Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [416,2,Mod(77,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 7, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.77");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 416 = 2^{5} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 416.bg (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.32177672409\) |
Analytic rank: | \(0\) |
Dimension: | \(216\) |
Relative dimension: | \(54\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
77.1 | −1.41210 | − | 0.0772002i | −0.397360 | + | 0.959313i | 1.98808 | + | 0.218030i | 1.53059 | + | 3.69517i | 0.635174 | − | 1.32397i | 2.05838 | + | 2.05838i | −2.79055 | − | 0.461361i | 1.35893 | + | 1.35893i | −1.87609 | − | 5.33613i |
77.2 | −1.41090 | + | 0.0967282i | 1.21855 | − | 2.94185i | 1.98129 | − | 0.272948i | −1.46867 | − | 3.54569i | −1.43470 | + | 4.26853i | 1.96843 | + | 1.96843i | −2.76900 | + | 0.576749i | −5.04829 | − | 5.04829i | 2.41512 | + | 4.86055i |
77.3 | −1.40524 | + | 0.159029i | −0.700567 | + | 1.69132i | 1.94942 | − | 0.446949i | −0.175581 | − | 0.423890i | 0.715499 | − | 2.48813i | −0.506941 | − | 0.506941i | −2.66833 | + | 0.938086i | −0.248445 | − | 0.248445i | 0.314145 | + | 0.567746i |
77.4 | −1.39490 | + | 0.232927i | 0.834650 | − | 2.01502i | 1.89149 | − | 0.649819i | 1.24361 | + | 3.00234i | −0.694900 | + | 3.00517i | −2.87336 | − | 2.87336i | −2.48708 | + | 1.34701i | −1.24236 | − | 1.24236i | −2.43404 | − | 3.89829i |
77.5 | −1.37997 | − | 0.309324i | −0.935921 | + | 2.25951i | 1.80864 | + | 0.853715i | −1.28599 | − | 3.10465i | 1.99046 | − | 2.82856i | 2.22807 | + | 2.22807i | −2.23179 | − | 1.73756i | −2.10813 | − | 2.10813i | 0.814283 | + | 4.68210i |
77.6 | −1.37688 | − | 0.322781i | 0.0930705 | − | 0.224692i | 1.79162 | + | 0.888865i | −0.454046 | − | 1.09616i | −0.200674 | + | 0.279334i | −0.425170 | − | 0.425170i | −2.17995 | − | 1.80217i | 2.07950 | + | 2.07950i | 0.271348 | + | 1.65585i |
77.7 | −1.31886 | + | 0.510506i | 0.324061 | − | 0.782352i | 1.47877 | − | 1.34657i | 0.174055 | + | 0.420207i | −0.0279946 | + | 1.19725i | 2.63267 | + | 2.63267i | −1.26285 | + | 2.53085i | 1.61426 | + | 1.61426i | −0.444072 | − | 0.465337i |
77.8 | −1.21662 | + | 0.720993i | −0.843536 | + | 2.03648i | 0.960339 | − | 1.75435i | −0.608708 | − | 1.46955i | −0.442020 | − | 3.08581i | −1.01919 | − | 1.01919i | 0.0965056 | + | 2.82678i | −1.31436 | − | 1.31436i | 1.80010 | + | 1.34901i |
77.9 | −1.21243 | − | 0.728017i | 0.979432 | − | 2.36456i | 0.939982 | + | 1.76534i | −0.107364 | − | 0.259200i | −2.90893 | + | 2.15382i | −0.641321 | − | 0.641321i | 0.145536 | − | 2.82468i | −2.51053 | − | 2.51053i | −0.0585303 | + | 0.392425i |
77.10 | −1.17991 | − | 0.779620i | −0.174001 | + | 0.420075i | 0.784386 | + | 1.83977i | 0.828671 | + | 2.00059i | 0.532805 | − | 0.359998i | −1.24243 | − | 1.24243i | 0.508812 | − | 2.78229i | 1.97513 | + | 1.97513i | 0.581940 | − | 3.00657i |
77.11 | −1.11277 | − | 0.872782i | −1.21033 | + | 2.92200i | 0.476504 | + | 1.94241i | 0.0390281 | + | 0.0942221i | 3.89709 | − | 2.19515i | −2.68922 | − | 2.68922i | 1.16506 | − | 2.57733i | −4.95187 | − | 4.95187i | 0.0388061 | − | 0.138910i |
77.12 | −1.08935 | + | 0.901840i | −0.465988 | + | 1.12499i | 0.373369 | − | 1.96484i | 1.10333 | + | 2.66368i | −0.506941 | − | 1.64576i | −3.08810 | − | 3.08810i | 1.36524 | + | 2.47712i | 1.07285 | + | 1.07285i | −3.60412 | − | 1.90665i |
77.13 | −1.04284 | + | 0.955242i | 0.348689 | − | 0.841810i | 0.175025 | − | 1.99233i | −1.67361 | − | 4.04044i | 0.440506 | + | 1.21095i | −1.63113 | − | 1.63113i | 1.72063 | + | 2.24487i | 1.53426 | + | 1.53426i | 5.60491 | + | 2.61483i |
77.14 | −1.01393 | − | 0.985874i | 0.225020 | − | 0.543247i | 0.0561057 | + | 1.99921i | −0.861807 | − | 2.08059i | −0.763728 | + | 0.328973i | 1.89986 | + | 1.89986i | 1.91408 | − | 2.08237i | 1.87684 | + | 1.87684i | −1.17738 | + | 2.95920i |
77.15 | −0.988066 | + | 1.01179i | 0.708345 | − | 1.71010i | −0.0474507 | − | 1.99944i | 0.188293 | + | 0.454578i | 1.03037 | + | 2.40639i | 0.461953 | + | 0.461953i | 2.06990 | + | 1.92757i | −0.301353 | − | 0.301353i | −0.645985 | − | 0.258640i |
77.16 | −0.918245 | − | 1.07556i | −0.882106 | + | 2.12959i | −0.313652 | + | 1.97525i | 0.820581 | + | 1.98106i | 3.10049 | − | 1.00673i | 2.89688 | + | 2.89688i | 2.41251 | − | 1.47641i | −1.63573 | − | 1.63573i | 1.37725 | − | 2.70168i |
77.17 | −0.797764 | + | 1.16772i | −0.541522 | + | 1.30735i | −0.727144 | − | 1.86313i | 0.954453 | + | 2.30425i | −1.09461 | − | 1.67530i | 2.30724 | + | 2.30724i | 2.75571 | + | 0.637240i | 0.705404 | + | 0.705404i | −3.45215 | − | 0.723717i |
77.18 | −0.636692 | − | 1.26278i | 0.993510 | − | 2.39855i | −1.18925 | + | 1.60801i | −0.590580 | − | 1.42579i | −3.66140 | + | 0.272545i | −3.67238 | − | 3.67238i | 2.78775 | + | 0.477957i | −2.64464 | − | 2.64464i | −1.42444 | + | 1.65356i |
77.19 | −0.608769 | − | 1.27648i | 0.959908 | − | 2.31742i | −1.25880 | + | 1.55416i | 1.15665 | + | 2.79239i | −3.54251 | + | 0.185471i | 1.46396 | + | 1.46396i | 2.75017 | + | 0.660710i | −2.32771 | − | 2.32771i | 2.86030 | − | 3.17635i |
77.20 | −0.544463 | + | 1.30521i | 1.26194 | − | 3.04659i | −1.40712 | − | 1.42127i | −0.106710 | − | 0.257621i | 3.28935 | + | 3.30585i | −1.31255 | − | 1.31255i | 2.62118 | − | 1.06275i | −5.56791 | − | 5.56791i | 0.394348 | 0.000986456i | |
See next 80 embeddings (of 216 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
32.g | even | 8 | 1 | inner |
416.bg | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 416.2.bg.a | ✓ | 216 |
13.b | even | 2 | 1 | inner | 416.2.bg.a | ✓ | 216 |
32.g | even | 8 | 1 | inner | 416.2.bg.a | ✓ | 216 |
416.bg | even | 8 | 1 | inner | 416.2.bg.a | ✓ | 216 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
416.2.bg.a | ✓ | 216 | 1.a | even | 1 | 1 | trivial |
416.2.bg.a | ✓ | 216 | 13.b | even | 2 | 1 | inner |
416.2.bg.a | ✓ | 216 | 32.g | even | 8 | 1 | inner |
416.2.bg.a | ✓ | 216 | 416.bg | even | 8 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(416, [\chi])\).