) −1.07096 + 4.17453i −0.0430805 + 0.167924i
\(619\) 6.13011 + 2.53917i 0.246390 + 0.102058i 0.502461 0.864600i \(-0.332428\pi\)
−0.256071 + 0.966658i \(0.582428\pi\)
\(620\) −7.27633 + 5.83414i −0.292225 + 0.234305i
\(621\) −28.3096 11.7262i −1.13602 0.470557i
\(622\) 1.36596 + 9.58426i 0.0547701 + 0.384294i
\(623\) 8.87138i 0.355424i
\(624\) 10.8102 + 7.68495i 0.432754 + 0.307644i
\(625\) 8.73133i 0.349253i
\(626\) 9.30314 1.32590i 0.371828 0.0529935i
\(627\) −0.724089 0.299928i −0.0289173 0.0119780i
\(628\) −1.79343 + 16.3034i −0.0715656 + 0.650577i
\(629\) 27.2666 + 11.2942i 1.08719 + 0.450330i
\(630\) −3.06458 0.786209i −0.122096 0.0313233i
\(631\) 43.5093i 1.73208i 0.499978 + 0.866038i \(0.333341\pi\)
−0.499978 + 0.866038i \(0.666659\pi\)
\(632\) 3.25015 8.61663i 0.129284 0.342751i
\(633\) −4.07638 + 4.07638i −0.162021 + 0.162021i
\(634\) −2.53424 + 9.87828i −0.100648 + 0.392317i
\(635\) −6.69816 + 16.1708i −0.265809 + 0.641719i
\(636\) −12.9569 + 3.76985i −0.513775 + 0.149484i
\(637\) 15.6059 15.4142i 0.618327 0.610733i
\(638\) 0.258865 + 1.81632i 0.0102486 + 0.0719089i
\(639\) −9.86496 + 9.86496i −0.390252 + 0.390252i
\(640\) 12.0595 + 2.28330i 0.476695 + 0.0902552i
\(641\) 38.1180i 1.50557i −0.658266 0.752785i \(-0.728710\pi\)
0.658266 0.752785i \(-0.271290\pi\)
\(642\) −0.267645 0.200871i −0.0105631 0.00792775i
\(643\) 19.2115 7.95767i 0.757628 0.313820i 0.0297786 0.999557i \(-0.490520\pi\)
0.727850 + 0.685737i \(0.240520\pi\)
\(644\) −5.95805 + 10.8477i −0.234780 + 0.427461i
\(645\) 9.40566 + 3.89595i 0.370347 + 0.153403i
\(646\) −8.44579 + 32.9210i −0.332295 + 1.29526i
\(647\) 16.8989 16.8989i 0.664365 0.664365i −0.292041 0.956406i \(-0.594334\pi\)
0.956406 + 0.292041i \(0.0943344\pi\)
\(648\) 5.56662 + 2.09970i 0.218677 + 0.0824841i
\(649\) 0.410431 0.410431i 0.0161108 0.0161108i
\(650\) 15.5187 + 11.7976i 0.608694 + 0.462740i
\(651\) −1.44812 3.49608i −0.0567564 0.137022i
\(652\) 30.6845 24.6027i 1.20170 0.963517i
\(653\) 18.8452 45.4963i 0.737469 1.78041i 0.121571 0.992583i \(-0.461207\pi\)
0.615898 0.787826i \(-0.288793\pi\)
\(654\) −2.94196 + 3.91992i −0.115040 + 0.153281i
\(655\) −4.04761 4.04761i −0.158153 0.158153i
\(656\) 6.58625 + 10.3603i 0.257150 + 0.404500i
\(657\) 12.1136 + 12.1136i 0.472598 + 0.472598i
\(658\) 1.17939 0.168088i 0.0459772 0.00655274i
\(659\) 14.8536 + 6.15257i 0.578615 + 0.239670i 0.652744 0.757578i \(-0.273618\pi\)
−0.0741291 + 0.997249i \(0.523618\pi\)
\(660\) 0.204597 0.164045i 0.00796394 0.00638546i
\(661\) 12.5578 30.3173i 0.488443 1.17921i −0.467060 0.884226i \(-0.654687\pi\)
0.955503 0.294980i \(-0.0953132\pi\)
\(662\) 17.6266 10.4290i 0.685079 0.405336i
\(663\) −4.63258 11.3824i −0.179914 0.442057i
\(664\) −49.7828 + 1.59386i −1.93195 + 0.0618536i
\(665\) −6.73413 −0.261139
\(666\) 6.02877 23.4997i 0.233610 0.910594i
\(667\) 24.4196 + 58.9542i 0.945532 + 2.28272i
\(668\) 4.51197 + 15.5076i 0.174574 + 0.600006i
\(669\) −7.39342 17.8493i −0.285846 0.690093i
\(670\) 11.4900 15.3095i 0.443897 0.591458i
\(671\) 1.08851 + 1.08851i 0.0420213 + 0.0420213i
\(672\) −2.25651 + 4.43943i −0.0870469 + 0.171255i
\(673\) 6.92663i 0.267002i −0.991049 0.133501i \(-0.957378\pi\)
0.991049 0.133501i \(-0.0426219\pi\)
\(674\) 17.0250 + 12.7775i 0.655780 + 0.492172i
\(675\) −16.7424 6.93492i −0.644415 0.266925i
\(676\) 25.0526 6.95455i 0.963563 0.267483i
\(677\) 12.9679 + 31.3073i 0.498398 + 1.20324i 0.950346 + 0.311194i \(0.100729\pi\)
−0.451949 + 0.892044i \(0.649271\pi\)
\(678\) −7.79557 13.1757i −0.299387 0.506009i
\(679\) 7.73741 + 7.73741i 0.296935 + 0.296935i
\(680\) −8.29449 7.77985i −0.318079 0.298344i
\(681\) 3.95713i 0.151637i
\(682\) −0.773855 0.198530i −0.0296325 0.00760212i
\(683\) −43.6095 18.0636i −1.66867 0.691186i −0.669981 0.742378i \(-0.733698\pi\)
−0.998689 + 0.0511923i \(0.983698\pi\)
\(684\) 27.7709 + 3.05489i 1.06185 + 0.116807i
\(685\) 3.40779 8.22713i 0.130205 0.314342i
\(686\) 14.1663 + 10.6320i 0.540873 + 0.405933i
\(687\) 10.3739 10.3739i 0.395790 0.395790i
\(688\) −23.4435 + 33.4124i −0.893773 + 1.27384i
\(689\) −10.2737 + 24.3758i −0.391396 + 0.928644i
\(690\) 5.47500 7.29500i 0.208430 0.277716i
\(691\) −16.8769 40.7444i −0.642027 1.54999i −0.823941 0.566675i \(-0.808229\pi\)
0.181915 0.983314i \(-0.441771\pi\)
\(692\) −1.74954 + 15.9045i −0.0665077 + 0.604597i
\(693\) −0.103714 0.250388i −0.00393977 0.00951146i
\(694\) −18.3586 4.70983i −0.696881 0.178783i
\(695\) −10.8595 −0.411925
\(696\) 10.5801 + 23.3956i 0.401039 + 0.886808i
\(697\) 11.3747i 0.430846i
\(698\) 17.3241 + 4.44443i 0.655725 + 0.168224i
\(699\) 5.79890 + 13.9998i 0.219335 + 0.529520i
\(700\) −3.52361 + 6.41540i −0.133180 + 0.242479i
\(701\) 7.36702 17.7856i 0.278249 0.671752i −0.721539 0.692374i \(-0.756565\pi\)
0.999787 + 0.0206225i \(0.00656481\pi\)
\(702\) −20.8773 + 12.1788i −0.787963 + 0.459660i
\(703\) 51.6384i 1.94758i
\(704\) 0.463661 + 0.943633i 0.0174749 + 0.0355645i
\(705\) −0.877960 −0.0330659
\(706\) 4.57726 + 32.1163i 0.172267 + 1.20871i
\(707\) −16.2516 + 6.73164i −0.611205 + 0.253169i
\(708\) 3.91066 7.12008i 0.146971 0.267589i
\(709\) −24.7152 10.2374i −0.928200 0.384473i −0.133205 0.991089i \(-0.542527\pi\)
−0.794995 + 0.606616i \(0.792527\pi\)
\(710\) −5.05944 8.55122i −0.189878 0.320922i
\(711\) 4.95971 + 4.95971i 0.186004 + 0.186004i
\(712\) −24.5256 9.25095i −0.919137 0.346694i
\(713\) −27.7870 −1.04063
\(714\) 3.97113 2.34957i 0.148616 0.0879305i
\(715\) 0.00317601 0.514057i 0.000118776 0.0192247i
\(716\) −6.36514 0.700187i −0.237877 0.0261672i
\(717\) −9.37316 + 3.88249i −0.350047 + 0.144994i
\(718\) −23.9575 17.9804i −0.894086 0.671024i
\(719\) 22.0630i 0.822810i −0.911453 0.411405i \(-0.865038\pi\)
0.911453 0.411405i \(-0.134962\pi\)
\(720\) −5.36924 + 7.65243i −0.200100 + 0.285189i
\(721\) −2.24298 + 2.24298i −0.0835328 + 0.0835328i
\(722\) 32.2701 4.59919i 1.20097 0.171164i
\(723\) −7.65039 + 3.16889i −0.284521 + 0.117852i
\(724\) 17.0546 13.6743i 0.633830 0.508203i
\(725\) 14.4419 + 34.8657i 0.536357 + 1.29488i
\(726\) −13.8359 3.54957i −0.513499 0.131737i
\(727\) −11.1635 11.1635i −0.414033 0.414033i 0.469108 0.883141i \(-0.344576\pi\)
−0.883141 + 0.469108i \(0.844576\pi\)
\(728\) 3.96749 + 8.91960i 0.147045 + 0.330582i
\(729\) 6.04326 6.04326i 0.223824 0.223824i
\(730\) −10.5004 + 6.21272i −0.388638 + 0.229943i
\(731\) 34.9392 14.4723i 1.29227 0.535277i
\(732\) 18.8832 + 10.3715i 0.697944 + 0.383341i
\(733\) −4.23730 10.2297i −0.156508 0.377844i 0.826103 0.563519i \(-0.190553\pi\)
−0.982611 + 0.185675i \(0.940553\pi\)
\(734\) −30.8552 23.1572i −1.13888 0.854749i
\(735\) −4.29188 4.29188i −0.158308 0.158308i
\(736\) 23.7765 + 27.7834i 0.876413 + 1.02411i
\(737\) 1.63970 0.0603991
\(738\) −9.25675 + 1.31929i −0.340745 + 0.0485636i
\(739\) 3.30285 + 7.97377i 0.121497 + 0.293320i 0.972913 0.231171i \(-0.0742557\pi\)
−0.851416 + 0.524491i \(0.824256\pi\)
\(740\) 15.1443 + 8.31788i 0.556714 + 0.305771i
\(741\) −15.2977 + 15.1098i −0.561974 + 0.555073i
\(742\) −9.62049 2.46811i −0.353179 0.0906071i
\(743\) 25.2542i 0.926486i −0.886231 0.463243i \(-0.846686\pi\)
0.886231 0.463243i \(-0.153314\pi\)
\(744\) −11.1753 + 0.357790i −0.409706 + 0.0131172i
\(745\) −5.49706 + 5.49706i −0.201397 + 0.201397i
\(746\) 32.9981 + 8.46556i 1.20815 + 0.309946i
\(747\) 14.5174 35.0482i 0.531165 1.28235i
\(748\) 0.106517 0.968310i 0.00389466 0.0354049i
\(749\) −0.0942554 0.227553i −0.00344402 0.00831459i
\(750\) 7.47265 9.95671i 0.272863 0.363568i
\(751\) 18.0837i 0.659885i 0.944001 + 0.329942i \(0.107029\pi\)
−0.944001 + 0.329942i \(0.892971\pi\)
\(752\) 0.765155 3.43578i 0.0279023 0.125290i
\(753\) 7.95725 0.289978
\(754\) 48.6764 + 12.8088i 1.77269 + 0.466470i
\(755\) 4.39485 + 1.82041i 0.159945 + 0.0662514i
\(756\) −5.67689 7.08021i −0.206466 0.257505i
\(757\) 11.3431 4.69845i 0.412271 0.170768i −0.166901 0.985974i \(-0.553376\pi\)
0.579172 + 0.815206i \(0.303376\pi\)
\(758\) −7.78928 13.1650i −0.282919 0.478176i
\(759\) 0.781319 0.0283601
\(760\) −7.02226 + 18.6171i −0.254724 + 0.675312i
\(761\) 20.4508i 0.741341i 0.928765 + 0.370670i \(0.120872\pi\)
−0.928765 + 0.370670i \(0.879128\pi\)
\(762\) −18.0594 + 10.6851i −0.654225 + 0.387081i
\(763\) −3.33273 + 1.38046i −0.120653 + 0.0499761i
\(764\) 41.8025 12.1625i 1.51236 0.440026i
\(765\) 8.00211 3.31458i 0.289317 0.119839i
\(766\) 7.82289 1.11493i 0.282653 0.0402841i
\(767\) −6.00285 14.7492i −0.216750 0.532564i
\(768\) 9.92011 + 10.8677i 0.357961 + 0.392154i
\(769\) 17.8970