Properties

Label 416.2.ba.a.17.2
Level $416$
Weight $2$
Character 416.17
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(17,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.ba (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 416.17
Dual form 416.2.ba.a.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.633975 - 0.366025i) q^{3} +3.73205 q^{5} +(3.00000 - 1.73205i) q^{7} +(-1.23205 - 2.13397i) q^{9} +O(q^{10})\) \(q+(-0.633975 - 0.366025i) q^{3} +3.73205 q^{5} +(3.00000 - 1.73205i) q^{7} +(-1.23205 - 2.13397i) q^{9} +(-1.00000 + 1.73205i) q^{11} +(-2.59808 + 2.50000i) q^{13} +(-2.36603 - 1.36603i) q^{15} +(0.232051 + 0.401924i) q^{17} +(-0.633975 - 1.09808i) q^{19} -2.53590 q^{21} +(4.09808 - 7.09808i) q^{23} +8.92820 q^{25} +4.00000i q^{27} +(2.59808 + 1.50000i) q^{29} +4.73205i q^{31} +(1.26795 - 0.732051i) q^{33} +(11.1962 - 6.46410i) q^{35} +(2.13397 - 3.69615i) q^{37} +(2.56218 - 0.633975i) q^{39} +(-7.96410 - 4.59808i) q^{41} +(-2.19615 + 1.26795i) q^{43} +(-4.59808 - 7.96410i) q^{45} +6.73205i q^{47} +(2.50000 - 4.33013i) q^{49} -0.339746i q^{51} +3.92820i q^{53} +(-3.73205 + 6.46410i) q^{55} +0.928203i q^{57} +(-0.267949 - 0.464102i) q^{59} +(0.866025 - 0.500000i) q^{61} +(-7.39230 - 4.26795i) q^{63} +(-9.69615 + 9.33013i) q^{65} +(-3.63397 + 6.29423i) q^{67} +(-5.19615 + 3.00000i) q^{69} +(-8.02628 + 4.63397i) q^{71} +1.73205i q^{73} +(-5.66025 - 3.26795i) q^{75} +6.92820i q^{77} +10.3923 q^{79} +(-2.23205 + 3.86603i) q^{81} -1.46410 q^{83} +(0.866025 + 1.50000i) q^{85} +(-1.09808 - 1.90192i) q^{87} +(6.46410 + 3.73205i) q^{89} +(-3.46410 + 12.0000i) q^{91} +(1.73205 - 3.00000i) q^{93} +(-2.36603 - 4.09808i) q^{95} +(-5.19615 + 3.00000i) q^{97} +4.92820 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} + 8 q^{5} + 12 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 6 q^{3} + 8 q^{5} + 12 q^{7} + 2 q^{9} - 4 q^{11} - 6 q^{15} - 6 q^{17} - 6 q^{19} - 24 q^{21} + 6 q^{23} + 8 q^{25} + 12 q^{33} + 24 q^{35} + 12 q^{37} - 14 q^{39} - 18 q^{41} + 12 q^{43} - 8 q^{45} + 10 q^{49} - 8 q^{55} - 8 q^{59} + 12 q^{63} - 18 q^{65} - 18 q^{67} + 6 q^{71} + 12 q^{75} - 2 q^{81} + 8 q^{83} + 6 q^{87} + 12 q^{89} - 6 q^{95} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.633975 0.366025i −0.366025 0.211325i 0.305695 0.952129i \(-0.401111\pi\)
−0.671721 + 0.740805i \(0.734444\pi\)
\(4\) 0 0
\(5\) 3.73205 1.66902 0.834512 0.550990i \(-0.185750\pi\)
0.834512 + 0.550990i \(0.185750\pi\)
\(6\) 0 0
\(7\) 3.00000 1.73205i 1.13389 0.654654i 0.188982 0.981981i \(-0.439481\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 0 0
\(9\) −1.23205 2.13397i −0.410684 0.711325i
\(10\) 0 0
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 0 0
\(13\) −2.59808 + 2.50000i −0.720577 + 0.693375i
\(14\) 0 0
\(15\) −2.36603 1.36603i −0.610905 0.352706i
\(16\) 0 0
\(17\) 0.232051 + 0.401924i 0.0562806 + 0.0974808i 0.892793 0.450467i \(-0.148743\pi\)
−0.836512 + 0.547948i \(0.815409\pi\)
\(18\) 0 0
\(19\) −0.633975 1.09808i −0.145444 0.251916i 0.784095 0.620641i \(-0.213128\pi\)
−0.929538 + 0.368725i \(0.879794\pi\)
\(20\) 0 0
\(21\) −2.53590 −0.553378
\(22\) 0 0
\(23\) 4.09808 7.09808i 0.854508 1.48005i −0.0225928 0.999745i \(-0.507192\pi\)
0.877101 0.480306i \(-0.159475\pi\)
\(24\) 0 0
\(25\) 8.92820 1.78564
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) 2.59808 + 1.50000i 0.482451 + 0.278543i 0.721437 0.692480i \(-0.243482\pi\)
−0.238987 + 0.971023i \(0.576815\pi\)
\(30\) 0 0
\(31\) 4.73205i 0.849901i 0.905216 + 0.424951i \(0.139709\pi\)
−0.905216 + 0.424951i \(0.860291\pi\)
\(32\) 0 0
\(33\) 1.26795 0.732051i 0.220722 0.127434i
\(34\) 0 0
\(35\) 11.1962 6.46410i 1.89250 1.09263i
\(36\) 0 0
\(37\) 2.13397 3.69615i 0.350823 0.607644i −0.635571 0.772043i \(-0.719235\pi\)
0.986394 + 0.164399i \(0.0525685\pi\)
\(38\) 0 0
\(39\) 2.56218 0.633975i 0.410277 0.101517i
\(40\) 0 0
\(41\) −7.96410 4.59808i −1.24378 0.718099i −0.273921 0.961752i \(-0.588321\pi\)
−0.969862 + 0.243653i \(0.921654\pi\)
\(42\) 0 0
\(43\) −2.19615 + 1.26795i −0.334910 + 0.193360i −0.658019 0.753001i \(-0.728605\pi\)
0.323109 + 0.946362i \(0.395272\pi\)
\(44\) 0 0
\(45\) −4.59808 7.96410i −0.685441 1.18722i
\(46\) 0 0
\(47\) 6.73205i 0.981971i 0.871168 + 0.490985i \(0.163363\pi\)
−0.871168 + 0.490985i \(0.836637\pi\)
\(48\) 0 0
\(49\) 2.50000 4.33013i 0.357143 0.618590i
\(50\) 0 0
\(51\) 0.339746i 0.0475740i
\(52\) 0 0
\(53\) 3.92820i 0.539580i 0.962919 + 0.269790i \(0.0869543\pi\)
−0.962919 + 0.269790i \(0.913046\pi\)
\(54\) 0 0
\(55\) −3.73205 + 6.46410i −0.503230 + 0.871619i
\(56\) 0 0
\(57\) 0.928203i 0.122944i
\(58\) 0 0
\(59\) −0.267949 0.464102i −0.0348840 0.0604209i 0.848056 0.529906i \(-0.177773\pi\)
−0.882940 + 0.469485i \(0.844440\pi\)
\(60\) 0 0
\(61\) 0.866025 0.500000i 0.110883 0.0640184i −0.443533 0.896258i \(-0.646275\pi\)
0.554416 + 0.832240i \(0.312942\pi\)
\(62\) 0 0
\(63\) −7.39230 4.26795i −0.931343 0.537711i
\(64\) 0 0
\(65\) −9.69615 + 9.33013i −1.20266 + 1.15726i
\(66\) 0 0
\(67\) −3.63397 + 6.29423i −0.443961 + 0.768962i −0.997979 0.0635419i \(-0.979760\pi\)
0.554019 + 0.832504i \(0.313094\pi\)
\(68\) 0 0
\(69\) −5.19615 + 3.00000i −0.625543 + 0.361158i
\(70\) 0 0
\(71\) −8.02628 + 4.63397i −0.952544 + 0.549952i −0.893870 0.448326i \(-0.852021\pi\)
−0.0586738 + 0.998277i \(0.518687\pi\)
\(72\) 0 0
\(73\) 1.73205i 0.202721i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) 0 0
\(75\) −5.66025 3.26795i −0.653590 0.377350i
\(76\) 0 0
\(77\) 6.92820i 0.789542i
\(78\) 0 0
\(79\) 10.3923 1.16923 0.584613 0.811312i \(-0.301246\pi\)
0.584613 + 0.811312i \(0.301246\pi\)
\(80\) 0 0
\(81\) −2.23205 + 3.86603i −0.248006 + 0.429558i
\(82\) 0 0
\(83\) −1.46410 −0.160706 −0.0803530 0.996766i \(-0.525605\pi\)
−0.0803530 + 0.996766i \(0.525605\pi\)
\(84\) 0 0
\(85\) 0.866025 + 1.50000i 0.0939336 + 0.162698i
\(86\) 0 0
\(87\) −1.09808 1.90192i −0.117726 0.203908i
\(88\) 0 0
\(89\) 6.46410 + 3.73205i 0.685193 + 0.395597i 0.801809 0.597581i \(-0.203871\pi\)
−0.116615 + 0.993177i \(0.537205\pi\)
\(90\) 0 0
\(91\) −3.46410 + 12.0000i −0.363137 + 1.25794i
\(92\) 0 0
\(93\) 1.73205 3.00000i 0.179605 0.311086i
\(94\) 0 0
\(95\) −2.36603 4.09808i −0.242749 0.420454i
\(96\) 0 0
\(97\) −5.19615 + 3.00000i −0.527589 + 0.304604i −0.740034 0.672569i \(-0.765191\pi\)
0.212445 + 0.977173i \(0.431857\pi\)
\(98\) 0 0
\(99\) 4.92820 0.495303
\(100\) 0 0
\(101\) −9.99038 5.76795i −0.994080 0.573932i −0.0875887 0.996157i \(-0.527916\pi\)
−0.906491 + 0.422224i \(0.861249\pi\)
\(102\) 0 0
\(103\) −6.19615 −0.610525 −0.305263 0.952268i \(-0.598744\pi\)
−0.305263 + 0.952268i \(0.598744\pi\)
\(104\) 0 0
\(105\) −9.46410 −0.923602
\(106\) 0 0
\(107\) −15.2942 8.83013i −1.47855 0.853641i −0.478843 0.877900i \(-0.658944\pi\)
−0.999706 + 0.0242598i \(0.992277\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) −2.70577 + 1.56218i −0.256820 + 0.148275i
\(112\) 0 0
\(113\) 1.50000 + 2.59808i 0.141108 + 0.244406i 0.927914 0.372794i \(-0.121600\pi\)
−0.786806 + 0.617200i \(0.788267\pi\)
\(114\) 0 0
\(115\) 15.2942 26.4904i 1.42619 2.47024i
\(116\) 0 0
\(117\) 8.53590 + 2.46410i 0.789144 + 0.227806i
\(118\) 0 0
\(119\) 1.39230 + 0.803848i 0.127632 + 0.0736886i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) 3.36603 + 5.83013i 0.303504 + 0.525685i
\(124\) 0 0
\(125\) 14.6603 1.31125
\(126\) 0 0
\(127\) 0.169873 0.294229i 0.0150738 0.0261086i −0.858390 0.512997i \(-0.828535\pi\)
0.873464 + 0.486889i \(0.161868\pi\)
\(128\) 0 0
\(129\) 1.85641 0.163447
\(130\) 0 0
\(131\) 10.7321i 0.937664i −0.883287 0.468832i \(-0.844675\pi\)
0.883287 0.468832i \(-0.155325\pi\)
\(132\) 0 0
\(133\) −3.80385 2.19615i −0.329835 0.190431i
\(134\) 0 0
\(135\) 14.9282i 1.28482i
\(136\) 0 0
\(137\) −11.7679 + 6.79423i −1.00540 + 0.580470i −0.909843 0.414953i \(-0.863798\pi\)
−0.0955611 + 0.995424i \(0.530465\pi\)
\(138\) 0 0
\(139\) −8.19615 + 4.73205i −0.695189 + 0.401367i −0.805553 0.592524i \(-0.798132\pi\)
0.110364 + 0.993891i \(0.464798\pi\)
\(140\) 0 0
\(141\) 2.46410 4.26795i 0.207515 0.359426i
\(142\) 0 0
\(143\) −1.73205 7.00000i −0.144841 0.585369i
\(144\) 0 0
\(145\) 9.69615 + 5.59808i 0.805222 + 0.464895i
\(146\) 0 0
\(147\) −3.16987 + 1.83013i −0.261447 + 0.150946i
\(148\) 0 0
\(149\) −5.86603 10.1603i −0.480564 0.832360i 0.519188 0.854660i \(-0.326235\pi\)
−0.999751 + 0.0222997i \(0.992901\pi\)
\(150\) 0 0
\(151\) 2.19615i 0.178720i 0.995999 + 0.0893602i \(0.0284822\pi\)
−0.995999 + 0.0893602i \(0.971518\pi\)
\(152\) 0 0
\(153\) 0.571797 0.990381i 0.0462270 0.0800676i
\(154\) 0 0
\(155\) 17.6603i 1.41851i
\(156\) 0 0
\(157\) 3.92820i 0.313505i −0.987638 0.156752i \(-0.949898\pi\)
0.987638 0.156752i \(-0.0501025\pi\)
\(158\) 0 0
\(159\) 1.43782 2.49038i 0.114027 0.197500i
\(160\) 0 0
\(161\) 28.3923i 2.23763i
\(162\) 0 0
\(163\) 8.19615 + 14.1962i 0.641972 + 1.11193i 0.984992 + 0.172600i \(0.0552169\pi\)
−0.343020 + 0.939328i \(0.611450\pi\)
\(164\) 0 0
\(165\) 4.73205 2.73205i 0.368390 0.212690i
\(166\) 0 0
\(167\) 4.26795 + 2.46410i 0.330264 + 0.190678i 0.655958 0.754797i \(-0.272265\pi\)
−0.325694 + 0.945475i \(0.605598\pi\)
\(168\) 0 0
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 0 0
\(171\) −1.56218 + 2.70577i −0.119463 + 0.206916i
\(172\) 0 0
\(173\) −16.3923 + 9.46410i −1.24628 + 0.719542i −0.970366 0.241639i \(-0.922315\pi\)
−0.275918 + 0.961181i \(0.588982\pi\)
\(174\) 0 0
\(175\) 26.7846 15.4641i 2.02473 1.16898i
\(176\) 0 0
\(177\) 0.392305i 0.0294874i
\(178\) 0 0
\(179\) −12.0000 6.92820i −0.896922 0.517838i −0.0207218 0.999785i \(-0.506596\pi\)
−0.876200 + 0.481947i \(0.839930\pi\)
\(180\) 0 0
\(181\) 18.4641i 1.37243i 0.727401 + 0.686213i \(0.240728\pi\)
−0.727401 + 0.686213i \(0.759272\pi\)
\(182\) 0 0
\(183\) −0.732051 −0.0541148
\(184\) 0 0
\(185\) 7.96410 13.7942i 0.585532 1.01417i
\(186\) 0 0
\(187\) −0.928203 −0.0678769
\(188\) 0 0
\(189\) 6.92820 + 12.0000i 0.503953 + 0.872872i
\(190\) 0 0
\(191\) 1.90192 + 3.29423i 0.137618 + 0.238362i 0.926595 0.376062i \(-0.122722\pi\)
−0.788976 + 0.614424i \(0.789389\pi\)
\(192\) 0 0
\(193\) 11.3038 + 6.52628i 0.813669 + 0.469772i 0.848228 0.529631i \(-0.177670\pi\)
−0.0345595 + 0.999403i \(0.511003\pi\)
\(194\) 0 0
\(195\) 9.56218 2.36603i 0.684762 0.169435i
\(196\) 0 0
\(197\) −6.26795 + 10.8564i −0.446573 + 0.773487i −0.998160 0.0606302i \(-0.980689\pi\)
0.551587 + 0.834117i \(0.314022\pi\)
\(198\) 0 0
\(199\) −7.56218 13.0981i −0.536069 0.928498i −0.999111 0.0421618i \(-0.986576\pi\)
0.463042 0.886336i \(-0.346758\pi\)
\(200\) 0 0
\(201\) 4.60770 2.66025i 0.325002 0.187640i
\(202\) 0 0
\(203\) 10.3923 0.729397
\(204\) 0 0
\(205\) −29.7224 17.1603i −2.07590 1.19852i
\(206\) 0 0
\(207\) −20.1962 −1.40373
\(208\) 0 0
\(209\) 2.53590 0.175412
\(210\) 0 0
\(211\) 24.7583 + 14.2942i 1.70443 + 0.984055i 0.941148 + 0.337994i \(0.109748\pi\)
0.763285 + 0.646061i \(0.223585\pi\)
\(212\) 0 0
\(213\) 6.78461 0.464874
\(214\) 0 0
\(215\) −8.19615 + 4.73205i −0.558973 + 0.322723i
\(216\) 0 0
\(217\) 8.19615 + 14.1962i 0.556391 + 0.963698i
\(218\) 0 0
\(219\) 0.633975 1.09808i 0.0428400 0.0742011i
\(220\) 0 0
\(221\) −1.60770 0.464102i −0.108145 0.0312189i
\(222\) 0 0
\(223\) 22.0981 + 12.7583i 1.47980 + 0.854361i 0.999738 0.0228756i \(-0.00728216\pi\)
0.480058 + 0.877237i \(0.340615\pi\)
\(224\) 0 0
\(225\) −11.0000 19.0526i −0.733333 1.27017i
\(226\) 0 0
\(227\) −13.0263 22.5622i −0.864585 1.49750i −0.867459 0.497508i \(-0.834248\pi\)
0.00287459 0.999996i \(-0.499085\pi\)
\(228\) 0 0
\(229\) 12.9282 0.854320 0.427160 0.904176i \(-0.359514\pi\)
0.427160 + 0.904176i \(0.359514\pi\)
\(230\) 0 0
\(231\) 2.53590 4.39230i 0.166850 0.288992i
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 25.1244i 1.63893i
\(236\) 0 0
\(237\) −6.58846 3.80385i −0.427966 0.247086i
\(238\) 0 0
\(239\) 18.3923i 1.18970i −0.803837 0.594850i \(-0.797212\pi\)
0.803837 0.594850i \(-0.202788\pi\)
\(240\) 0 0
\(241\) 9.69615 5.59808i 0.624584 0.360604i −0.154068 0.988060i \(-0.549237\pi\)
0.778652 + 0.627457i \(0.215904\pi\)
\(242\) 0 0
\(243\) 13.2224 7.63397i 0.848219 0.489720i
\(244\) 0 0
\(245\) 9.33013 16.1603i 0.596080 1.03244i
\(246\) 0 0
\(247\) 4.39230 + 1.26795i 0.279476 + 0.0806777i
\(248\) 0 0
\(249\) 0.928203 + 0.535898i 0.0588225 + 0.0339612i
\(250\) 0 0
\(251\) 7.09808 4.09808i 0.448027 0.258668i −0.258970 0.965885i \(-0.583383\pi\)
0.706996 + 0.707217i \(0.250050\pi\)
\(252\) 0 0
\(253\) 8.19615 + 14.1962i 0.515288 + 0.892504i
\(254\) 0 0
\(255\) 1.26795i 0.0794021i
\(256\) 0 0
\(257\) −11.4282 + 19.7942i −0.712872 + 1.23473i 0.250903 + 0.968012i \(0.419273\pi\)
−0.963775 + 0.266718i \(0.914061\pi\)
\(258\) 0 0
\(259\) 14.7846i 0.918671i
\(260\) 0 0
\(261\) 7.39230i 0.457572i
\(262\) 0 0
\(263\) 8.19615 14.1962i 0.505396 0.875372i −0.494584 0.869130i \(-0.664680\pi\)
0.999981 0.00624249i \(-0.00198706\pi\)
\(264\) 0 0
\(265\) 14.6603i 0.900572i
\(266\) 0 0
\(267\) −2.73205 4.73205i −0.167199 0.289597i
\(268\) 0 0
\(269\) 8.19615 4.73205i 0.499728 0.288518i −0.228873 0.973456i \(-0.573504\pi\)
0.728601 + 0.684938i \(0.240171\pi\)
\(270\) 0 0
\(271\) 15.0000 + 8.66025i 0.911185 + 0.526073i 0.880812 0.473466i \(-0.156997\pi\)
0.0303728 + 0.999539i \(0.490331\pi\)
\(272\) 0 0
\(273\) 6.58846 6.33975i 0.398752 0.383699i
\(274\) 0 0
\(275\) −8.92820 + 15.4641i −0.538391 + 0.932520i
\(276\) 0 0
\(277\) 12.4019 7.16025i 0.745159 0.430218i −0.0787828 0.996892i \(-0.525103\pi\)
0.823942 + 0.566674i \(0.191770\pi\)
\(278\) 0 0
\(279\) 10.0981 5.83013i 0.604556 0.349041i
\(280\) 0 0
\(281\) 10.6603i 0.635937i −0.948101 0.317969i \(-0.896999\pi\)
0.948101 0.317969i \(-0.103001\pi\)
\(282\) 0 0
\(283\) −26.6603 15.3923i −1.58479 0.914978i −0.994146 0.108043i \(-0.965541\pi\)
−0.590641 0.806934i \(-0.701125\pi\)
\(284\) 0 0
\(285\) 3.46410i 0.205196i
\(286\) 0 0
\(287\) −31.8564 −1.88042
\(288\) 0 0
\(289\) 8.39230 14.5359i 0.493665 0.855053i
\(290\) 0 0
\(291\) 4.39230 0.257481
\(292\) 0 0
\(293\) 1.40192 + 2.42820i 0.0819013 + 0.141857i 0.904067 0.427392i \(-0.140567\pi\)
−0.822165 + 0.569249i \(0.807234\pi\)
\(294\) 0 0
\(295\) −1.00000 1.73205i −0.0582223 0.100844i
\(296\) 0 0
\(297\) −6.92820 4.00000i −0.402015 0.232104i
\(298\) 0 0
\(299\) 7.09808 + 28.6865i 0.410492 + 1.65899i
\(300\) 0 0
\(301\) −4.39230 + 7.60770i −0.253168 + 0.438500i
\(302\) 0 0
\(303\) 4.22243 + 7.31347i 0.242572 + 0.420148i
\(304\) 0 0
\(305\) 3.23205 1.86603i 0.185067 0.106848i
\(306\) 0 0
\(307\) −2.19615 −0.125341 −0.0626705 0.998034i \(-0.519962\pi\)
−0.0626705 + 0.998034i \(0.519962\pi\)
\(308\) 0 0
\(309\) 3.92820 + 2.26795i 0.223468 + 0.129019i
\(310\) 0 0
\(311\) 18.5885 1.05405 0.527027 0.849848i \(-0.323307\pi\)
0.527027 + 0.849848i \(0.323307\pi\)
\(312\) 0 0
\(313\) −2.53590 −0.143337 −0.0716687 0.997428i \(-0.522832\pi\)
−0.0716687 + 0.997428i \(0.522832\pi\)
\(314\) 0 0
\(315\) −27.5885 15.9282i −1.55443 0.897453i
\(316\) 0 0
\(317\) 25.1962 1.41516 0.707578 0.706635i \(-0.249788\pi\)
0.707578 + 0.706635i \(0.249788\pi\)
\(318\) 0 0
\(319\) −5.19615 + 3.00000i −0.290929 + 0.167968i
\(320\) 0 0
\(321\) 6.46410 + 11.1962i 0.360791 + 0.624908i
\(322\) 0 0
\(323\) 0.294229 0.509619i 0.0163713 0.0283560i
\(324\) 0 0
\(325\) −23.1962 + 22.3205i −1.28669 + 1.23812i
\(326\) 0 0
\(327\) −3.80385 2.19615i −0.210353 0.121448i
\(328\) 0 0
\(329\) 11.6603 + 20.1962i 0.642851 + 1.11345i
\(330\) 0 0
\(331\) −6.00000 10.3923i −0.329790 0.571213i 0.652680 0.757634i \(-0.273645\pi\)
−0.982470 + 0.186421i \(0.940311\pi\)
\(332\) 0 0
\(333\) −10.5167 −0.576309
\(334\) 0 0
\(335\) −13.5622 + 23.4904i −0.740981 + 1.28342i
\(336\) 0 0
\(337\) −33.2487 −1.81117 −0.905586 0.424162i \(-0.860569\pi\)
−0.905586 + 0.424162i \(0.860569\pi\)
\(338\) 0 0
\(339\) 2.19615i 0.119279i
\(340\) 0 0
\(341\) −8.19615 4.73205i −0.443847 0.256255i
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) −19.3923 + 11.1962i −1.04405 + 0.602781i
\(346\) 0 0
\(347\) 1.09808 0.633975i 0.0589478 0.0340335i −0.470236 0.882540i \(-0.655831\pi\)
0.529184 + 0.848507i \(0.322498\pi\)
\(348\) 0 0
\(349\) 2.66025 4.60770i 0.142400 0.246644i −0.786000 0.618227i \(-0.787851\pi\)
0.928400 + 0.371582i \(0.121185\pi\)
\(350\) 0 0
\(351\) −10.0000 10.3923i −0.533761 0.554700i
\(352\) 0 0
\(353\) −15.8205 9.13397i −0.842041 0.486152i 0.0159167 0.999873i \(-0.494933\pi\)
−0.857957 + 0.513721i \(0.828267\pi\)
\(354\) 0 0
\(355\) −29.9545 + 17.2942i −1.58982 + 0.917882i
\(356\) 0 0
\(357\) −0.588457 1.01924i −0.0311445 0.0539438i
\(358\) 0 0
\(359\) 13.0718i 0.689903i −0.938621 0.344952i \(-0.887895\pi\)
0.938621 0.344952i \(-0.112105\pi\)
\(360\) 0 0
\(361\) 8.69615 15.0622i 0.457692 0.792746i
\(362\) 0 0
\(363\) 5.12436i 0.268959i
\(364\) 0 0
\(365\) 6.46410i 0.338347i
\(366\) 0 0
\(367\) −14.0981 + 24.4186i −0.735914 + 1.27464i 0.218408 + 0.975858i \(0.429914\pi\)
−0.954321 + 0.298782i \(0.903420\pi\)
\(368\) 0 0
\(369\) 22.6603i 1.17965i
\(370\) 0 0
\(371\) 6.80385 + 11.7846i 0.353238 + 0.611826i
\(372\) 0 0
\(373\) 22.3301 12.8923i 1.15621 0.667538i 0.205817 0.978590i \(-0.434015\pi\)
0.950393 + 0.311052i \(0.100681\pi\)
\(374\) 0 0
\(375\) −9.29423 5.36603i −0.479952 0.277100i
\(376\) 0 0
\(377\) −10.5000 + 2.59808i −0.540778 + 0.133808i
\(378\) 0 0
\(379\) 11.0263 19.0981i 0.566382 0.981002i −0.430538 0.902573i \(-0.641676\pi\)
0.996920 0.0784297i \(-0.0249906\pi\)
\(380\) 0 0
\(381\) −0.215390 + 0.124356i −0.0110348 + 0.00637093i
\(382\) 0 0
\(383\) −17.3205 + 10.0000i −0.885037 + 0.510976i −0.872316 0.488943i \(-0.837383\pi\)
−0.0127209 + 0.999919i \(0.504049\pi\)
\(384\) 0 0
\(385\) 25.8564i 1.31776i
\(386\) 0 0
\(387\) 5.41154 + 3.12436i 0.275084 + 0.158820i
\(388\) 0 0
\(389\) 18.7128i 0.948777i −0.880316 0.474389i \(-0.842669\pi\)
0.880316 0.474389i \(-0.157331\pi\)
\(390\) 0 0
\(391\) 3.80385 0.192369
\(392\) 0 0
\(393\) −3.92820 + 6.80385i −0.198152 + 0.343209i
\(394\) 0 0
\(395\) 38.7846 1.95147
\(396\) 0 0
\(397\) −12.1244 21.0000i −0.608504 1.05396i −0.991487 0.130204i \(-0.958437\pi\)
0.382983 0.923755i \(-0.374897\pi\)
\(398\) 0 0
\(399\) 1.60770 + 2.78461i 0.0804854 + 0.139405i
\(400\) 0 0
\(401\) 8.42820 + 4.86603i 0.420884 + 0.242998i 0.695456 0.718569i \(-0.255203\pi\)
−0.274571 + 0.961567i \(0.588536\pi\)
\(402\) 0 0
\(403\) −11.8301 12.2942i −0.589301 0.612419i
\(404\) 0 0
\(405\) −8.33013 + 14.4282i −0.413927 + 0.716943i
\(406\) 0 0
\(407\) 4.26795 + 7.39230i 0.211554 + 0.366423i
\(408\) 0 0
\(409\) 0.696152 0.401924i 0.0344225 0.0198739i −0.482690 0.875791i \(-0.660340\pi\)
0.517113 + 0.855917i \(0.327007\pi\)
\(410\) 0 0
\(411\) 9.94744 0.490671
\(412\) 0 0
\(413\) −1.60770 0.928203i −0.0791095 0.0456739i
\(414\) 0 0
\(415\) −5.46410 −0.268222
\(416\) 0 0
\(417\) 6.92820 0.339276
\(418\) 0 0
\(419\) 16.9019 + 9.75833i 0.825713 + 0.476726i 0.852383 0.522919i \(-0.175157\pi\)
−0.0266696 + 0.999644i \(0.508490\pi\)
\(420\) 0 0
\(421\) −30.1244 −1.46817 −0.734086 0.679057i \(-0.762389\pi\)
−0.734086 + 0.679057i \(0.762389\pi\)
\(422\) 0 0
\(423\) 14.3660 8.29423i 0.698500 0.403279i
\(424\) 0 0
\(425\) 2.07180 + 3.58846i 0.100497 + 0.174066i
\(426\) 0 0
\(427\) 1.73205 3.00000i 0.0838198 0.145180i
\(428\) 0 0
\(429\) −1.46410 + 5.07180i −0.0706875 + 0.244869i
\(430\) 0 0
\(431\) −15.4641 8.92820i −0.744880 0.430056i 0.0789612 0.996878i \(-0.474840\pi\)
−0.823841 + 0.566821i \(0.808173\pi\)
\(432\) 0 0
\(433\) −10.5000 18.1865i −0.504598 0.873989i −0.999986 0.00531724i \(-0.998307\pi\)
0.495388 0.868672i \(-0.335026\pi\)
\(434\) 0 0
\(435\) −4.09808 7.09808i −0.196488 0.340327i
\(436\) 0 0
\(437\) −10.3923 −0.497131
\(438\) 0 0
\(439\) 7.80385 13.5167i 0.372457 0.645115i −0.617486 0.786582i \(-0.711849\pi\)
0.989943 + 0.141467i \(0.0451820\pi\)
\(440\) 0 0
\(441\) −12.3205 −0.586691
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 24.1244 + 13.9282i 1.14360 + 0.660260i
\(446\) 0 0
\(447\) 8.58846i 0.406220i
\(448\) 0 0
\(449\) 18.4641 10.6603i 0.871375 0.503088i 0.00356996 0.999994i \(-0.498864\pi\)
0.867805 + 0.496905i \(0.165530\pi\)
\(450\) 0 0
\(451\) 15.9282 9.19615i 0.750030 0.433030i
\(452\) 0 0
\(453\) 0.803848 1.39230i 0.0377681 0.0654162i
\(454\) 0 0
\(455\) −12.9282 + 44.7846i −0.606084 + 2.09953i
\(456\) 0 0
\(457\) 6.69615 + 3.86603i 0.313233 + 0.180845i 0.648372 0.761324i \(-0.275450\pi\)
−0.335139 + 0.942169i \(0.608783\pi\)
\(458\) 0 0
\(459\) −1.60770 + 0.928203i −0.0750408 + 0.0433248i
\(460\) 0 0
\(461\) −14.3301 24.8205i −0.667421 1.15601i −0.978623 0.205663i \(-0.934065\pi\)
0.311202 0.950344i \(-0.399268\pi\)
\(462\) 0 0
\(463\) 16.3923i 0.761815i −0.924613 0.380908i \(-0.875612\pi\)
0.924613 0.380908i \(-0.124388\pi\)
\(464\) 0 0
\(465\) 6.46410 11.1962i 0.299766 0.519209i
\(466\) 0 0
\(467\) 20.5359i 0.950288i 0.879908 + 0.475144i \(0.157604\pi\)
−0.879908 + 0.475144i \(0.842396\pi\)
\(468\) 0 0
\(469\) 25.1769i 1.16256i
\(470\) 0 0
\(471\) −1.43782 + 2.49038i −0.0662513 + 0.114751i
\(472\) 0 0
\(473\) 5.07180i 0.233201i
\(474\) 0 0
\(475\) −5.66025 9.80385i −0.259710 0.449831i
\(476\) 0 0
\(477\) 8.38269 4.83975i 0.383817 0.221597i
\(478\) 0 0
\(479\) 25.3468 + 14.6340i 1.15812 + 0.668643i 0.950854 0.309640i \(-0.100209\pi\)
0.207271 + 0.978284i \(0.433542\pi\)
\(480\) 0 0
\(481\) 3.69615 + 14.9378i 0.168530 + 0.681106i
\(482\) 0 0
\(483\) −10.3923 + 18.0000i −0.472866 + 0.819028i
\(484\) 0 0
\(485\) −19.3923 + 11.1962i −0.880559 + 0.508391i
\(486\) 0 0
\(487\) −20.1962 + 11.6603i −0.915175 + 0.528377i −0.882093 0.471076i \(-0.843866\pi\)
−0.0330824 + 0.999453i \(0.510532\pi\)
\(488\) 0 0
\(489\) 12.0000i 0.542659i
\(490\) 0 0
\(491\) 6.58846 + 3.80385i 0.297333 + 0.171665i 0.641244 0.767337i \(-0.278419\pi\)
−0.343911 + 0.939002i \(0.611752\pi\)
\(492\) 0 0
\(493\) 1.39230i 0.0627063i
\(494\) 0 0
\(495\) 18.3923 0.826673
\(496\) 0 0
\(497\) −16.0526 + 27.8038i −0.720056 + 1.24717i
\(498\) 0 0
\(499\) −8.87564 −0.397328 −0.198664 0.980068i \(-0.563660\pi\)
−0.198664 + 0.980068i \(0.563660\pi\)
\(500\) 0 0
\(501\) −1.80385 3.12436i −0.0805900 0.139586i
\(502\) 0 0
\(503\) 4.39230 + 7.60770i 0.195843 + 0.339210i 0.947177 0.320712i \(-0.103922\pi\)
−0.751333 + 0.659923i \(0.770589\pi\)
\(504\) 0 0
\(505\) −37.2846 21.5263i −1.65914 0.957907i
\(506\) 0 0
\(507\) −5.07180 + 8.05256i −0.225246 + 0.357627i
\(508\) 0 0
\(509\) 3.93782 6.82051i 0.174541 0.302314i −0.765461 0.643482i \(-0.777489\pi\)
0.940002 + 0.341168i \(0.110823\pi\)
\(510\) 0 0
\(511\) 3.00000 + 5.19615i 0.132712 + 0.229864i
\(512\) 0 0
\(513\) 4.39230 2.53590i 0.193925 0.111963i
\(514\) 0 0
\(515\) −23.1244 −1.01898
\(516\) 0 0
\(517\) −11.6603 6.73205i −0.512817 0.296075i
\(518\) 0 0
\(519\) 13.8564 0.608229
\(520\) 0 0
\(521\) 9.24871 0.405193 0.202597 0.979262i \(-0.435062\pi\)
0.202597 + 0.979262i \(0.435062\pi\)
\(522\) 0 0
\(523\) 0.803848 + 0.464102i 0.0351498 + 0.0202937i 0.517472 0.855700i \(-0.326873\pi\)
−0.482322 + 0.875994i \(0.660207\pi\)
\(524\) 0 0
\(525\) −22.6410 −0.988135
\(526\) 0 0
\(527\) −1.90192 + 1.09808i −0.0828491 + 0.0478330i
\(528\) 0 0
\(529\) −22.0885 38.2583i −0.960368 1.66341i
\(530\) 0 0
\(531\) −0.660254 + 1.14359i −0.0286526 + 0.0496277i
\(532\) 0 0
\(533\) 32.1865 7.96410i 1.39415 0.344964i
\(534\) 0 0
\(535\) −57.0788 32.9545i −2.46773 1.42475i
\(536\) 0 0
\(537\) 5.07180 + 8.78461i 0.218864 + 0.379084i
\(538\) 0 0
\(539\) 5.00000 + 8.66025i 0.215365 + 0.373024i
\(540\) 0 0
\(541\) 35.4449 1.52389 0.761947 0.647640i \(-0.224244\pi\)
0.761947 + 0.647640i \(0.224244\pi\)
\(542\) 0 0
\(543\) 6.75833 11.7058i 0.290028 0.502343i
\(544\) 0 0
\(545\) 22.3923 0.959181
\(546\) 0 0
\(547\) 18.5885i 0.794785i −0.917649 0.397393i \(-0.869915\pi\)
0.917649 0.397393i \(-0.130085\pi\)
\(548\) 0 0
\(549\) −2.13397 1.23205i −0.0910758 0.0525826i
\(550\) 0 0
\(551\) 3.80385i 0.162049i
\(552\) 0 0
\(553\) 31.1769 18.0000i 1.32578 0.765438i
\(554\) 0 0
\(555\) −10.0981 + 5.83013i −0.428639 + 0.247475i
\(556\) 0 0
\(557\) −2.40192 + 4.16025i −0.101773 + 0.176276i −0.912415 0.409266i \(-0.865785\pi\)
0.810642 + 0.585542i \(0.199118\pi\)
\(558\) 0 0
\(559\) 2.53590 8.78461i 0.107257 0.371549i
\(560\) 0 0
\(561\) 0.588457 + 0.339746i 0.0248447 + 0.0143441i
\(562\) 0 0
\(563\) −13.9808 + 8.07180i −0.589219 + 0.340186i −0.764789 0.644281i \(-0.777157\pi\)
0.175570 + 0.984467i \(0.443823\pi\)
\(564\) 0 0
\(565\) 5.59808 + 9.69615i 0.235513 + 0.407920i
\(566\) 0 0
\(567\) 15.4641i 0.649431i
\(568\) 0 0
\(569\) 12.0000 20.7846i 0.503066 0.871336i −0.496928 0.867792i \(-0.665539\pi\)
0.999994 0.00354413i \(-0.00112814\pi\)
\(570\) 0 0
\(571\) 2.39230i 0.100115i 0.998746 + 0.0500574i \(0.0159404\pi\)
−0.998746 + 0.0500574i \(0.984060\pi\)
\(572\) 0 0
\(573\) 2.78461i 0.116329i
\(574\) 0 0
\(575\) 36.5885 63.3731i 1.52584 2.64284i
\(576\) 0 0
\(577\) 34.2679i 1.42659i 0.700862 + 0.713297i \(0.252799\pi\)
−0.700862 + 0.713297i \(0.747201\pi\)
\(578\) 0 0
\(579\) −4.77757 8.27499i −0.198549 0.343897i
\(580\) 0 0
\(581\) −4.39230 + 2.53590i −0.182224 + 0.105207i
\(582\) 0 0
\(583\) −6.80385 3.92820i −0.281787 0.162690i
\(584\) 0 0
\(585\) 31.8564 + 9.19615i 1.31710 + 0.380214i
\(586\) 0 0
\(587\) 22.5885 39.1244i 0.932325 1.61483i 0.152990 0.988228i \(-0.451110\pi\)
0.779335 0.626607i \(-0.215557\pi\)
\(588\) 0 0
\(589\) 5.19615 3.00000i 0.214104 0.123613i
\(590\) 0 0
\(591\) 7.94744 4.58846i 0.326914 0.188744i
\(592\) 0 0
\(593\) 1.58846i 0.0652301i −0.999468 0.0326151i \(-0.989616\pi\)
0.999468 0.0326151i \(-0.0103835\pi\)
\(594\) 0 0
\(595\) 5.19615 + 3.00000i 0.213021 + 0.122988i
\(596\) 0 0
\(597\) 11.0718i 0.453138i
\(598\) 0 0
\(599\) 13.2679 0.542114 0.271057 0.962563i \(-0.412627\pi\)
0.271057 + 0.962563i \(0.412627\pi\)
\(600\) 0 0
\(601\) −13.0359 + 22.5788i −0.531745 + 0.921010i 0.467568 + 0.883957i \(0.345130\pi\)
−0.999313 + 0.0370529i \(0.988203\pi\)
\(602\) 0 0
\(603\) 17.9090 0.729309
\(604\) 0 0
\(605\) 13.0622 + 22.6244i 0.531053 + 0.919811i
\(606\) 0 0
\(607\) 1.29423 + 2.24167i 0.0525311 + 0.0909866i 0.891095 0.453816i \(-0.149938\pi\)
−0.838564 + 0.544803i \(0.816604\pi\)
\(608\) 0 0
\(609\) −6.58846 3.80385i −0.266978 0.154140i
\(610\) 0 0
\(611\) −16.8301 17.4904i −0.680874 0.707585i
\(612\) 0 0
\(613\) 20.2583 35.0885i 0.818226 1.41721i −0.0887617 0.996053i \(-0.528291\pi\)
0.906988 0.421157i \(-0.138376\pi\)
\(614\) 0 0
\(615\) 12.5622 + 21.7583i 0.506556 + 0.877381i
\(616\) 0 0
\(617\) 15.3564 8.86603i 0.618226 0.356933i −0.157952 0.987447i \(-0.550489\pi\)
0.776178 + 0.630514i \(0.217156\pi\)
\(618\) 0 0
\(619\) 24.2487 0.974638 0.487319 0.873224i \(-0.337975\pi\)
0.487319 + 0.873224i \(0.337975\pi\)
\(620\) 0 0
\(621\) 28.3923 + 16.3923i 1.13934 + 0.657801i
\(622\) 0 0
\(623\) 25.8564 1.03592
\(624\) 0 0
\(625\) 10.0718 0.402872
\(626\) 0 0
\(627\) −1.60770 0.928203i −0.0642052 0.0370689i
\(628\) 0 0
\(629\) 1.98076 0.0789782
\(630\) 0 0
\(631\) 14.7846 8.53590i 0.588566 0.339809i −0.175964 0.984397i \(-0.556304\pi\)
0.764530 + 0.644588i \(0.222971\pi\)
\(632\) 0 0
\(633\) −10.4641 18.1244i −0.415911 0.720378i
\(634\) 0 0
\(635\) 0.633975 1.09808i 0.0251585 0.0435758i
\(636\) 0 0
\(637\) 4.33013 + 17.5000i 0.171566 + 0.693375i
\(638\) 0 0
\(639\) 19.7776 + 11.4186i 0.782389 + 0.451712i
\(640\) 0 0
\(641\) 7.03590 + 12.1865i 0.277901 + 0.481339i 0.970863 0.239635i \(-0.0770279\pi\)
−0.692962 + 0.720974i \(0.743695\pi\)
\(642\) 0 0
\(643\) 19.3923 + 33.5885i 0.764758 + 1.32460i 0.940375 + 0.340141i \(0.110475\pi\)
−0.175617 + 0.984459i \(0.556192\pi\)
\(644\) 0 0
\(645\) 6.92820 0.272798
\(646\) 0 0
\(647\) 14.8301 25.6865i 0.583032 1.00984i −0.412085 0.911145i \(-0.635199\pi\)
0.995118 0.0986965i \(-0.0314673\pi\)
\(648\) 0 0
\(649\) 1.07180 0.0420717
\(650\) 0 0
\(651\) 12.0000i 0.470317i
\(652\) 0 0
\(653\) −31.1769 18.0000i −1.22005 0.704394i −0.255119 0.966910i \(-0.582115\pi\)
−0.964928 + 0.262515i \(0.915448\pi\)
\(654\) 0 0
\(655\) 40.0526i 1.56498i
\(656\) 0 0
\(657\) 3.69615 2.13397i 0.144201 0.0832543i
\(658\) 0 0
\(659\) −26.7846 + 15.4641i −1.04338 + 0.602396i −0.920789 0.390061i \(-0.872454\pi\)
−0.122591 + 0.992457i \(0.539120\pi\)
\(660\) 0 0
\(661\) 6.06218 10.5000i 0.235791 0.408403i −0.723711 0.690103i \(-0.757565\pi\)
0.959502 + 0.281701i \(0.0908985\pi\)
\(662\) 0 0
\(663\) 0.849365 + 0.882686i 0.0329866 + 0.0342807i
\(664\) 0 0
\(665\) −14.1962 8.19615i −0.550503 0.317833i
\(666\) 0 0
\(667\) 21.2942 12.2942i 0.824516 0.476034i
\(668\) 0 0
\(669\) −9.33975 16.1769i −0.361095 0.625436i
\(670\) 0 0
\(671\) 2.00000i 0.0772091i
\(672\) 0 0
\(673\) 5.50000 9.52628i 0.212009 0.367211i −0.740334 0.672239i \(-0.765333\pi\)
0.952343 + 0.305028i \(0.0986659\pi\)
\(674\) 0 0
\(675\) 35.7128i 1.37459i
\(676\) 0 0
\(677\) 7.85641i 0.301946i −0.988538 0.150973i \(-0.951759\pi\)
0.988538 0.150973i \(-0.0482407\pi\)
\(678\) 0 0
\(679\) −10.3923 + 18.0000i −0.398820 + 0.690777i
\(680\) 0 0
\(681\) 19.0718i 0.730833i
\(682\) 0 0
\(683\) −5.63397 9.75833i −0.215578 0.373392i 0.737873 0.674939i \(-0.235830\pi\)
−0.953451 + 0.301547i \(0.902497\pi\)
\(684\) 0 0
\(685\) −43.9186 + 25.3564i −1.67804 + 0.968818i
\(686\) 0 0
\(687\) −8.19615 4.73205i −0.312703 0.180539i
\(688\) 0 0
\(689\) −9.82051 10.2058i −0.374132 0.388809i
\(690\) 0 0
\(691\) −9.00000 + 15.5885i −0.342376 + 0.593013i −0.984873 0.173275i \(-0.944565\pi\)
0.642497 + 0.766288i \(0.277898\pi\)
\(692\) 0 0
\(693\) 14.7846 8.53590i 0.561621 0.324252i
\(694\) 0 0
\(695\) −30.5885 + 17.6603i −1.16029 + 0.669892i
\(696\) 0 0
\(697\) 4.26795i 0.161660i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.78461i 0.331790i 0.986143 + 0.165895i \(0.0530513\pi\)
−0.986143 + 0.165895i \(0.946949\pi\)
\(702\) 0 0
\(703\) −5.41154 −0.204100
\(704\) 0 0
\(705\) 9.19615 15.9282i 0.346347 0.599891i
\(706\) 0 0
\(707\) −39.9615 −1.50291
\(708\) 0 0
\(709\) 20.5981 + 35.6769i 0.773577 + 1.33987i 0.935591 + 0.353086i \(0.114868\pi\)
−0.162014 + 0.986788i \(0.551799\pi\)
\(710\) 0 0
\(711\) −12.8038 22.1769i −0.480182 0.831699i
\(712\) 0 0
\(713\) 33.5885 + 19.3923i 1.25790 + 0.726248i
\(714\) 0 0
\(715\) −6.46410 26.1244i −0.241744 0.976996i
\(716\) 0 0
\(717\) −6.73205 + 11.6603i −0.251413 + 0.435460i
\(718\) 0 0
\(719\) −16.8564 29.1962i −0.628638 1.08883i −0.987825 0.155567i \(-0.950279\pi\)
0.359187 0.933265i \(-0.383054\pi\)
\(720\) 0 0
\(721\) −18.5885 + 10.7321i −0.692270 + 0.399682i
\(722\) 0 0
\(723\) −8.19615 −0.304818
\(724\) 0 0
\(725\) 23.1962 + 13.3923i 0.861483 + 0.497378i
\(726\) 0 0
\(727\) 13.6077 0.504681 0.252341 0.967638i \(-0.418800\pi\)
0.252341 + 0.967638i \(0.418800\pi\)
\(728\) 0 0
\(729\) 2.21539 0.0820515
\(730\) 0 0
\(731\) −1.01924 0.588457i −0.0376979 0.0217649i
\(732\) 0 0
\(733\) 4.94744 0.182738 0.0913690 0.995817i \(-0.470876\pi\)
0.0913690 + 0.995817i \(0.470876\pi\)
\(734\) 0 0
\(735\) −11.8301 + 6.83013i −0.436361 + 0.251933i
\(736\) 0 0
\(737\) −7.26795 12.5885i −0.267718 0.463702i
\(738\) 0 0
\(739\) −9.46410 + 16.3923i −0.348143 + 0.603001i −0.985920 0.167220i \(-0.946521\pi\)
0.637777 + 0.770221i \(0.279854\pi\)
\(740\) 0 0
\(741\) −2.32051 2.41154i −0.0852460 0.0885902i
\(742\) 0 0
\(743\) −4.73205 2.73205i −0.173602 0.100229i 0.410681 0.911779i \(-0.365291\pi\)
−0.584283 + 0.811550i \(0.698624\pi\)
\(744\) 0 0
\(745\) −21.8923 37.9186i −0.802072 1.38923i
\(746\) 0 0
\(747\) 1.80385 + 3.12436i 0.0659993 + 0.114314i
\(748\) 0 0
\(749\) −61.1769 −2.23536
\(750\) 0 0
\(751\) −18.1962 + 31.5167i −0.663987 + 1.15006i 0.315572 + 0.948902i \(0.397804\pi\)
−0.979559 + 0.201158i \(0.935530\pi\)
\(752\) 0 0
\(753\) −6.00000 −0.218652
\(754\) 0 0
\(755\) 8.19615i 0.298289i
\(756\) 0 0
\(757\) −18.3397 10.5885i −0.666569 0.384844i 0.128206 0.991748i \(-0.459078\pi\)
−0.794776 + 0.606904i \(0.792411\pi\)
\(758\) 0 0
\(759\) 12.0000i 0.435572i
\(760\) 0 0
\(761\) −10.8564 + 6.26795i −0.393544 + 0.227213i −0.683695 0.729768i \(-0.739628\pi\)
0.290150 + 0.956981i \(0.406295\pi\)
\(762\) 0 0
\(763\) 18.0000 10.3923i 0.651644 0.376227i
\(764\) 0 0
\(765\) 2.13397 3.69615i 0.0771540 0.133635i
\(766\) 0 0
\(767\) 1.85641 + 0.535898i 0.0670310 + 0.0193502i
\(768\) 0 0
\(769\) 19.3923 + 11.1962i 0.699304 + 0.403744i 0.807088 0.590431i \(-0.201042\pi\)
−0.107784 + 0.994174i \(0.534375\pi\)
\(770\) 0 0
\(771\) 14.4904 8.36603i 0.521858 0.301295i
\(772\) 0 0
\(773\) 26.2487 + 45.4641i 0.944101 + 1.63523i 0.757542 + 0.652786i \(0.226400\pi\)
0.186558 + 0.982444i \(0.440267\pi\)
\(774\) 0 0
\(775\) 42.2487i 1.51762i
\(776\) 0 0
\(777\) −5.41154 + 9.37307i −0.194138 + 0.336257i
\(778\) 0 0
\(779\) 11.6603i 0.417772i
\(780\) 0 0
\(781\) 18.5359i 0.663267i
\(782\) 0 0
\(783\) −6.00000 + 10.3923i −0.214423 + 0.371391i
\(784\) 0 0
\(785\) 14.6603i 0.523247i
\(786\) 0 0
\(787\) 20.3660 + 35.2750i 0.725970 + 1.25742i 0.958573 + 0.284846i \(0.0919424\pi\)
−0.232603 + 0.972572i \(0.574724\pi\)