Properties

Label 416.2.ba.a.49.1
Level $416$
Weight $2$
Character 416.49
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(17,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.ba (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 416.49
Dual form 416.2.ba.a.17.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.36603 + 1.36603i) q^{3} +0.267949 q^{5} +(3.00000 + 1.73205i) q^{7} +(2.23205 - 3.86603i) q^{9} +O(q^{10})\) \(q+(-2.36603 + 1.36603i) q^{3} +0.267949 q^{5} +(3.00000 + 1.73205i) q^{7} +(2.23205 - 3.86603i) q^{9} +(-1.00000 - 1.73205i) q^{11} +(2.59808 + 2.50000i) q^{13} +(-0.633975 + 0.366025i) q^{15} +(-3.23205 + 5.59808i) q^{17} +(-2.36603 + 4.09808i) q^{19} -9.46410 q^{21} +(-1.09808 - 1.90192i) q^{23} -4.92820 q^{25} +4.00000i q^{27} +(-2.59808 + 1.50000i) q^{29} +1.26795i q^{31} +(4.73205 + 2.73205i) q^{33} +(0.803848 + 0.464102i) q^{35} +(3.86603 + 6.69615i) q^{37} +(-9.56218 - 2.36603i) q^{39} +(-1.03590 + 0.598076i) q^{41} +(8.19615 + 4.73205i) q^{43} +(0.598076 - 1.03590i) q^{45} +3.26795i q^{47} +(2.50000 + 4.33013i) q^{49} -17.6603i q^{51} -9.92820i q^{53} +(-0.267949 - 0.464102i) q^{55} -12.9282i q^{57} +(-3.73205 + 6.46410i) q^{59} +(-0.866025 - 0.500000i) q^{61} +(13.3923 - 7.73205i) q^{63} +(0.696152 + 0.669873i) q^{65} +(-5.36603 - 9.29423i) q^{67} +(5.19615 + 3.00000i) q^{69} +(11.0263 + 6.36603i) q^{71} -1.73205i q^{73} +(11.6603 - 6.73205i) q^{75} -6.92820i q^{77} -10.3923 q^{79} +(1.23205 + 2.13397i) q^{81} +5.46410 q^{83} +(-0.866025 + 1.50000i) q^{85} +(4.09808 - 7.09808i) q^{87} +(-0.464102 + 0.267949i) q^{89} +(3.46410 + 12.0000i) q^{91} +(-1.73205 - 3.00000i) q^{93} +(-0.633975 + 1.09808i) q^{95} +(5.19615 + 3.00000i) q^{97} -8.92820 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} + 8 q^{5} + 12 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{3} + 8 q^{5} + 12 q^{7} + 2 q^{9} - 4 q^{11} - 6 q^{15} - 6 q^{17} - 6 q^{19} - 24 q^{21} + 6 q^{23} + 8 q^{25} + 12 q^{33} + 24 q^{35} + 12 q^{37} - 14 q^{39} - 18 q^{41} + 12 q^{43} - 8 q^{45} + 10 q^{49} - 8 q^{55} - 8 q^{59} + 12 q^{63} - 18 q^{65} - 18 q^{67} + 6 q^{71} + 12 q^{75} - 2 q^{81} + 8 q^{83} + 6 q^{87} + 12 q^{89} - 6 q^{95} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.36603 + 1.36603i −1.36603 + 0.788675i −0.990418 0.138104i \(-0.955899\pi\)
−0.375608 + 0.926779i \(0.622566\pi\)
\(4\) 0 0
\(5\) 0.267949 0.119831 0.0599153 0.998203i \(-0.480917\pi\)
0.0599153 + 0.998203i \(0.480917\pi\)
\(6\) 0 0
\(7\) 3.00000 + 1.73205i 1.13389 + 0.654654i 0.944911 0.327327i \(-0.106148\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) 2.23205 3.86603i 0.744017 1.28868i
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) 2.59808 + 2.50000i 0.720577 + 0.693375i
\(14\) 0 0
\(15\) −0.633975 + 0.366025i −0.163692 + 0.0945074i
\(16\) 0 0
\(17\) −3.23205 + 5.59808i −0.783887 + 1.35773i 0.145774 + 0.989318i \(0.453433\pi\)
−0.929661 + 0.368415i \(0.879901\pi\)
\(18\) 0 0
\(19\) −2.36603 + 4.09808i −0.542803 + 0.940163i 0.455938 + 0.890011i \(0.349304\pi\)
−0.998742 + 0.0501517i \(0.984030\pi\)
\(20\) 0 0
\(21\) −9.46410 −2.06524
\(22\) 0 0
\(23\) −1.09808 1.90192i −0.228965 0.396579i 0.728537 0.685007i \(-0.240201\pi\)
−0.957502 + 0.288428i \(0.906867\pi\)
\(24\) 0 0
\(25\) −4.92820 −0.985641
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) −2.59808 + 1.50000i −0.482451 + 0.278543i −0.721437 0.692480i \(-0.756518\pi\)
0.238987 + 0.971023i \(0.423185\pi\)
\(30\) 0 0
\(31\) 1.26795i 0.227730i 0.993496 + 0.113865i \(0.0363232\pi\)
−0.993496 + 0.113865i \(0.963677\pi\)
\(32\) 0 0
\(33\) 4.73205 + 2.73205i 0.823744 + 0.475589i
\(34\) 0 0
\(35\) 0.803848 + 0.464102i 0.135875 + 0.0784475i
\(36\) 0 0
\(37\) 3.86603 + 6.69615i 0.635571 + 1.10084i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.350823 + 0.936442i \(0.614098\pi\)
\(38\) 0 0
\(39\) −9.56218 2.36603i −1.53117 0.378867i
\(40\) 0 0
\(41\) −1.03590 + 0.598076i −0.161780 + 0.0934038i −0.578704 0.815538i \(-0.696441\pi\)
0.416924 + 0.908941i \(0.363108\pi\)
\(42\) 0 0
\(43\) 8.19615 + 4.73205i 1.24990 + 0.721631i 0.971090 0.238715i \(-0.0767261\pi\)
0.278812 + 0.960346i \(0.410059\pi\)
\(44\) 0 0
\(45\) 0.598076 1.03590i 0.0891559 0.154423i
\(46\) 0 0
\(47\) 3.26795i 0.476679i 0.971182 + 0.238340i \(0.0766032\pi\)
−0.971182 + 0.238340i \(0.923397\pi\)
\(48\) 0 0
\(49\) 2.50000 + 4.33013i 0.357143 + 0.618590i
\(50\) 0 0
\(51\) 17.6603i 2.47293i
\(52\) 0 0
\(53\) 9.92820i 1.36374i −0.731472 0.681872i \(-0.761166\pi\)
0.731472 0.681872i \(-0.238834\pi\)
\(54\) 0 0
\(55\) −0.267949 0.464102i −0.0361303 0.0625794i
\(56\) 0 0
\(57\) 12.9282i 1.71238i
\(58\) 0 0
\(59\) −3.73205 + 6.46410i −0.485872 + 0.841554i −0.999868 0.0162379i \(-0.994831\pi\)
0.513997 + 0.857792i \(0.328164\pi\)
\(60\) 0 0
\(61\) −0.866025 0.500000i −0.110883 0.0640184i 0.443533 0.896258i \(-0.353725\pi\)
−0.554416 + 0.832240i \(0.687058\pi\)
\(62\) 0 0
\(63\) 13.3923 7.73205i 1.68727 0.974147i
\(64\) 0 0
\(65\) 0.696152 + 0.669873i 0.0863471 + 0.0830875i
\(66\) 0 0
\(67\) −5.36603 9.29423i −0.655564 1.13547i −0.981752 0.190166i \(-0.939097\pi\)
0.326188 0.945305i \(-0.394236\pi\)
\(68\) 0 0
\(69\) 5.19615 + 3.00000i 0.625543 + 0.361158i
\(70\) 0 0
\(71\) 11.0263 + 6.36603i 1.30858 + 0.755508i 0.981859 0.189613i \(-0.0607234\pi\)
0.326720 + 0.945121i \(0.394057\pi\)
\(72\) 0 0
\(73\) 1.73205i 0.202721i −0.994850 0.101361i \(-0.967680\pi\)
0.994850 0.101361i \(-0.0323196\pi\)
\(74\) 0 0
\(75\) 11.6603 6.73205i 1.34641 0.777350i
\(76\) 0 0
\(77\) 6.92820i 0.789542i
\(78\) 0 0
\(79\) −10.3923 −1.16923 −0.584613 0.811312i \(-0.698754\pi\)
−0.584613 + 0.811312i \(0.698754\pi\)
\(80\) 0 0
\(81\) 1.23205 + 2.13397i 0.136895 + 0.237108i
\(82\) 0 0
\(83\) 5.46410 0.599763 0.299882 0.953976i \(-0.403053\pi\)
0.299882 + 0.953976i \(0.403053\pi\)
\(84\) 0 0
\(85\) −0.866025 + 1.50000i −0.0939336 + 0.162698i
\(86\) 0 0
\(87\) 4.09808 7.09808i 0.439360 0.760994i
\(88\) 0 0
\(89\) −0.464102 + 0.267949i −0.0491947 + 0.0284026i −0.524396 0.851475i \(-0.675709\pi\)
0.475201 + 0.879877i \(0.342375\pi\)
\(90\) 0 0
\(91\) 3.46410 + 12.0000i 0.363137 + 1.25794i
\(92\) 0 0
\(93\) −1.73205 3.00000i −0.179605 0.311086i
\(94\) 0 0
\(95\) −0.633975 + 1.09808i −0.0650444 + 0.112660i
\(96\) 0 0
\(97\) 5.19615 + 3.00000i 0.527589 + 0.304604i 0.740034 0.672569i \(-0.234809\pi\)
−0.212445 + 0.977173i \(0.568143\pi\)
\(98\) 0 0
\(99\) −8.92820 −0.897318
\(100\) 0 0
\(101\) 15.9904 9.23205i 1.59110 0.918623i 0.597984 0.801508i \(-0.295969\pi\)
0.993118 0.117115i \(-0.0373647\pi\)
\(102\) 0 0
\(103\) 4.19615 0.413459 0.206730 0.978398i \(-0.433718\pi\)
0.206730 + 0.978398i \(0.433718\pi\)
\(104\) 0 0
\(105\) −2.53590 −0.247478
\(106\) 0 0
\(107\) 0.294229 0.169873i 0.0284442 0.0164222i −0.485710 0.874120i \(-0.661439\pi\)
0.514155 + 0.857697i \(0.328106\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) −18.2942 10.5622i −1.73641 1.00252i
\(112\) 0 0
\(113\) 1.50000 2.59808i 0.141108 0.244406i −0.786806 0.617200i \(-0.788267\pi\)
0.927914 + 0.372794i \(0.121600\pi\)
\(114\) 0 0
\(115\) −0.294229 0.509619i −0.0274370 0.0475222i
\(116\) 0 0
\(117\) 15.4641 4.46410i 1.42966 0.412706i
\(118\) 0 0
\(119\) −19.3923 + 11.1962i −1.77769 + 1.02635i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) 1.63397 2.83013i 0.147331 0.255184i
\(124\) 0 0
\(125\) −2.66025 −0.237940
\(126\) 0 0
\(127\) 8.83013 + 15.2942i 0.783547 + 1.35714i 0.929863 + 0.367905i \(0.119925\pi\)
−0.146316 + 0.989238i \(0.546742\pi\)
\(128\) 0 0
\(129\) −25.8564 −2.27653
\(130\) 0 0
\(131\) 7.26795i 0.635004i −0.948258 0.317502i \(-0.897156\pi\)
0.948258 0.317502i \(-0.102844\pi\)
\(132\) 0 0
\(133\) −14.1962 + 8.19615i −1.23096 + 0.710697i
\(134\) 0 0
\(135\) 1.07180i 0.0922456i
\(136\) 0 0
\(137\) −15.2321 8.79423i −1.30136 0.751342i −0.320724 0.947173i \(-0.603926\pi\)
−0.980638 + 0.195831i \(0.937260\pi\)
\(138\) 0 0
\(139\) 2.19615 + 1.26795i 0.186275 + 0.107546i 0.590238 0.807230i \(-0.299034\pi\)
−0.403962 + 0.914776i \(0.632367\pi\)
\(140\) 0 0
\(141\) −4.46410 7.73205i −0.375945 0.651156i
\(142\) 0 0
\(143\) 1.73205 7.00000i 0.144841 0.585369i
\(144\) 0 0
\(145\) −0.696152 + 0.401924i −0.0578123 + 0.0333780i
\(146\) 0 0
\(147\) −11.8301 6.83013i −0.975732 0.563339i
\(148\) 0 0
\(149\) −4.13397 + 7.16025i −0.338668 + 0.586591i −0.984183 0.177157i \(-0.943310\pi\)
0.645514 + 0.763748i \(0.276643\pi\)
\(150\) 0 0
\(151\) 8.19615i 0.666993i −0.942751 0.333497i \(-0.891771\pi\)
0.942751 0.333497i \(-0.108229\pi\)
\(152\) 0 0
\(153\) 14.4282 + 24.9904i 1.16645 + 2.02035i
\(154\) 0 0
\(155\) 0.339746i 0.0272891i
\(156\) 0 0
\(157\) 9.92820i 0.792357i 0.918174 + 0.396178i \(0.129664\pi\)
−0.918174 + 0.396178i \(0.870336\pi\)
\(158\) 0 0
\(159\) 13.5622 + 23.4904i 1.07555 + 1.86291i
\(160\) 0 0
\(161\) 7.60770i 0.599570i
\(162\) 0 0
\(163\) −2.19615 + 3.80385i −0.172016 + 0.297940i −0.939125 0.343577i \(-0.888361\pi\)
0.767109 + 0.641517i \(0.221695\pi\)
\(164\) 0 0
\(165\) 1.26795 + 0.732051i 0.0987097 + 0.0569901i
\(166\) 0 0
\(167\) 7.73205 4.46410i 0.598324 0.345443i −0.170058 0.985434i \(-0.554395\pi\)
0.768382 + 0.639992i \(0.221062\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) 0 0
\(171\) 10.5622 + 18.2942i 0.807710 + 1.39899i
\(172\) 0 0
\(173\) 4.39230 + 2.53590i 0.333941 + 0.192801i 0.657589 0.753377i \(-0.271576\pi\)
−0.323649 + 0.946177i \(0.604910\pi\)
\(174\) 0 0
\(175\) −14.7846 8.53590i −1.11761 0.645253i
\(176\) 0 0
\(177\) 20.3923i 1.53278i
\(178\) 0 0
\(179\) −12.0000 + 6.92820i −0.896922 + 0.517838i −0.876200 0.481947i \(-0.839930\pi\)
−0.0207218 + 0.999785i \(0.506596\pi\)
\(180\) 0 0
\(181\) 11.5359i 0.857457i 0.903433 + 0.428728i \(0.141038\pi\)
−0.903433 + 0.428728i \(0.858962\pi\)
\(182\) 0 0
\(183\) 2.73205 0.201959
\(184\) 0 0
\(185\) 1.03590 + 1.79423i 0.0761608 + 0.131914i
\(186\) 0 0
\(187\) 12.9282 0.945404
\(188\) 0 0
\(189\) −6.92820 + 12.0000i −0.503953 + 0.872872i
\(190\) 0 0
\(191\) 7.09808 12.2942i 0.513599 0.889579i −0.486277 0.873805i \(-0.661645\pi\)
0.999876 0.0157743i \(-0.00502134\pi\)
\(192\) 0 0
\(193\) 21.6962 12.5263i 1.56172 0.901661i 0.564640 0.825337i \(-0.309015\pi\)
0.997083 0.0763241i \(-0.0243184\pi\)
\(194\) 0 0
\(195\) −2.56218 0.633975i −0.183481 0.0453999i
\(196\) 0 0
\(197\) −9.73205 16.8564i −0.693380 1.20097i −0.970724 0.240199i \(-0.922787\pi\)
0.277344 0.960771i \(-0.410546\pi\)
\(198\) 0 0
\(199\) 4.56218 7.90192i 0.323404 0.560153i −0.657784 0.753207i \(-0.728506\pi\)
0.981188 + 0.193054i \(0.0618393\pi\)
\(200\) 0 0
\(201\) 25.3923 + 14.6603i 1.79104 + 1.03405i
\(202\) 0 0
\(203\) −10.3923 −0.729397
\(204\) 0 0
\(205\) −0.277568 + 0.160254i −0.0193862 + 0.0111926i
\(206\) 0 0
\(207\) −9.80385 −0.681415
\(208\) 0 0
\(209\) 9.46410 0.654646
\(210\) 0 0
\(211\) 2.24167 1.29423i 0.154323 0.0890984i −0.420850 0.907130i \(-0.638268\pi\)
0.575173 + 0.818032i \(0.304935\pi\)
\(212\) 0 0
\(213\) −34.7846 −2.38340
\(214\) 0 0
\(215\) 2.19615 + 1.26795i 0.149776 + 0.0864734i
\(216\) 0 0
\(217\) −2.19615 + 3.80385i −0.149085 + 0.258222i
\(218\) 0 0
\(219\) 2.36603 + 4.09808i 0.159881 + 0.276922i
\(220\) 0 0
\(221\) −22.3923 + 6.46410i −1.50627 + 0.434823i
\(222\) 0 0
\(223\) 16.9019 9.75833i 1.13184 0.653466i 0.187440 0.982276i \(-0.439981\pi\)
0.944396 + 0.328810i \(0.106648\pi\)
\(224\) 0 0
\(225\) −11.0000 + 19.0526i −0.733333 + 1.27017i
\(226\) 0 0
\(227\) 6.02628 10.4378i 0.399978 0.692783i −0.593745 0.804654i \(-0.702351\pi\)
0.993723 + 0.111871i \(0.0356844\pi\)
\(228\) 0 0
\(229\) −0.928203 −0.0613374 −0.0306687 0.999530i \(-0.509764\pi\)
−0.0306687 + 0.999530i \(0.509764\pi\)
\(230\) 0 0
\(231\) 9.46410 + 16.3923i 0.622692 + 1.07853i
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0.875644i 0.0571207i
\(236\) 0 0
\(237\) 24.5885 14.1962i 1.59719 0.922139i
\(238\) 0 0
\(239\) 2.39230i 0.154745i 0.997002 + 0.0773727i \(0.0246531\pi\)
−0.997002 + 0.0773727i \(0.975347\pi\)
\(240\) 0 0
\(241\) −0.696152 0.401924i −0.0448431 0.0258902i 0.477411 0.878680i \(-0.341575\pi\)
−0.522254 + 0.852790i \(0.674909\pi\)
\(242\) 0 0
\(243\) −16.2224 9.36603i −1.04067 0.600831i
\(244\) 0 0
\(245\) 0.669873 + 1.16025i 0.0427966 + 0.0741259i
\(246\) 0 0
\(247\) −16.3923 + 4.73205i −1.04302 + 0.301093i
\(248\) 0 0
\(249\) −12.9282 + 7.46410i −0.819292 + 0.473018i
\(250\) 0 0
\(251\) 1.90192 + 1.09808i 0.120048 + 0.0693100i 0.558822 0.829288i \(-0.311254\pi\)
−0.438773 + 0.898598i \(0.644587\pi\)
\(252\) 0 0
\(253\) −2.19615 + 3.80385i −0.138071 + 0.239146i
\(254\) 0 0
\(255\) 4.73205i 0.296333i
\(256\) 0 0
\(257\) 2.42820 + 4.20577i 0.151467 + 0.262349i 0.931767 0.363057i \(-0.118267\pi\)
−0.780300 + 0.625406i \(0.784934\pi\)
\(258\) 0 0
\(259\) 26.7846i 1.66431i
\(260\) 0 0
\(261\) 13.3923i 0.828963i
\(262\) 0 0
\(263\) −2.19615 3.80385i −0.135421 0.234555i 0.790337 0.612672i \(-0.209905\pi\)
−0.925758 + 0.378116i \(0.876572\pi\)
\(264\) 0 0
\(265\) 2.66025i 0.163418i
\(266\) 0 0
\(267\) 0.732051 1.26795i 0.0448008 0.0775972i
\(268\) 0 0
\(269\) −2.19615 1.26795i −0.133902 0.0773082i 0.431553 0.902088i \(-0.357966\pi\)
−0.565455 + 0.824779i \(0.691299\pi\)
\(270\) 0 0
\(271\) 15.0000 8.66025i 0.911185 0.526073i 0.0303728 0.999539i \(-0.490331\pi\)
0.880812 + 0.473466i \(0.156997\pi\)
\(272\) 0 0
\(273\) −24.5885 23.6603i −1.48816 1.43198i
\(274\) 0 0
\(275\) 4.92820 + 8.53590i 0.297182 + 0.514734i
\(276\) 0 0
\(277\) 17.5981 + 10.1603i 1.05737 + 0.610471i 0.924702 0.380691i \(-0.124314\pi\)
0.132663 + 0.991161i \(0.457647\pi\)
\(278\) 0 0
\(279\) 4.90192 + 2.83013i 0.293471 + 0.169435i
\(280\) 0 0
\(281\) 6.66025i 0.397317i 0.980069 + 0.198659i \(0.0636585\pi\)
−0.980069 + 0.198659i \(0.936341\pi\)
\(282\) 0 0
\(283\) −9.33975 + 5.39230i −0.555190 + 0.320539i −0.751213 0.660060i \(-0.770531\pi\)
0.196022 + 0.980599i \(0.437197\pi\)
\(284\) 0 0
\(285\) 3.46410i 0.205196i
\(286\) 0 0
\(287\) −4.14359 −0.244589
\(288\) 0 0
\(289\) −12.3923 21.4641i −0.728959 1.26259i
\(290\) 0 0
\(291\) −16.3923 −0.960934
\(292\) 0 0
\(293\) 6.59808 11.4282i 0.385464 0.667643i −0.606370 0.795183i \(-0.707375\pi\)
0.991833 + 0.127540i \(0.0407082\pi\)
\(294\) 0 0
\(295\) −1.00000 + 1.73205i −0.0582223 + 0.100844i
\(296\) 0 0
\(297\) 6.92820 4.00000i 0.402015 0.232104i
\(298\) 0 0
\(299\) 1.90192 7.68653i 0.109991 0.444524i
\(300\) 0 0
\(301\) 16.3923 + 28.3923i 0.944837 + 1.63651i
\(302\) 0 0
\(303\) −25.2224 + 43.6865i −1.44899 + 2.50973i
\(304\) 0 0
\(305\) −0.232051 0.133975i −0.0132872 0.00767136i
\(306\) 0 0
\(307\) 8.19615 0.467779 0.233890 0.972263i \(-0.424855\pi\)
0.233890 + 0.972263i \(0.424855\pi\)
\(308\) 0 0
\(309\) −9.92820 + 5.73205i −0.564796 + 0.326085i
\(310\) 0 0
\(311\) −12.5885 −0.713826 −0.356913 0.934138i \(-0.616171\pi\)
−0.356913 + 0.934138i \(0.616171\pi\)
\(312\) 0 0
\(313\) −9.46410 −0.534943 −0.267471 0.963566i \(-0.586188\pi\)
−0.267471 + 0.963566i \(0.586188\pi\)
\(314\) 0 0
\(315\) 3.58846 2.07180i 0.202187 0.116733i
\(316\) 0 0
\(317\) 14.8038 0.831467 0.415733 0.909486i \(-0.363525\pi\)
0.415733 + 0.909486i \(0.363525\pi\)
\(318\) 0 0
\(319\) 5.19615 + 3.00000i 0.290929 + 0.167968i
\(320\) 0 0
\(321\) −0.464102 + 0.803848i −0.0259036 + 0.0448664i
\(322\) 0 0
\(323\) −15.2942 26.4904i −0.850994 1.47396i
\(324\) 0 0
\(325\) −12.8038 12.3205i −0.710230 0.683419i
\(326\) 0 0
\(327\) −14.1962 + 8.19615i −0.785049 + 0.453248i
\(328\) 0 0
\(329\) −5.66025 + 9.80385i −0.312060 + 0.540504i
\(330\) 0 0
\(331\) −6.00000 + 10.3923i −0.329790 + 0.571213i −0.982470 0.186421i \(-0.940311\pi\)
0.652680 + 0.757634i \(0.273645\pi\)
\(332\) 0 0
\(333\) 34.5167 1.89150
\(334\) 0 0
\(335\) −1.43782 2.49038i −0.0785566 0.136064i
\(336\) 0 0
\(337\) 15.2487 0.830650 0.415325 0.909673i \(-0.363668\pi\)
0.415325 + 0.909673i \(0.363668\pi\)
\(338\) 0 0
\(339\) 8.19615i 0.445154i
\(340\) 0 0
\(341\) 2.19615 1.26795i 0.118928 0.0686633i
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) 1.39230 + 0.803848i 0.0749592 + 0.0432777i
\(346\) 0 0
\(347\) −4.09808 2.36603i −0.219996 0.127015i 0.385952 0.922519i \(-0.373873\pi\)
−0.605949 + 0.795504i \(0.707206\pi\)
\(348\) 0 0
\(349\) −14.6603 25.3923i −0.784745 1.35922i −0.929151 0.369700i \(-0.879460\pi\)
0.144406 0.989519i \(-0.453873\pi\)
\(350\) 0 0
\(351\) −10.0000 + 10.3923i −0.533761 + 0.554700i
\(352\) 0 0
\(353\) 18.8205 10.8660i 1.00171 0.578340i 0.0929594 0.995670i \(-0.470367\pi\)
0.908755 + 0.417330i \(0.137034\pi\)
\(354\) 0 0
\(355\) 2.95448 + 1.70577i 0.156808 + 0.0905329i
\(356\) 0 0
\(357\) 30.5885 52.9808i 1.61891 2.80404i
\(358\) 0 0
\(359\) 26.9282i 1.42122i −0.703588 0.710608i \(-0.748420\pi\)
0.703588 0.710608i \(-0.251580\pi\)
\(360\) 0 0
\(361\) −1.69615 2.93782i −0.0892712 0.154622i
\(362\) 0 0
\(363\) 19.1244i 1.00377i
\(364\) 0 0
\(365\) 0.464102i 0.0242922i
\(366\) 0 0
\(367\) −8.90192 15.4186i −0.464677 0.804844i 0.534510 0.845162i \(-0.320496\pi\)
−0.999187 + 0.0403184i \(0.987163\pi\)
\(368\) 0 0
\(369\) 5.33975i 0.277976i
\(370\) 0 0
\(371\) 17.1962 29.7846i 0.892780 1.54634i
\(372\) 0 0
\(373\) 13.6699 + 7.89230i 0.707799 + 0.408648i 0.810246 0.586090i \(-0.199334\pi\)
−0.102446 + 0.994739i \(0.532667\pi\)
\(374\) 0 0
\(375\) 6.29423 3.63397i 0.325033 0.187658i
\(376\) 0 0
\(377\) −10.5000 2.59808i −0.540778 0.133808i
\(378\) 0 0
\(379\) −8.02628 13.9019i −0.412282 0.714094i 0.582857 0.812575i \(-0.301935\pi\)
−0.995139 + 0.0984811i \(0.968602\pi\)
\(380\) 0 0
\(381\) −41.7846 24.1244i −2.14069 1.23593i
\(382\) 0 0
\(383\) 17.3205 + 10.0000i 0.885037 + 0.510976i 0.872316 0.488943i \(-0.162617\pi\)
0.0127209 + 0.999919i \(0.495951\pi\)
\(384\) 0 0
\(385\) 1.85641i 0.0946112i
\(386\) 0 0
\(387\) 36.5885 21.1244i 1.85990 1.07381i
\(388\) 0 0
\(389\) 36.7128i 1.86141i 0.365766 + 0.930707i \(0.380807\pi\)
−0.365766 + 0.930707i \(0.619193\pi\)
\(390\) 0 0
\(391\) 14.1962 0.717930
\(392\) 0 0
\(393\) 9.92820 + 17.1962i 0.500812 + 0.867431i
\(394\) 0 0
\(395\) −2.78461 −0.140109
\(396\) 0 0
\(397\) 12.1244 21.0000i 0.608504 1.05396i −0.382983 0.923755i \(-0.625103\pi\)
0.991487 0.130204i \(-0.0415634\pi\)
\(398\) 0 0
\(399\) 22.3923 38.7846i 1.12102 1.94166i
\(400\) 0 0
\(401\) −5.42820 + 3.13397i −0.271072 + 0.156503i −0.629374 0.777102i \(-0.716689\pi\)
0.358303 + 0.933605i \(0.383355\pi\)
\(402\) 0 0
\(403\) −3.16987 + 3.29423i −0.157903 + 0.164097i
\(404\) 0 0
\(405\) 0.330127 + 0.571797i 0.0164041 + 0.0284128i
\(406\) 0 0
\(407\) 7.73205 13.3923i 0.383264 0.663832i
\(408\) 0 0
\(409\) −9.69615 5.59808i −0.479444 0.276807i 0.240741 0.970589i \(-0.422610\pi\)
−0.720185 + 0.693782i \(0.755943\pi\)
\(410\) 0 0
\(411\) 48.0526 2.37026
\(412\) 0 0
\(413\) −22.3923 + 12.9282i −1.10185 + 0.636155i
\(414\) 0 0
\(415\) 1.46410 0.0718699
\(416\) 0 0
\(417\) −6.92820 −0.339276
\(418\) 0 0
\(419\) 22.0981 12.7583i 1.07956 0.623285i 0.148784 0.988870i \(-0.452464\pi\)
0.930778 + 0.365585i \(0.119131\pi\)
\(420\) 0 0
\(421\) −5.87564 −0.286361 −0.143181 0.989697i \(-0.545733\pi\)
−0.143181 + 0.989697i \(0.545733\pi\)
\(422\) 0 0
\(423\) 12.6340 + 7.29423i 0.614285 + 0.354658i
\(424\) 0 0
\(425\) 15.9282 27.5885i 0.772631 1.33824i
\(426\) 0 0
\(427\) −1.73205 3.00000i −0.0838198 0.145180i
\(428\) 0 0
\(429\) 5.46410 + 18.9282i 0.263809 + 0.913862i
\(430\) 0 0
\(431\) −8.53590 + 4.92820i −0.411160 + 0.237383i −0.691288 0.722579i \(-0.742956\pi\)
0.280128 + 0.959963i \(0.409623\pi\)
\(432\) 0 0
\(433\) −10.5000 + 18.1865i −0.504598 + 0.873989i 0.495388 + 0.868672i \(0.335026\pi\)
−0.999986 + 0.00531724i \(0.998307\pi\)
\(434\) 0 0
\(435\) 1.09808 1.90192i 0.0526487 0.0911903i
\(436\) 0 0
\(437\) 10.3923 0.497131
\(438\) 0 0
\(439\) 18.1962 + 31.5167i 0.868455 + 1.50421i 0.863575 + 0.504220i \(0.168220\pi\)
0.00487976 + 0.999988i \(0.498447\pi\)
\(440\) 0 0
\(441\) 22.3205 1.06288
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −0.124356 + 0.0717968i −0.00589502 + 0.00340349i
\(446\) 0 0
\(447\) 22.5885i 1.06840i
\(448\) 0 0
\(449\) 11.5359 + 6.66025i 0.544413 + 0.314317i 0.746865 0.664975i \(-0.231558\pi\)
−0.202453 + 0.979292i \(0.564891\pi\)
\(450\) 0 0
\(451\) 2.07180 + 1.19615i 0.0975571 + 0.0563246i
\(452\) 0 0
\(453\) 11.1962 + 19.3923i 0.526041 + 0.911130i
\(454\) 0 0
\(455\) 0.928203 + 3.21539i 0.0435148 + 0.150740i
\(456\) 0 0
\(457\) −3.69615 + 2.13397i −0.172899 + 0.0998231i −0.583952 0.811788i \(-0.698494\pi\)
0.411053 + 0.911611i \(0.365161\pi\)
\(458\) 0 0
\(459\) −22.3923 12.9282i −1.04518 0.603437i
\(460\) 0 0
\(461\) −5.66987 + 9.82051i −0.264072 + 0.457387i −0.967320 0.253558i \(-0.918399\pi\)
0.703248 + 0.710945i \(0.251732\pi\)
\(462\) 0 0
\(463\) 4.39230i 0.204128i 0.994778 + 0.102064i \(0.0325446\pi\)
−0.994778 + 0.102064i \(0.967455\pi\)
\(464\) 0 0
\(465\) −0.464102 0.803848i −0.0215222 0.0372775i
\(466\) 0 0
\(467\) 27.4641i 1.27089i 0.772147 + 0.635444i \(0.219183\pi\)
−0.772147 + 0.635444i \(0.780817\pi\)
\(468\) 0 0
\(469\) 37.1769i 1.71667i
\(470\) 0 0
\(471\) −13.5622 23.4904i −0.624912 1.08238i
\(472\) 0 0
\(473\) 18.9282i 0.870320i
\(474\) 0 0
\(475\) 11.6603 20.1962i 0.535009 0.926663i
\(476\) 0 0
\(477\) −38.3827 22.1603i −1.75742 1.01465i
\(478\) 0 0
\(479\) −28.3468 + 16.3660i −1.29520 + 0.747783i −0.979571 0.201100i \(-0.935548\pi\)
−0.315627 + 0.948883i \(0.602215\pi\)
\(480\) 0 0
\(481\) −6.69615 + 27.0622i −0.305318 + 1.23393i
\(482\) 0 0
\(483\) 10.3923 + 18.0000i 0.472866 + 0.819028i
\(484\) 0 0
\(485\) 1.39230 + 0.803848i 0.0632213 + 0.0365008i
\(486\) 0 0
\(487\) −9.80385 5.66025i −0.444255 0.256491i 0.261146 0.965299i \(-0.415900\pi\)
−0.705401 + 0.708809i \(0.749233\pi\)
\(488\) 0 0
\(489\) 12.0000i 0.542659i
\(490\) 0 0
\(491\) −24.5885 + 14.1962i −1.10966 + 0.640663i −0.938742 0.344622i \(-0.888007\pi\)
−0.170920 + 0.985285i \(0.554674\pi\)
\(492\) 0 0
\(493\) 19.3923i 0.873385i
\(494\) 0 0
\(495\) −2.39230 −0.107526
\(496\) 0 0
\(497\) 22.0526 + 38.1962i 0.989192 + 1.71333i
\(498\) 0 0
\(499\) −33.1244 −1.48285 −0.741425 0.671036i \(-0.765850\pi\)
−0.741425 + 0.671036i \(0.765850\pi\)
\(500\) 0 0
\(501\) −12.1962 + 21.1244i −0.544884 + 0.943767i
\(502\) 0 0
\(503\) −16.3923 + 28.3923i −0.730897 + 1.26595i 0.225604 + 0.974219i \(0.427565\pi\)
−0.956500 + 0.291731i \(0.905769\pi\)
\(504\) 0 0
\(505\) 4.28461 2.47372i 0.190663 0.110079i
\(506\) 0 0
\(507\) −18.9282 30.0526i −0.840631 1.33468i
\(508\) 0 0
\(509\) 16.0622 + 27.8205i 0.711944 + 1.23312i 0.964127 + 0.265443i \(0.0855181\pi\)
−0.252183 + 0.967680i \(0.581149\pi\)
\(510\) 0 0
\(511\) 3.00000 5.19615i 0.132712 0.229864i
\(512\) 0 0
\(513\) −16.3923 9.46410i −0.723738 0.417850i
\(514\) 0 0
\(515\) 1.12436 0.0495450
\(516\) 0 0
\(517\) 5.66025 3.26795i 0.248938 0.143724i
\(518\) 0 0
\(519\) −13.8564 −0.608229
\(520\) 0 0
\(521\) −39.2487 −1.71952 −0.859759 0.510701i \(-0.829386\pi\)
−0.859759 + 0.510701i \(0.829386\pi\)
\(522\) 0 0
\(523\) 11.1962 6.46410i 0.489574 0.282655i −0.234824 0.972038i \(-0.575451\pi\)
0.724398 + 0.689382i \(0.242118\pi\)
\(524\) 0 0
\(525\) 46.6410 2.03558
\(526\) 0 0
\(527\) −7.09808 4.09808i −0.309197 0.178515i
\(528\) 0 0
\(529\) 9.08846 15.7417i 0.395150 0.684420i
\(530\) 0 0
\(531\) 16.6603 + 28.8564i 0.722993 + 1.25226i
\(532\) 0 0
\(533\) −4.18653 1.03590i −0.181339 0.0448697i
\(534\) 0 0
\(535\) 0.0788383 0.0455173i 0.00340848 0.00196789i
\(536\) 0 0
\(537\) 18.9282 32.7846i 0.816812 1.41476i
\(538\) 0 0
\(539\) 5.00000 8.66025i 0.215365 0.373024i
\(540\) 0 0
\(541\) −23.4449 −1.00797 −0.503987 0.863711i \(-0.668134\pi\)
−0.503987 + 0.863711i \(0.668134\pi\)
\(542\) 0 0
\(543\) −15.7583 27.2942i −0.676255 1.17131i
\(544\) 0 0
\(545\) 1.60770 0.0688661
\(546\) 0 0
\(547\) 12.5885i 0.538244i 0.963106 + 0.269122i \(0.0867334\pi\)
−0.963106 + 0.269122i \(0.913267\pi\)
\(548\) 0 0
\(549\) −3.86603 + 2.23205i −0.164998 + 0.0952616i
\(550\) 0 0
\(551\) 14.1962i 0.604776i
\(552\) 0 0
\(553\) −31.1769 18.0000i −1.32578 0.765438i
\(554\) 0 0
\(555\) −4.90192 2.83013i −0.208075 0.120132i
\(556\) 0 0
\(557\) −7.59808 13.1603i −0.321941 0.557618i 0.658948 0.752189i \(-0.271002\pi\)
−0.980888 + 0.194571i \(0.937669\pi\)
\(558\) 0 0
\(559\) 9.46410 + 32.7846i 0.400289 + 1.38664i
\(560\) 0 0
\(561\) −30.5885 + 17.6603i −1.29145 + 0.745617i
\(562\) 0 0
\(563\) 37.9808 + 21.9282i 1.60070 + 0.924164i 0.991348 + 0.131263i \(0.0419031\pi\)
0.609351 + 0.792901i \(0.291430\pi\)
\(564\) 0 0
\(565\) 0.401924 0.696152i 0.0169091 0.0292874i
\(566\) 0 0
\(567\) 8.53590i 0.358474i
\(568\) 0 0
\(569\) 12.0000 + 20.7846i 0.503066 + 0.871336i 0.999994 + 0.00354413i \(0.00112814\pi\)
−0.496928 + 0.867792i \(0.665539\pi\)
\(570\) 0 0
\(571\) 18.3923i 0.769694i −0.922980 0.384847i \(-0.874254\pi\)
0.922980 0.384847i \(-0.125746\pi\)
\(572\) 0 0
\(573\) 38.7846i 1.62025i
\(574\) 0 0
\(575\) 5.41154 + 9.37307i 0.225677 + 0.390884i
\(576\) 0 0
\(577\) 37.7321i 1.57081i 0.618985 + 0.785403i \(0.287544\pi\)
−0.618985 + 0.785403i \(0.712456\pi\)
\(578\) 0 0
\(579\) −34.2224 + 59.2750i −1.42224 + 2.46338i
\(580\) 0 0
\(581\) 16.3923 + 9.46410i 0.680067 + 0.392637i
\(582\) 0 0
\(583\) −17.1962 + 9.92820i −0.712192 + 0.411184i
\(584\) 0 0
\(585\) 4.14359 1.19615i 0.171317 0.0494548i
\(586\) 0 0
\(587\) −8.58846 14.8756i −0.354484 0.613984i 0.632546 0.774523i \(-0.282010\pi\)
−0.987029 + 0.160539i \(0.948677\pi\)
\(588\) 0 0
\(589\) −5.19615 3.00000i −0.214104 0.123613i
\(590\) 0 0
\(591\) 46.0526 + 26.5885i 1.89435 + 1.09370i
\(592\) 0 0
\(593\) 29.5885i 1.21505i 0.794300 + 0.607526i \(0.207838\pi\)
−0.794300 + 0.607526i \(0.792162\pi\)
\(594\) 0 0
\(595\) −5.19615 + 3.00000i −0.213021 + 0.122988i
\(596\) 0 0
\(597\) 24.9282i 1.02024i
\(598\) 0 0
\(599\) 16.7321 0.683653 0.341827 0.939763i \(-0.388954\pi\)
0.341827 + 0.939763i \(0.388954\pi\)
\(600\) 0 0
\(601\) −19.9641 34.5788i −0.814353 1.41050i −0.909792 0.415065i \(-0.863759\pi\)
0.0954391 0.995435i \(-0.469574\pi\)
\(602\) 0 0
\(603\) −47.9090 −1.95100
\(604\) 0 0
\(605\) 0.937822 1.62436i 0.0381279 0.0660394i
\(606\) 0 0
\(607\) −14.2942 + 24.7583i −0.580185 + 1.00491i 0.415272 + 0.909697i \(0.363686\pi\)
−0.995457 + 0.0952124i \(0.969647\pi\)
\(608\) 0 0
\(609\) 24.5885 14.1962i 0.996375 0.575257i
\(610\) 0 0
\(611\) −8.16987 + 8.49038i −0.330518 + 0.343484i
\(612\) 0 0
\(613\) −2.25833 3.91154i −0.0912131 0.157986i 0.816809 0.576909i \(-0.195741\pi\)
−0.908022 + 0.418923i \(0.862408\pi\)
\(614\) 0 0
\(615\) 0.437822 0.758330i 0.0176547 0.0305788i
\(616\) 0 0
\(617\) −12.3564 7.13397i −0.497450 0.287203i 0.230210 0.973141i \(-0.426059\pi\)
−0.727660 + 0.685938i \(0.759392\pi\)
\(618\) 0 0
\(619\) −24.2487 −0.974638 −0.487319 0.873224i \(-0.662025\pi\)
−0.487319 + 0.873224i \(0.662025\pi\)
\(620\) 0 0
\(621\) 7.60770 4.39230i 0.305286 0.176257i
\(622\) 0 0
\(623\) −1.85641 −0.0743754
\(624\) 0 0
\(625\) 23.9282 0.957128
\(626\) 0 0
\(627\) −22.3923 + 12.9282i −0.894263 + 0.516303i
\(628\) 0 0
\(629\) −49.9808 −1.99286
\(630\) 0 0
\(631\) −26.7846 15.4641i −1.06628 0.615616i −0.139116 0.990276i \(-0.544426\pi\)
−0.927162 + 0.374660i \(0.877759\pi\)
\(632\) 0 0
\(633\) −3.53590 + 6.12436i −0.140539 + 0.243421i
\(634\) 0 0
\(635\) 2.36603 + 4.09808i 0.0938929 + 0.162627i
\(636\) 0 0
\(637\) −4.33013 + 17.5000i −0.171566 + 0.693375i
\(638\) 0 0
\(639\) 49.2224 28.4186i 1.94721 1.12422i
\(640\) 0 0
\(641\) 13.9641 24.1865i 0.551549 0.955311i −0.446614 0.894727i \(-0.647370\pi\)
0.998163 0.0605840i \(-0.0192963\pi\)
\(642\) 0 0
\(643\) −1.39230 + 2.41154i −0.0549071 + 0.0951020i −0.892173 0.451695i \(-0.850820\pi\)
0.837265 + 0.546797i \(0.184153\pi\)
\(644\) 0 0
\(645\) −6.92820 −0.272798
\(646\) 0 0
\(647\) 6.16987 + 10.6865i 0.242563 + 0.420131i 0.961444 0.275002i \(-0.0886786\pi\)
−0.718881 + 0.695133i \(0.755345\pi\)
\(648\) 0 0
\(649\) 14.9282 0.585983
\(650\) 0 0
\(651\) 12.0000i 0.470317i
\(652\) 0 0
\(653\) 31.1769 18.0000i 1.22005 0.704394i 0.255119 0.966910i \(-0.417885\pi\)
0.964928 + 0.262515i \(0.0845520\pi\)
\(654\) 0 0
\(655\) 1.94744i 0.0760928i
\(656\) 0 0
\(657\) −6.69615 3.86603i −0.261242 0.150828i
\(658\) 0 0
\(659\) 14.7846 + 8.53590i 0.575927 + 0.332511i 0.759513 0.650492i \(-0.225437\pi\)
−0.183586 + 0.983004i \(0.558771\pi\)
\(660\) 0 0
\(661\) −6.06218 10.5000i −0.235791 0.408403i 0.723711 0.690103i \(-0.242435\pi\)
−0.959502 + 0.281701i \(0.909102\pi\)
\(662\) 0 0
\(663\) 44.1506 45.8827i 1.71467 1.78194i
\(664\) 0 0
\(665\) −3.80385 + 2.19615i −0.147507 + 0.0851631i
\(666\) 0 0
\(667\) 5.70577 + 3.29423i 0.220928 + 0.127553i
\(668\) 0 0
\(669\) −26.6603 + 46.1769i −1.03074 + 1.78530i
\(670\) 0 0
\(671\) 2.00000i 0.0772091i
\(672\) 0 0
\(673\) 5.50000 + 9.52628i 0.212009 + 0.367211i 0.952343 0.305028i \(-0.0986659\pi\)
−0.740334 + 0.672239i \(0.765333\pi\)
\(674\) 0 0
\(675\) 19.7128i 0.758747i
\(676\) 0 0
\(677\) 19.8564i 0.763144i 0.924339 + 0.381572i \(0.124617\pi\)
−0.924339 + 0.381572i \(0.875383\pi\)
\(678\) 0 0
\(679\) 10.3923 + 18.0000i 0.398820 + 0.690777i
\(680\) 0 0
\(681\) 32.9282i 1.26181i
\(682\) 0 0
\(683\) −7.36603 + 12.7583i −0.281853 + 0.488184i −0.971841 0.235637i \(-0.924282\pi\)
0.689988 + 0.723821i \(0.257616\pi\)
\(684\) 0 0
\(685\) −4.08142 2.35641i −0.155943 0.0900337i
\(686\) 0 0
\(687\) 2.19615 1.26795i 0.0837884 0.0483753i
\(688\) 0 0
\(689\) 24.8205 25.7942i 0.945586 0.982682i
\(690\) 0 0
\(691\) −9.00000 15.5885i −0.342376 0.593013i 0.642497 0.766288i \(-0.277898\pi\)
−0.984873 + 0.173275i \(0.944565\pi\)
\(692\) 0 0
\(693\) −26.7846 15.4641i −1.01746 0.587433i
\(694\) 0 0
\(695\) 0.588457 + 0.339746i 0.0223215 + 0.0128873i
\(696\) 0 0
\(697\) 7.73205i 0.292872i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.7846i 1.23826i −0.785289 0.619129i \(-0.787486\pi\)
0.785289 0.619129i \(-0.212514\pi\)
\(702\) 0 0
\(703\) −36.5885 −1.37996
\(704\) 0 0
\(705\) −1.19615 2.07180i −0.0450497 0.0780284i
\(706\) 0 0
\(707\) 63.9615 2.40552
\(708\) 0 0
\(709\) 15.4019 26.6769i 0.578431 1.00187i −0.417228 0.908802i \(-0.636998\pi\)
0.995659 0.0930708i \(-0.0296683\pi\)
\(710\) 0 0
\(711\) −23.1962 + 40.1769i −0.869924 + 1.50675i
\(712\) 0 0
\(713\) 2.41154 1.39230i 0.0903130 0.0521422i
\(714\) 0 0
\(715\) 0.464102 1.87564i 0.0173564 0.0701451i
\(716\) 0 0
\(717\) −3.26795 5.66025i −0.122044 0.211386i
\(718\) 0 0
\(719\) 10.8564 18.8038i 0.404876 0.701265i −0.589431 0.807818i \(-0.700648\pi\)
0.994307 + 0.106553i \(0.0339815\pi\)
\(720\) 0 0
\(721\) 12.5885 + 7.26795i 0.468819 + 0.270673i
\(722\) 0 0
\(723\) 2.19615 0.0816758
\(724\) 0 0
\(725\) 12.8038 7.39230i 0.475523 0.274543i
\(726\) 0 0
\(727\) 34.3923 1.27554 0.637770 0.770227i \(-0.279857\pi\)
0.637770 + 0.770227i \(0.279857\pi\)
\(728\) 0 0
\(729\) 43.7846 1.62165
\(730\) 0 0
\(731\) −52.9808 + 30.5885i −1.95956 + 1.13135i
\(732\) 0 0
\(733\) 43.0526 1.59018 0.795091 0.606490i \(-0.207423\pi\)
0.795091 + 0.606490i \(0.207423\pi\)
\(734\) 0 0
\(735\) −3.16987 1.83013i −0.116923 0.0675053i
\(736\) 0 0
\(737\) −10.7321 + 18.5885i −0.395320 + 0.684715i
\(738\) 0 0
\(739\) −2.53590 4.39230i −0.0932845 0.161574i 0.815607 0.578607i \(-0.196403\pi\)
−0.908891 + 0.417033i \(0.863070\pi\)
\(740\) 0 0
\(741\) 32.3205 33.5885i 1.18732 1.23390i
\(742\) 0 0
\(743\) −1.26795 + 0.732051i −0.0465165 + 0.0268563i −0.523078 0.852285i \(-0.675216\pi\)
0.476561 + 0.879141i \(0.341883\pi\)
\(744\) 0 0
\(745\) −1.10770 + 1.91858i −0.0405828 + 0.0702915i
\(746\) 0 0
\(747\) 12.1962 21.1244i 0.446234 0.772900i
\(748\) 0 0
\(749\) 1.17691 0.0430035
\(750\) 0 0
\(751\) −7.80385 13.5167i −0.284766 0.493230i 0.687786 0.725913i \(-0.258583\pi\)
−0.972553 + 0.232683i \(0.925249\pi\)
\(752\) 0 0
\(753\) −6.00000 −0.218652
\(754\) 0 0
\(755\) 2.19615i 0.0799262i
\(756\) 0 0
\(757\) −35.6603 + 20.5885i −1.29609 + 0.748300i −0.979727 0.200337i \(-0.935796\pi\)
−0.316367 + 0.948637i \(0.602463\pi\)
\(758\) 0 0
\(759\) 12.0000i 0.435572i
\(760\) 0 0
\(761\) 16.8564 + 9.73205i 0.611044 + 0.352787i 0.773374 0.633950i \(-0.218568\pi\)
−0.162330 + 0.986737i \(0.551901\pi\)
\(762\) 0 0
\(763\) 18.0000 + 10.3923i 0.651644 + 0.376227i
\(764\) 0 0
\(765\) 3.86603 + 6.69615i 0.139776 + 0.242100i
\(766\) 0 0
\(767\) −25.8564 + 7.46410i −0.933621 + 0.269513i
\(768\) 0 0
\(769\) −1.39230 + 0.803848i −0.0502078 + 0.0289875i −0.524894 0.851168i \(-0.675895\pi\)
0.474686 + 0.880155i \(0.342562\pi\)
\(770\) 0 0
\(771\) −11.4904 6.63397i −0.413816 0.238917i
\(772\) 0 0
\(773\) −22.2487 + 38.5359i −0.800231 + 1.38604i 0.119234 + 0.992866i \(0.461956\pi\)
−0.919464 + 0.393174i \(0.871377\pi\)
\(774\) 0 0
\(775\) 6.24871i 0.224460i
\(776\) 0 0
\(777\) −36.5885 63.3731i −1.31260 2.27350i
\(778\) 0 0
\(779\) 5.66025i 0.202800i
\(780\) 0 0
\(781\) 25.4641i 0.911177i
\(782\) 0 0
\(783\) −6.00000 10.3923i −0.214423 0.371391i
\(784\) 0 0
\(785\) 2.66025i 0.0949485i
\(786\) 0 0
\(787\) 18.6340 32.2750i 0.664229 1.15048i −0.315264 0.949004i \(-0.602093\pi\)
0.979494 0.201475i \(-0.0645735\pi\)