Properties

Label 416.2.bi.a
Level $416$
Weight $2$
Character orbit 416.bi
Analytic conductor $3.322$
Analytic rank $0$
Dimension $216$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(99,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bi (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 216 q - 4 q^{2} - 8 q^{3} - 4 q^{5} - 16 q^{6} - 8 q^{7} - 4 q^{8} - 8 q^{9} - 4 q^{11} + 24 q^{12} - 4 q^{13} + 24 q^{14} - 8 q^{15} - 8 q^{16} + 4 q^{18} - 4 q^{19} - 20 q^{20} - 16 q^{21} - 24 q^{22} + 28 q^{24} - 4 q^{26} - 8 q^{27} - 24 q^{28} - 8 q^{29} + 16 q^{30} - 4 q^{32} - 8 q^{33} + 8 q^{34} - 8 q^{35} - 4 q^{37} + 20 q^{39} - 8 q^{40} - 48 q^{42} + 32 q^{43} - 20 q^{44} + 4 q^{45} - 24 q^{46} - 8 q^{47} - 8 q^{48} + 168 q^{49} + 20 q^{50} - 4 q^{52} - 8 q^{53} + 20 q^{54} - 40 q^{55} - 56 q^{56} - 8 q^{57} + 32 q^{58} + 4 q^{59} - 36 q^{60} - 8 q^{61} - 72 q^{62} - 56 q^{63} - 8 q^{65} - 8 q^{66} - 4 q^{67} - 64 q^{68} - 4 q^{70} + 56 q^{72} - 8 q^{73} - 8 q^{74} - 4 q^{76} - 56 q^{77} - 136 q^{78} - 16 q^{79} + 28 q^{80} + 88 q^{82} - 44 q^{83} + 44 q^{84} - 24 q^{85} + 64 q^{86} - 8 q^{87} - 64 q^{88} + 64 q^{90} + 16 q^{91} - 8 q^{92} + 56 q^{93} - 56 q^{94} - 28 q^{96} - 8 q^{97} - 76 q^{98} - 116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1 −1.41416 0.0124808i 0.185333 0.447434i 1.99969 + 0.0352996i −0.172454 + 0.416340i −0.267675 + 0.630429i −2.63339 −2.82744 0.0748769i 1.95547 + 1.95547i 0.249073 0.586618i
99.2 −1.40664 + 0.146174i −0.514362 + 1.24178i 1.95727 0.411228i −0.618863 + 1.49407i 0.542006 1.82192i 4.58865 −2.69306 + 0.864551i 0.843873 + 0.843873i 0.652123 2.19207i
99.3 −1.39321 0.242829i 1.24651 3.00935i 1.88207 + 0.676624i 0.701430 1.69340i −2.46741 + 3.88996i 2.55030 −2.45781 1.39970i −5.38106 5.38106i −1.38845 + 2.18894i
99.4 −1.37040 + 0.349306i −0.598132 + 1.44402i 1.75597 0.957376i 0.944556 2.28036i 0.315273 2.18781i −3.99101 −2.07196 + 1.92536i 0.393895 + 0.393895i −0.497872 + 3.45493i
99.5 −1.32900 0.483486i 0.890323 2.14943i 1.53248 + 1.28511i −1.52443 + 3.68031i −2.22246 + 2.42613i −1.19925 −1.41534 2.44884i −1.70605 1.70605i 3.80535 4.15409i
99.6 −1.29332 0.572126i 0.174306 0.420812i 1.34534 + 1.47988i 1.36963 3.30658i −0.466191 + 0.444519i 1.57593 −0.893278 2.68366i 1.97462 + 1.97462i −3.66315 + 3.49286i
99.7 −1.29190 0.575332i −0.680922 + 1.64389i 1.33799 + 1.48654i −1.07264 + 2.58958i 1.82546 1.73198i −0.894378 −0.873285 2.69024i −0.117403 0.117403i 2.87561 2.72834i
99.8 −1.26784 + 0.626573i 0.685368 1.65463i 1.21481 1.58878i −1.01561 + 2.45191i 0.167810 + 2.52723i 1.75642 −0.544694 + 2.77548i −0.146735 0.146735i −0.248669 3.74497i
99.9 −1.26157 + 0.639092i 0.429027 1.03576i 1.18312 1.61252i 1.40552 3.39324i 0.120699 + 1.58087i 2.38266 −0.462046 + 2.79043i 1.23258 + 1.23258i 0.395421 + 5.17907i
99.10 −1.24057 0.678953i −1.17354 + 2.83317i 1.07805 + 1.68458i 0.191443 0.462185i 3.37944 2.71798i −1.90349 −0.193645 2.82179i −4.52833 4.52833i −0.551302 + 0.443394i
99.11 −1.21725 + 0.719929i −1.29743 + 3.13227i 0.963404 1.75267i −0.636854 + 1.53750i −0.675714 4.74682i −1.05850 0.0890924 + 2.82702i −6.00647 6.00647i −0.331680 2.33002i
99.12 −1.21550 + 0.722878i 1.19450 2.88378i 0.954896 1.75732i 0.304891 0.736071i 0.632701 + 4.36873i −4.22727 0.109649 + 2.82630i −4.76805 4.76805i 0.161494 + 1.11510i
99.13 −1.13109 0.848900i −0.351936 + 0.849649i 0.558737 + 1.92037i 0.415158 1.00228i 1.11934 0.662272i 0.957261 0.998218 2.64642i 1.52328 + 1.52328i −1.32042 + 0.781243i
99.14 −0.988333 + 1.01153i −0.636993 + 1.53784i −0.0463956 1.99946i 0.127261 0.307235i −0.926012 2.16424i 1.40083 2.06837 + 1.92920i 0.162135 + 0.162135i 0.185002 + 0.432379i
99.15 −0.945408 1.05176i 0.941327 2.27256i −0.212406 + 1.98869i 0.238989 0.576971i −3.28013 + 1.15845i −1.21092 2.29244 1.65672i −2.15713 2.15713i −0.832779 + 0.294114i
99.16 −0.942649 + 1.05424i −0.164830 + 0.397935i −0.222826 1.98755i −1.54999 + 3.74200i −0.264140 0.548882i −4.22581 2.30539 + 1.63865i 1.99014 + 1.99014i −2.48385 5.16144i
99.17 −0.822394 + 1.15051i 0.571616 1.38000i −0.647338 1.89234i −0.0774044 + 0.186871i 1.11761 + 1.79255i 2.98479 2.70952 + 0.811481i 0.543659 + 0.543659i −0.151339 0.242736i
99.18 −0.761769 1.19151i 0.766663 1.85089i −0.839415 + 1.81532i −0.354084 + 0.854833i −2.78938 + 0.496460i 4.51134 2.80242 0.382678i −0.716698 0.716698i 1.28828 0.229290i
99.19 −0.717929 1.21843i 0.172072 0.415418i −0.969155 + 1.74950i −0.252815 + 0.610350i −0.629694 + 0.0885829i −3.40059 2.82743 0.0751652i 1.97836 + 1.97836i 0.925174 0.130150i
99.20 −0.557499 1.29969i −0.709273 + 1.71234i −1.37839 + 1.44915i −1.29428 + 3.12466i 2.62093 0.0327901i 1.96257 2.65190 + 0.983581i −0.307710 0.307710i 4.78265 0.0598350i
See next 80 embeddings (of 216 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 99.54
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
416.bi even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.2.bi.a yes 216
13.d odd 4 1 416.2.bd.a 216
32.h odd 8 1 416.2.bd.a 216
416.bi even 8 1 inner 416.2.bi.a yes 216
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.bd.a 216 13.d odd 4 1
416.2.bd.a 216 32.h odd 8 1
416.2.bi.a yes 216 1.a even 1 1 trivial
416.2.bi.a yes 216 416.bi even 8 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(416, [\chi])\).