Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [416,2,Mod(99,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.99");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 416 = 2^{5} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 416.bi (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.32177672409\) |
Analytic rank: | \(0\) |
Dimension: | \(216\) |
Relative dimension: | \(54\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
99.1 | −1.41416 | − | 0.0124808i | 0.185333 | − | 0.447434i | 1.99969 | + | 0.0352996i | −0.172454 | + | 0.416340i | −0.267675 | + | 0.630429i | −2.63339 | −2.82744 | − | 0.0748769i | 1.95547 | + | 1.95547i | 0.249073 | − | 0.586618i | ||
99.2 | −1.40664 | + | 0.146174i | −0.514362 | + | 1.24178i | 1.95727 | − | 0.411228i | −0.618863 | + | 1.49407i | 0.542006 | − | 1.82192i | 4.58865 | −2.69306 | + | 0.864551i | 0.843873 | + | 0.843873i | 0.652123 | − | 2.19207i | ||
99.3 | −1.39321 | − | 0.242829i | 1.24651 | − | 3.00935i | 1.88207 | + | 0.676624i | 0.701430 | − | 1.69340i | −2.46741 | + | 3.88996i | 2.55030 | −2.45781 | − | 1.39970i | −5.38106 | − | 5.38106i | −1.38845 | + | 2.18894i | ||
99.4 | −1.37040 | + | 0.349306i | −0.598132 | + | 1.44402i | 1.75597 | − | 0.957376i | 0.944556 | − | 2.28036i | 0.315273 | − | 2.18781i | −3.99101 | −2.07196 | + | 1.92536i | 0.393895 | + | 0.393895i | −0.497872 | + | 3.45493i | ||
99.5 | −1.32900 | − | 0.483486i | 0.890323 | − | 2.14943i | 1.53248 | + | 1.28511i | −1.52443 | + | 3.68031i | −2.22246 | + | 2.42613i | −1.19925 | −1.41534 | − | 2.44884i | −1.70605 | − | 1.70605i | 3.80535 | − | 4.15409i | ||
99.6 | −1.29332 | − | 0.572126i | 0.174306 | − | 0.420812i | 1.34534 | + | 1.47988i | 1.36963 | − | 3.30658i | −0.466191 | + | 0.444519i | 1.57593 | −0.893278 | − | 2.68366i | 1.97462 | + | 1.97462i | −3.66315 | + | 3.49286i | ||
99.7 | −1.29190 | − | 0.575332i | −0.680922 | + | 1.64389i | 1.33799 | + | 1.48654i | −1.07264 | + | 2.58958i | 1.82546 | − | 1.73198i | −0.894378 | −0.873285 | − | 2.69024i | −0.117403 | − | 0.117403i | 2.87561 | − | 2.72834i | ||
99.8 | −1.26784 | + | 0.626573i | 0.685368 | − | 1.65463i | 1.21481 | − | 1.58878i | −1.01561 | + | 2.45191i | 0.167810 | + | 2.52723i | 1.75642 | −0.544694 | + | 2.77548i | −0.146735 | − | 0.146735i | −0.248669 | − | 3.74497i | ||
99.9 | −1.26157 | + | 0.639092i | 0.429027 | − | 1.03576i | 1.18312 | − | 1.61252i | 1.40552 | − | 3.39324i | 0.120699 | + | 1.58087i | 2.38266 | −0.462046 | + | 2.79043i | 1.23258 | + | 1.23258i | 0.395421 | + | 5.17907i | ||
99.10 | −1.24057 | − | 0.678953i | −1.17354 | + | 2.83317i | 1.07805 | + | 1.68458i | 0.191443 | − | 0.462185i | 3.37944 | − | 2.71798i | −1.90349 | −0.193645 | − | 2.82179i | −4.52833 | − | 4.52833i | −0.551302 | + | 0.443394i | ||
99.11 | −1.21725 | + | 0.719929i | −1.29743 | + | 3.13227i | 0.963404 | − | 1.75267i | −0.636854 | + | 1.53750i | −0.675714 | − | 4.74682i | −1.05850 | 0.0890924 | + | 2.82702i | −6.00647 | − | 6.00647i | −0.331680 | − | 2.33002i | ||
99.12 | −1.21550 | + | 0.722878i | 1.19450 | − | 2.88378i | 0.954896 | − | 1.75732i | 0.304891 | − | 0.736071i | 0.632701 | + | 4.36873i | −4.22727 | 0.109649 | + | 2.82630i | −4.76805 | − | 4.76805i | 0.161494 | + | 1.11510i | ||
99.13 | −1.13109 | − | 0.848900i | −0.351936 | + | 0.849649i | 0.558737 | + | 1.92037i | 0.415158 | − | 1.00228i | 1.11934 | − | 0.662272i | 0.957261 | 0.998218 | − | 2.64642i | 1.52328 | + | 1.52328i | −1.32042 | + | 0.781243i | ||
99.14 | −0.988333 | + | 1.01153i | −0.636993 | + | 1.53784i | −0.0463956 | − | 1.99946i | 0.127261 | − | 0.307235i | −0.926012 | − | 2.16424i | 1.40083 | 2.06837 | + | 1.92920i | 0.162135 | + | 0.162135i | 0.185002 | + | 0.432379i | ||
99.15 | −0.945408 | − | 1.05176i | 0.941327 | − | 2.27256i | −0.212406 | + | 1.98869i | 0.238989 | − | 0.576971i | −3.28013 | + | 1.15845i | −1.21092 | 2.29244 | − | 1.65672i | −2.15713 | − | 2.15713i | −0.832779 | + | 0.294114i | ||
99.16 | −0.942649 | + | 1.05424i | −0.164830 | + | 0.397935i | −0.222826 | − | 1.98755i | −1.54999 | + | 3.74200i | −0.264140 | − | 0.548882i | −4.22581 | 2.30539 | + | 1.63865i | 1.99014 | + | 1.99014i | −2.48385 | − | 5.16144i | ||
99.17 | −0.822394 | + | 1.15051i | 0.571616 | − | 1.38000i | −0.647338 | − | 1.89234i | −0.0774044 | + | 0.186871i | 1.11761 | + | 1.79255i | 2.98479 | 2.70952 | + | 0.811481i | 0.543659 | + | 0.543659i | −0.151339 | − | 0.242736i | ||
99.18 | −0.761769 | − | 1.19151i | 0.766663 | − | 1.85089i | −0.839415 | + | 1.81532i | −0.354084 | + | 0.854833i | −2.78938 | + | 0.496460i | 4.51134 | 2.80242 | − | 0.382678i | −0.716698 | − | 0.716698i | 1.28828 | − | 0.229290i | ||
99.19 | −0.717929 | − | 1.21843i | 0.172072 | − | 0.415418i | −0.969155 | + | 1.74950i | −0.252815 | + | 0.610350i | −0.629694 | + | 0.0885829i | −3.40059 | 2.82743 | − | 0.0751652i | 1.97836 | + | 1.97836i | 0.925174 | − | 0.130150i | ||
99.20 | −0.557499 | − | 1.29969i | −0.709273 | + | 1.71234i | −1.37839 | + | 1.44915i | −1.29428 | + | 3.12466i | 2.62093 | − | 0.0327901i | 1.96257 | 2.65190 | + | 0.983581i | −0.307710 | − | 0.307710i | 4.78265 | − | 0.0598350i | ||
See next 80 embeddings (of 216 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
416.bi | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 416.2.bi.a | yes | 216 |
13.d | odd | 4 | 1 | 416.2.bd.a | ✓ | 216 | |
32.h | odd | 8 | 1 | 416.2.bd.a | ✓ | 216 | |
416.bi | even | 8 | 1 | inner | 416.2.bi.a | yes | 216 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
416.2.bd.a | ✓ | 216 | 13.d | odd | 4 | 1 | |
416.2.bd.a | ✓ | 216 | 32.h | odd | 8 | 1 | |
416.2.bi.a | yes | 216 | 1.a | even | 1 | 1 | trivial |
416.2.bi.a | yes | 216 | 416.bi | even | 8 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(416, [\chi])\).