Properties

Label 416.2.b.c.209.3
Level $416$
Weight $2$
Character 416.209
Analytic conductor $3.322$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(209,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.3
Root \(-0.671462 - 1.24464i\) of defining polynomial
Character \(\chi\) \(=\) 416.209
Dual form 416.2.b.c.209.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.146365i q^{3} +1.00000i q^{5} +0.146365 q^{7} +2.97858 q^{9} +2.68585i q^{11} -1.00000i q^{13} +0.146365 q^{15} +1.00000 q^{17} +4.00000i q^{19} -0.0214229i q^{21} +6.68585 q^{23} +4.00000 q^{25} -0.875057i q^{27} +4.39312i q^{29} -1.31415 q^{31} +0.393115 q^{33} +0.146365i q^{35} -3.97858i q^{37} -0.146365 q^{39} -6.39312 q^{41} -6.83221i q^{43} +2.97858i q^{45} +7.12494 q^{47} -6.97858 q^{49} -0.146365i q^{51} +8.97858i q^{53} -2.68585 q^{55} +0.585462 q^{57} -12.3503i q^{59} -8.35027i q^{61} +0.435961 q^{63} +1.00000 q^{65} +8.29273i q^{67} -0.978577i q^{69} -5.51806 q^{71} -6.97858 q^{73} -0.585462i q^{75} +0.393115i q^{77} -15.0361 q^{79} +8.80765 q^{81} +4.29273i q^{83} +1.00000i q^{85} +0.643000 q^{87} -5.37169 q^{89} -0.146365i q^{91} +0.192347i q^{93} -4.00000 q^{95} -10.3503 q^{97} +8.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{7} - 12 q^{9} - 2 q^{15} + 6 q^{17} + 16 q^{23} + 24 q^{25} - 32 q^{31} - 16 q^{33} + 2 q^{39} - 20 q^{41} + 10 q^{47} - 12 q^{49} + 8 q^{55} - 8 q^{57} + 44 q^{63} + 6 q^{65} + 18 q^{71} - 12 q^{73}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.146365i − 0.0845042i −0.999107 0.0422521i \(-0.986547\pi\)
0.999107 0.0422521i \(-0.0134533\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i 0.974679 + 0.223607i \(0.0717831\pi\)
−0.974679 + 0.223607i \(0.928217\pi\)
\(6\) 0 0
\(7\) 0.146365 0.0553210 0.0276605 0.999617i \(-0.491194\pi\)
0.0276605 + 0.999617i \(0.491194\pi\)
\(8\) 0 0
\(9\) 2.97858 0.992859
\(10\) 0 0
\(11\) 2.68585i 0.809813i 0.914358 + 0.404907i \(0.132696\pi\)
−0.914358 + 0.404907i \(0.867304\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 0.146365 0.0377914
\(16\) 0 0
\(17\) 1.00000 0.242536 0.121268 0.992620i \(-0.461304\pi\)
0.121268 + 0.992620i \(0.461304\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) − 0.0214229i − 0.00467485i
\(22\) 0 0
\(23\) 6.68585 1.39410 0.697048 0.717025i \(-0.254497\pi\)
0.697048 + 0.717025i \(0.254497\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) − 0.875057i − 0.168405i
\(28\) 0 0
\(29\) 4.39312i 0.815781i 0.913031 + 0.407891i \(0.133735\pi\)
−0.913031 + 0.407891i \(0.866265\pi\)
\(30\) 0 0
\(31\) −1.31415 −0.236029 −0.118014 0.993012i \(-0.537653\pi\)
−0.118014 + 0.993012i \(0.537653\pi\)
\(32\) 0 0
\(33\) 0.393115 0.0684326
\(34\) 0 0
\(35\) 0.146365i 0.0247403i
\(36\) 0 0
\(37\) − 3.97858i − 0.654074i −0.945012 0.327037i \(-0.893950\pi\)
0.945012 0.327037i \(-0.106050\pi\)
\(38\) 0 0
\(39\) −0.146365 −0.0234372
\(40\) 0 0
\(41\) −6.39312 −0.998437 −0.499218 0.866476i \(-0.666379\pi\)
−0.499218 + 0.866476i \(0.666379\pi\)
\(42\) 0 0
\(43\) − 6.83221i − 1.04190i −0.853586 0.520951i \(-0.825577\pi\)
0.853586 0.520951i \(-0.174423\pi\)
\(44\) 0 0
\(45\) 2.97858i 0.444020i
\(46\) 0 0
\(47\) 7.12494 1.03928 0.519640 0.854385i \(-0.326066\pi\)
0.519640 + 0.854385i \(0.326066\pi\)
\(48\) 0 0
\(49\) −6.97858 −0.996940
\(50\) 0 0
\(51\) − 0.146365i − 0.0204953i
\(52\) 0 0
\(53\) 8.97858i 1.23330i 0.787236 + 0.616651i \(0.211511\pi\)
−0.787236 + 0.616651i \(0.788489\pi\)
\(54\) 0 0
\(55\) −2.68585 −0.362159
\(56\) 0 0
\(57\) 0.585462 0.0775463
\(58\) 0 0
\(59\) − 12.3503i − 1.60787i −0.594718 0.803934i \(-0.702736\pi\)
0.594718 0.803934i \(-0.297264\pi\)
\(60\) 0 0
\(61\) − 8.35027i − 1.06914i −0.845123 0.534571i \(-0.820473\pi\)
0.845123 0.534571i \(-0.179527\pi\)
\(62\) 0 0
\(63\) 0.435961 0.0549259
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 8.29273i 1.01312i 0.862205 + 0.506559i \(0.169083\pi\)
−0.862205 + 0.506559i \(0.830917\pi\)
\(68\) 0 0
\(69\) − 0.978577i − 0.117807i
\(70\) 0 0
\(71\) −5.51806 −0.654873 −0.327436 0.944873i \(-0.606185\pi\)
−0.327436 + 0.944873i \(0.606185\pi\)
\(72\) 0 0
\(73\) −6.97858 −0.816781 −0.408390 0.912807i \(-0.633910\pi\)
−0.408390 + 0.912807i \(0.633910\pi\)
\(74\) 0 0
\(75\) − 0.585462i − 0.0676033i
\(76\) 0 0
\(77\) 0.393115i 0.0447996i
\(78\) 0 0
\(79\) −15.0361 −1.69170 −0.845848 0.533425i \(-0.820905\pi\)
−0.845848 + 0.533425i \(0.820905\pi\)
\(80\) 0 0
\(81\) 8.80765 0.978628
\(82\) 0 0
\(83\) 4.29273i 0.471188i 0.971852 + 0.235594i \(0.0757036\pi\)
−0.971852 + 0.235594i \(0.924296\pi\)
\(84\) 0 0
\(85\) 1.00000i 0.108465i
\(86\) 0 0
\(87\) 0.643000 0.0689369
\(88\) 0 0
\(89\) −5.37169 −0.569398 −0.284699 0.958617i \(-0.591894\pi\)
−0.284699 + 0.958617i \(0.591894\pi\)
\(90\) 0 0
\(91\) − 0.146365i − 0.0153433i
\(92\) 0 0
\(93\) 0.192347i 0.0199454i
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) −10.3503 −1.05091 −0.525455 0.850821i \(-0.676105\pi\)
−0.525455 + 0.850821i \(0.676105\pi\)
\(98\) 0 0
\(99\) 8.00000i 0.804030i
\(100\) 0 0
\(101\) − 17.9572i − 1.78680i −0.449258 0.893402i \(-0.648312\pi\)
0.449258 0.893402i \(-0.351688\pi\)
\(102\) 0 0
\(103\) −10.2499 −1.00995 −0.504976 0.863134i \(-0.668499\pi\)
−0.504976 + 0.863134i \(0.668499\pi\)
\(104\) 0 0
\(105\) 0.0214229 0.00209066
\(106\) 0 0
\(107\) − 14.6858i − 1.41973i −0.704336 0.709867i \(-0.748755\pi\)
0.704336 0.709867i \(-0.251245\pi\)
\(108\) 0 0
\(109\) − 14.7648i − 1.41421i −0.707108 0.707106i \(-0.750000\pi\)
0.707108 0.707106i \(-0.250000\pi\)
\(110\) 0 0
\(111\) −0.582326 −0.0552720
\(112\) 0 0
\(113\) 3.95715 0.372258 0.186129 0.982525i \(-0.440406\pi\)
0.186129 + 0.982525i \(0.440406\pi\)
\(114\) 0 0
\(115\) 6.68585i 0.623458i
\(116\) 0 0
\(117\) − 2.97858i − 0.275370i
\(118\) 0 0
\(119\) 0.146365 0.0134173
\(120\) 0 0
\(121\) 3.78623 0.344203
\(122\) 0 0
\(123\) 0.935731i 0.0843721i
\(124\) 0 0
\(125\) 9.00000i 0.804984i
\(126\) 0 0
\(127\) 6.10038 0.541322 0.270661 0.962675i \(-0.412758\pi\)
0.270661 + 0.962675i \(0.412758\pi\)
\(128\) 0 0
\(129\) −1.00000 −0.0880451
\(130\) 0 0
\(131\) 14.8322i 1.29590i 0.761684 + 0.647948i \(0.224373\pi\)
−0.761684 + 0.647948i \(0.775627\pi\)
\(132\) 0 0
\(133\) 0.585462i 0.0507660i
\(134\) 0 0
\(135\) 0.875057 0.0753129
\(136\) 0 0
\(137\) 9.76481 0.834264 0.417132 0.908846i \(-0.363035\pi\)
0.417132 + 0.908846i \(0.363035\pi\)
\(138\) 0 0
\(139\) − 19.4752i − 1.65187i −0.563768 0.825933i \(-0.690649\pi\)
0.563768 0.825933i \(-0.309351\pi\)
\(140\) 0 0
\(141\) − 1.04285i − 0.0878235i
\(142\) 0 0
\(143\) 2.68585 0.224602
\(144\) 0 0
\(145\) −4.39312 −0.364828
\(146\) 0 0
\(147\) 1.02142i 0.0842455i
\(148\) 0 0
\(149\) 11.9572i 0.979568i 0.871844 + 0.489784i \(0.162924\pi\)
−0.871844 + 0.489784i \(0.837076\pi\)
\(150\) 0 0
\(151\) −12.7894 −1.04078 −0.520392 0.853928i \(-0.674214\pi\)
−0.520392 + 0.853928i \(0.674214\pi\)
\(152\) 0 0
\(153\) 2.97858 0.240804
\(154\) 0 0
\(155\) − 1.31415i − 0.105555i
\(156\) 0 0
\(157\) 21.7220i 1.73360i 0.498655 + 0.866801i \(0.333828\pi\)
−0.498655 + 0.866801i \(0.666172\pi\)
\(158\) 0 0
\(159\) 1.31415 0.104219
\(160\) 0 0
\(161\) 0.978577 0.0771227
\(162\) 0 0
\(163\) − 20.6430i − 1.61688i −0.588575 0.808442i \(-0.700311\pi\)
0.588575 0.808442i \(-0.299689\pi\)
\(164\) 0 0
\(165\) 0.393115i 0.0306040i
\(166\) 0 0
\(167\) 18.0147 1.39402 0.697009 0.717062i \(-0.254514\pi\)
0.697009 + 0.717062i \(0.254514\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 11.9143i 0.911110i
\(172\) 0 0
\(173\) − 6.58546i − 0.500683i −0.968158 0.250342i \(-0.919457\pi\)
0.968158 0.250342i \(-0.0805430\pi\)
\(174\) 0 0
\(175\) 0.585462 0.0442568
\(176\) 0 0
\(177\) −1.80765 −0.135872
\(178\) 0 0
\(179\) 7.56090i 0.565128i 0.959248 + 0.282564i \(0.0911850\pi\)
−0.959248 + 0.282564i \(0.908815\pi\)
\(180\) 0 0
\(181\) 0.628308i 0.0467017i 0.999727 + 0.0233509i \(0.00743349\pi\)
−0.999727 + 0.0233509i \(0.992567\pi\)
\(182\) 0 0
\(183\) −1.22219 −0.0903470
\(184\) 0 0
\(185\) 3.97858 0.292511
\(186\) 0 0
\(187\) 2.68585i 0.196409i
\(188\) 0 0
\(189\) − 0.128078i − 0.00931632i
\(190\) 0 0
\(191\) 10.1004 0.730838 0.365419 0.930843i \(-0.380926\pi\)
0.365419 + 0.930843i \(0.380926\pi\)
\(192\) 0 0
\(193\) −3.37169 −0.242700 −0.121350 0.992610i \(-0.538722\pi\)
−0.121350 + 0.992610i \(0.538722\pi\)
\(194\) 0 0
\(195\) − 0.146365i − 0.0104815i
\(196\) 0 0
\(197\) 14.7220i 1.04890i 0.851442 + 0.524448i \(0.175728\pi\)
−0.851442 + 0.524448i \(0.824272\pi\)
\(198\) 0 0
\(199\) 13.6644 0.968645 0.484323 0.874889i \(-0.339066\pi\)
0.484323 + 0.874889i \(0.339066\pi\)
\(200\) 0 0
\(201\) 1.21377 0.0856127
\(202\) 0 0
\(203\) 0.643000i 0.0451298i
\(204\) 0 0
\(205\) − 6.39312i − 0.446515i
\(206\) 0 0
\(207\) 19.9143 1.38414
\(208\) 0 0
\(209\) −10.7434 −0.743135
\(210\) 0 0
\(211\) 1.46052i 0.100546i 0.998736 + 0.0502731i \(0.0160092\pi\)
−0.998736 + 0.0502731i \(0.983991\pi\)
\(212\) 0 0
\(213\) 0.807653i 0.0553395i
\(214\) 0 0
\(215\) 6.83221 0.465953
\(216\) 0 0
\(217\) −0.192347 −0.0130573
\(218\) 0 0
\(219\) 1.02142i 0.0690214i
\(220\) 0 0
\(221\) − 1.00000i − 0.0672673i
\(222\) 0 0
\(223\) −7.12494 −0.477121 −0.238561 0.971128i \(-0.576676\pi\)
−0.238561 + 0.971128i \(0.576676\pi\)
\(224\) 0 0
\(225\) 11.9143 0.794287
\(226\) 0 0
\(227\) 24.9357i 1.65504i 0.561434 + 0.827521i \(0.310250\pi\)
−0.561434 + 0.827521i \(0.689750\pi\)
\(228\) 0 0
\(229\) − 2.95715i − 0.195414i −0.995215 0.0977071i \(-0.968849\pi\)
0.995215 0.0977071i \(-0.0311508\pi\)
\(230\) 0 0
\(231\) 0.0575385 0.00378576
\(232\) 0 0
\(233\) −5.19235 −0.340162 −0.170081 0.985430i \(-0.554403\pi\)
−0.170081 + 0.985430i \(0.554403\pi\)
\(234\) 0 0
\(235\) 7.12494i 0.464780i
\(236\) 0 0
\(237\) 2.20077i 0.142955i
\(238\) 0 0
\(239\) 14.3963 0.931216 0.465608 0.884991i \(-0.345836\pi\)
0.465608 + 0.884991i \(0.345836\pi\)
\(240\) 0 0
\(241\) 23.3288 1.50274 0.751372 0.659879i \(-0.229393\pi\)
0.751372 + 0.659879i \(0.229393\pi\)
\(242\) 0 0
\(243\) − 3.91431i − 0.251103i
\(244\) 0 0
\(245\) − 6.97858i − 0.445845i
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) 0.628308 0.0398174
\(250\) 0 0
\(251\) − 15.2713i − 0.963916i −0.876194 0.481958i \(-0.839926\pi\)
0.876194 0.481958i \(-0.160074\pi\)
\(252\) 0 0
\(253\) 17.9572i 1.12896i
\(254\) 0 0
\(255\) 0.146365 0.00916576
\(256\) 0 0
\(257\) 20.9143 1.30460 0.652299 0.757961i \(-0.273805\pi\)
0.652299 + 0.757961i \(0.273805\pi\)
\(258\) 0 0
\(259\) − 0.582326i − 0.0361840i
\(260\) 0 0
\(261\) 13.0852i 0.809956i
\(262\) 0 0
\(263\) −13.0214 −0.802935 −0.401468 0.915873i \(-0.631500\pi\)
−0.401468 + 0.915873i \(0.631500\pi\)
\(264\) 0 0
\(265\) −8.97858 −0.551550
\(266\) 0 0
\(267\) 0.786230i 0.0481165i
\(268\) 0 0
\(269\) − 24.3503i − 1.48466i −0.670033 0.742331i \(-0.733720\pi\)
0.670033 0.742331i \(-0.266280\pi\)
\(270\) 0 0
\(271\) −25.5756 −1.55361 −0.776803 0.629743i \(-0.783160\pi\)
−0.776803 + 0.629743i \(0.783160\pi\)
\(272\) 0 0
\(273\) −0.0214229 −0.00129657
\(274\) 0 0
\(275\) 10.7434i 0.647850i
\(276\) 0 0
\(277\) − 4.43596i − 0.266531i −0.991080 0.133266i \(-0.957454\pi\)
0.991080 0.133266i \(-0.0425463\pi\)
\(278\) 0 0
\(279\) −3.91431 −0.234344
\(280\) 0 0
\(281\) 11.4145 0.680934 0.340467 0.940256i \(-0.389415\pi\)
0.340467 + 0.940256i \(0.389415\pi\)
\(282\) 0 0
\(283\) − 19.4721i − 1.15749i −0.815507 0.578747i \(-0.803542\pi\)
0.815507 0.578747i \(-0.196458\pi\)
\(284\) 0 0
\(285\) 0.585462i 0.0346798i
\(286\) 0 0
\(287\) −0.935731 −0.0552345
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) 1.51492i 0.0888063i
\(292\) 0 0
\(293\) − 10.8077i − 0.631390i −0.948861 0.315695i \(-0.897762\pi\)
0.948861 0.315695i \(-0.102238\pi\)
\(294\) 0 0
\(295\) 12.3503 0.719060
\(296\) 0 0
\(297\) 2.35027 0.136376
\(298\) 0 0
\(299\) − 6.68585i − 0.386652i
\(300\) 0 0
\(301\) − 1.00000i − 0.0576390i
\(302\) 0 0
\(303\) −2.62831 −0.150992
\(304\) 0 0
\(305\) 8.35027 0.478135
\(306\) 0 0
\(307\) 4.93573i 0.281697i 0.990031 + 0.140849i \(0.0449831\pi\)
−0.990031 + 0.140849i \(0.955017\pi\)
\(308\) 0 0
\(309\) 1.50023i 0.0853451i
\(310\) 0 0
\(311\) −0.786230 −0.0445830 −0.0222915 0.999752i \(-0.507096\pi\)
−0.0222915 + 0.999752i \(0.507096\pi\)
\(312\) 0 0
\(313\) −13.9357 −0.787694 −0.393847 0.919176i \(-0.628856\pi\)
−0.393847 + 0.919176i \(0.628856\pi\)
\(314\) 0 0
\(315\) 0.435961i 0.0245636i
\(316\) 0 0
\(317\) 19.9572i 1.12091i 0.828186 + 0.560453i \(0.189373\pi\)
−0.828186 + 0.560453i \(0.810627\pi\)
\(318\) 0 0
\(319\) −11.7992 −0.660630
\(320\) 0 0
\(321\) −2.14950 −0.119973
\(322\) 0 0
\(323\) 4.00000i 0.222566i
\(324\) 0 0
\(325\) − 4.00000i − 0.221880i
\(326\) 0 0
\(327\) −2.16106 −0.119507
\(328\) 0 0
\(329\) 1.04285 0.0574939
\(330\) 0 0
\(331\) 11.7073i 0.643490i 0.946826 + 0.321745i \(0.104269\pi\)
−0.946826 + 0.321745i \(0.895731\pi\)
\(332\) 0 0
\(333\) − 11.8505i − 0.649403i
\(334\) 0 0
\(335\) −8.29273 −0.453080
\(336\) 0 0
\(337\) −0.807653 −0.0439957 −0.0219978 0.999758i \(-0.507003\pi\)
−0.0219978 + 0.999758i \(0.507003\pi\)
\(338\) 0 0
\(339\) − 0.579191i − 0.0314573i
\(340\) 0 0
\(341\) − 3.52962i − 0.191139i
\(342\) 0 0
\(343\) −2.04598 −0.110473
\(344\) 0 0
\(345\) 0.978577 0.0526848
\(346\) 0 0
\(347\) 2.59702i 0.139415i 0.997567 + 0.0697076i \(0.0222066\pi\)
−0.997567 + 0.0697076i \(0.977793\pi\)
\(348\) 0 0
\(349\) 16.1709i 0.865610i 0.901488 + 0.432805i \(0.142476\pi\)
−0.901488 + 0.432805i \(0.857524\pi\)
\(350\) 0 0
\(351\) −0.875057 −0.0467071
\(352\) 0 0
\(353\) −5.32885 −0.283626 −0.141813 0.989893i \(-0.545293\pi\)
−0.141813 + 0.989893i \(0.545293\pi\)
\(354\) 0 0
\(355\) − 5.51806i − 0.292868i
\(356\) 0 0
\(357\) − 0.0214229i − 0.00113382i
\(358\) 0 0
\(359\) −34.6002 −1.82613 −0.913063 0.407818i \(-0.866290\pi\)
−0.913063 + 0.407818i \(0.866290\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) − 0.554173i − 0.0290866i
\(364\) 0 0
\(365\) − 6.97858i − 0.365275i
\(366\) 0 0
\(367\) 14.2499 0.743838 0.371919 0.928265i \(-0.378700\pi\)
0.371919 + 0.928265i \(0.378700\pi\)
\(368\) 0 0
\(369\) −19.0424 −0.991307
\(370\) 0 0
\(371\) 1.31415i 0.0682275i
\(372\) 0 0
\(373\) − 15.1281i − 0.783302i −0.920114 0.391651i \(-0.871904\pi\)
0.920114 0.391651i \(-0.128096\pi\)
\(374\) 0 0
\(375\) 1.31729 0.0680245
\(376\) 0 0
\(377\) 4.39312 0.226257
\(378\) 0 0
\(379\) − 5.22846i − 0.268568i −0.990943 0.134284i \(-0.957127\pi\)
0.990943 0.134284i \(-0.0428735\pi\)
\(380\) 0 0
\(381\) − 0.892886i − 0.0457439i
\(382\) 0 0
\(383\) −27.3257 −1.39628 −0.698139 0.715962i \(-0.745988\pi\)
−0.698139 + 0.715962i \(0.745988\pi\)
\(384\) 0 0
\(385\) −0.393115 −0.0200350
\(386\) 0 0
\(387\) − 20.3503i − 1.03446i
\(388\) 0 0
\(389\) − 9.02142i − 0.457404i −0.973496 0.228702i \(-0.926552\pi\)
0.973496 0.228702i \(-0.0734482\pi\)
\(390\) 0 0
\(391\) 6.68585 0.338118
\(392\) 0 0
\(393\) 2.17092 0.109509
\(394\) 0 0
\(395\) − 15.0361i − 0.756549i
\(396\) 0 0
\(397\) − 35.0852i − 1.76088i −0.474160 0.880439i \(-0.657248\pi\)
0.474160 0.880439i \(-0.342752\pi\)
\(398\) 0 0
\(399\) 0.0856914 0.00428994
\(400\) 0 0
\(401\) −1.06427 −0.0531470 −0.0265735 0.999647i \(-0.508460\pi\)
−0.0265735 + 0.999647i \(0.508460\pi\)
\(402\) 0 0
\(403\) 1.31415i 0.0654627i
\(404\) 0 0
\(405\) 8.80765i 0.437656i
\(406\) 0 0
\(407\) 10.6858 0.529678
\(408\) 0 0
\(409\) −31.7220 −1.56855 −0.784275 0.620413i \(-0.786965\pi\)
−0.784275 + 0.620413i \(0.786965\pi\)
\(410\) 0 0
\(411\) − 1.42923i − 0.0704988i
\(412\) 0 0
\(413\) − 1.80765i − 0.0889488i
\(414\) 0 0
\(415\) −4.29273 −0.210722
\(416\) 0 0
\(417\) −2.85050 −0.139590
\(418\) 0 0
\(419\) 3.06740i 0.149852i 0.997189 + 0.0749262i \(0.0238721\pi\)
−0.997189 + 0.0749262i \(0.976128\pi\)
\(420\) 0 0
\(421\) − 2.21377i − 0.107893i −0.998544 0.0539463i \(-0.982820\pi\)
0.998544 0.0539463i \(-0.0171800\pi\)
\(422\) 0 0
\(423\) 21.2222 1.03186
\(424\) 0 0
\(425\) 4.00000 0.194029
\(426\) 0 0
\(427\) − 1.22219i − 0.0591460i
\(428\) 0 0
\(429\) − 0.393115i − 0.0189798i
\(430\) 0 0
\(431\) −18.8898 −0.909887 −0.454944 0.890520i \(-0.650341\pi\)
−0.454944 + 0.890520i \(0.650341\pi\)
\(432\) 0 0
\(433\) −21.8929 −1.05210 −0.526052 0.850452i \(-0.676328\pi\)
−0.526052 + 0.850452i \(0.676328\pi\)
\(434\) 0 0
\(435\) 0.643000i 0.0308295i
\(436\) 0 0
\(437\) 26.7434i 1.27931i
\(438\) 0 0
\(439\) −13.8077 −0.659003 −0.329502 0.944155i \(-0.606881\pi\)
−0.329502 + 0.944155i \(0.606881\pi\)
\(440\) 0 0
\(441\) −20.7862 −0.989820
\(442\) 0 0
\(443\) 25.5756i 1.21513i 0.794269 + 0.607567i \(0.207854\pi\)
−0.794269 + 0.607567i \(0.792146\pi\)
\(444\) 0 0
\(445\) − 5.37169i − 0.254643i
\(446\) 0 0
\(447\) 1.75011 0.0827776
\(448\) 0 0
\(449\) −24.3074 −1.14714 −0.573569 0.819157i \(-0.694442\pi\)
−0.573569 + 0.819157i \(0.694442\pi\)
\(450\) 0 0
\(451\) − 17.1709i − 0.808547i
\(452\) 0 0
\(453\) 1.87192i 0.0879506i
\(454\) 0 0
\(455\) 0.146365 0.00686172
\(456\) 0 0
\(457\) 12.2008 0.570728 0.285364 0.958419i \(-0.407886\pi\)
0.285364 + 0.958419i \(0.407886\pi\)
\(458\) 0 0
\(459\) − 0.875057i − 0.0408442i
\(460\) 0 0
\(461\) − 8.02142i − 0.373595i −0.982398 0.186797i \(-0.940189\pi\)
0.982398 0.186797i \(-0.0598108\pi\)
\(462\) 0 0
\(463\) 36.0575 1.67574 0.837868 0.545873i \(-0.183802\pi\)
0.837868 + 0.545873i \(0.183802\pi\)
\(464\) 0 0
\(465\) −0.192347 −0.00891987
\(466\) 0 0
\(467\) − 19.1856i − 0.887804i −0.896075 0.443902i \(-0.853594\pi\)
0.896075 0.443902i \(-0.146406\pi\)
\(468\) 0 0
\(469\) 1.21377i 0.0560467i
\(470\) 0 0
\(471\) 3.17935 0.146497
\(472\) 0 0
\(473\) 18.3503 0.843746
\(474\) 0 0
\(475\) 16.0000i 0.734130i
\(476\) 0 0
\(477\) 26.7434i 1.22450i
\(478\) 0 0
\(479\) 11.9112 0.544235 0.272118 0.962264i \(-0.412276\pi\)
0.272118 + 0.962264i \(0.412276\pi\)
\(480\) 0 0
\(481\) −3.97858 −0.181408
\(482\) 0 0
\(483\) − 0.143230i − 0.00651719i
\(484\) 0 0
\(485\) − 10.3503i − 0.469982i
\(486\) 0 0
\(487\) 15.8568 0.718539 0.359269 0.933234i \(-0.383026\pi\)
0.359269 + 0.933234i \(0.383026\pi\)
\(488\) 0 0
\(489\) −3.02142 −0.136633
\(490\) 0 0
\(491\) 3.91117i 0.176509i 0.996098 + 0.0882544i \(0.0281288\pi\)
−0.996098 + 0.0882544i \(0.971871\pi\)
\(492\) 0 0
\(493\) 4.39312i 0.197856i
\(494\) 0 0
\(495\) −8.00000 −0.359573
\(496\) 0 0
\(497\) −0.807653 −0.0362282
\(498\) 0 0
\(499\) − 23.1793i − 1.03765i −0.854880 0.518825i \(-0.826370\pi\)
0.854880 0.518825i \(-0.173630\pi\)
\(500\) 0 0
\(501\) − 2.63673i − 0.117800i
\(502\) 0 0
\(503\) −18.5426 −0.826774 −0.413387 0.910555i \(-0.635654\pi\)
−0.413387 + 0.910555i \(0.635654\pi\)
\(504\) 0 0
\(505\) 17.9572 0.799083
\(506\) 0 0
\(507\) 0.146365i 0.00650032i
\(508\) 0 0
\(509\) 25.9143i 1.14863i 0.818634 + 0.574316i \(0.194732\pi\)
−0.818634 + 0.574316i \(0.805268\pi\)
\(510\) 0 0
\(511\) −1.02142 −0.0451851
\(512\) 0 0
\(513\) 3.50023 0.154539
\(514\) 0 0
\(515\) − 10.2499i − 0.451664i
\(516\) 0 0
\(517\) 19.1365i 0.841622i
\(518\) 0 0
\(519\) −0.963884 −0.0423098
\(520\) 0 0
\(521\) −12.7648 −0.559236 −0.279618 0.960111i \(-0.590208\pi\)
−0.279618 + 0.960111i \(0.590208\pi\)
\(522\) 0 0
\(523\) 27.1856i 1.18874i 0.804190 + 0.594372i \(0.202599\pi\)
−0.804190 + 0.594372i \(0.797401\pi\)
\(524\) 0 0
\(525\) − 0.0856914i − 0.00373988i
\(526\) 0 0
\(527\) −1.31415 −0.0572454
\(528\) 0 0
\(529\) 21.7005 0.943502
\(530\) 0 0
\(531\) − 36.7862i − 1.59639i
\(532\) 0 0
\(533\) 6.39312i 0.276917i
\(534\) 0 0
\(535\) 14.6858 0.634924
\(536\) 0 0
\(537\) 1.10666 0.0477557
\(538\) 0 0
\(539\) − 18.7434i − 0.807335i
\(540\) 0 0
\(541\) 6.76481i 0.290842i 0.989370 + 0.145421i \(0.0464536\pi\)
−0.989370 + 0.145421i \(0.953546\pi\)
\(542\) 0 0
\(543\) 0.0919626 0.00394649
\(544\) 0 0
\(545\) 14.7648 0.632455
\(546\) 0 0
\(547\) 15.3832i 0.657740i 0.944375 + 0.328870i \(0.106668\pi\)
−0.944375 + 0.328870i \(0.893332\pi\)
\(548\) 0 0
\(549\) − 24.8719i − 1.06151i
\(550\) 0 0
\(551\) −17.5725 −0.748612
\(552\) 0 0
\(553\) −2.20077 −0.0935862
\(554\) 0 0
\(555\) − 0.582326i − 0.0247184i
\(556\) 0 0
\(557\) − 7.59388i − 0.321763i −0.986974 0.160882i \(-0.948566\pi\)
0.986974 0.160882i \(-0.0514337\pi\)
\(558\) 0 0
\(559\) −6.83221 −0.288972
\(560\) 0 0
\(561\) 0.393115 0.0165973
\(562\) 0 0
\(563\) 14.9754i 0.631140i 0.948902 + 0.315570i \(0.102196\pi\)
−0.948902 + 0.315570i \(0.897804\pi\)
\(564\) 0 0
\(565\) 3.95715i 0.166479i
\(566\) 0 0
\(567\) 1.28914 0.0541386
\(568\) 0 0
\(569\) −4.25662 −0.178447 −0.0892233 0.996012i \(-0.528438\pi\)
−0.0892233 + 0.996012i \(0.528438\pi\)
\(570\) 0 0
\(571\) 43.5903i 1.82420i 0.409971 + 0.912098i \(0.365539\pi\)
−0.409971 + 0.912098i \(0.634461\pi\)
\(572\) 0 0
\(573\) − 1.47835i − 0.0617589i
\(574\) 0 0
\(575\) 26.7434 1.11528
\(576\) 0 0
\(577\) 43.5934 1.81482 0.907409 0.420249i \(-0.138057\pi\)
0.907409 + 0.420249i \(0.138057\pi\)
\(578\) 0 0
\(579\) 0.493499i 0.0205091i
\(580\) 0 0
\(581\) 0.628308i 0.0260666i
\(582\) 0 0
\(583\) −24.1151 −0.998744
\(584\) 0 0
\(585\) 2.97858 0.123149
\(586\) 0 0
\(587\) 1.31415i 0.0542409i 0.999632 + 0.0271205i \(0.00863377\pi\)
−0.999632 + 0.0271205i \(0.991366\pi\)
\(588\) 0 0
\(589\) − 5.25662i − 0.216595i
\(590\) 0 0
\(591\) 2.15479 0.0886361
\(592\) 0 0
\(593\) −0.777809 −0.0319408 −0.0159704 0.999872i \(-0.505084\pi\)
−0.0159704 + 0.999872i \(0.505084\pi\)
\(594\) 0 0
\(595\) 0.146365i 0.00600040i
\(596\) 0 0
\(597\) − 2.00000i − 0.0818546i
\(598\) 0 0
\(599\) −3.36327 −0.137420 −0.0687098 0.997637i \(-0.521888\pi\)
−0.0687098 + 0.997637i \(0.521888\pi\)
\(600\) 0 0
\(601\) 4.17092 0.170136 0.0850678 0.996375i \(-0.472889\pi\)
0.0850678 + 0.996375i \(0.472889\pi\)
\(602\) 0 0
\(603\) 24.7005i 1.00588i
\(604\) 0 0
\(605\) 3.78623i 0.153932i
\(606\) 0 0
\(607\) 34.8929 1.41626 0.708129 0.706083i \(-0.249539\pi\)
0.708129 + 0.706083i \(0.249539\pi\)
\(608\) 0 0
\(609\) 0.0941131 0.00381365
\(610\) 0 0
\(611\) − 7.12494i − 0.288244i
\(612\) 0 0
\(613\) − 17.9143i − 0.723552i −0.932265 0.361776i \(-0.882171\pi\)
0.932265 0.361776i \(-0.117829\pi\)
\(614\) 0 0
\(615\) −0.935731 −0.0377323
\(616\) 0 0
\(617\) 23.9143 0.962754 0.481377 0.876514i \(-0.340137\pi\)
0.481377 + 0.876514i \(0.340137\pi\)
\(618\) 0 0
\(619\) 27.9656i 1.12403i 0.827127 + 0.562016i \(0.189974\pi\)
−0.827127 + 0.562016i \(0.810026\pi\)
\(620\) 0 0
\(621\) − 5.85050i − 0.234772i
\(622\) 0 0
\(623\) −0.786230 −0.0314997
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 1.57246i 0.0627980i
\(628\) 0 0
\(629\) − 3.97858i − 0.158636i
\(630\) 0 0
\(631\) 28.4966 1.13443 0.567217 0.823569i \(-0.308020\pi\)
0.567217 + 0.823569i \(0.308020\pi\)
\(632\) 0 0
\(633\) 0.213770 0.00849658
\(634\) 0 0
\(635\) 6.10038i 0.242086i
\(636\) 0 0
\(637\) 6.97858i 0.276501i
\(638\) 0 0
\(639\) −16.4360 −0.650197
\(640\) 0 0
\(641\) 13.9143 0.549582 0.274791 0.961504i \(-0.411391\pi\)
0.274791 + 0.961504i \(0.411391\pi\)
\(642\) 0 0
\(643\) − 19.0361i − 0.750711i −0.926881 0.375356i \(-0.877521\pi\)
0.926881 0.375356i \(-0.122479\pi\)
\(644\) 0 0
\(645\) − 1.00000i − 0.0393750i
\(646\) 0 0
\(647\) 17.6069 0.692198 0.346099 0.938198i \(-0.387506\pi\)
0.346099 + 0.938198i \(0.387506\pi\)
\(648\) 0 0
\(649\) 33.1709 1.30207
\(650\) 0 0
\(651\) 0.0281529i 0.00110340i
\(652\) 0 0
\(653\) − 33.8715i − 1.32549i −0.748844 0.662746i \(-0.769391\pi\)
0.748844 0.662746i \(-0.230609\pi\)
\(654\) 0 0
\(655\) −14.8322 −0.579542
\(656\) 0 0
\(657\) −20.7862 −0.810948
\(658\) 0 0
\(659\) 27.1856i 1.05900i 0.848310 + 0.529501i \(0.177621\pi\)
−0.848310 + 0.529501i \(0.822379\pi\)
\(660\) 0 0
\(661\) 48.2730i 1.87760i 0.344460 + 0.938801i \(0.388062\pi\)
−0.344460 + 0.938801i \(0.611938\pi\)
\(662\) 0 0
\(663\) −0.146365 −0.00568436
\(664\) 0 0
\(665\) −0.585462 −0.0227032
\(666\) 0 0
\(667\) 29.3717i 1.13728i
\(668\) 0 0
\(669\) 1.04285i 0.0403187i
\(670\) 0 0
\(671\) 22.4275 0.865806
\(672\) 0 0
\(673\) 5.78623 0.223043 0.111521 0.993762i \(-0.464428\pi\)
0.111521 + 0.993762i \(0.464428\pi\)
\(674\) 0 0
\(675\) − 3.50023i − 0.134724i
\(676\) 0 0
\(677\) − 37.3288i − 1.43466i −0.696731 0.717332i \(-0.745363\pi\)
0.696731 0.717332i \(-0.254637\pi\)
\(678\) 0 0
\(679\) −1.51492 −0.0581374
\(680\) 0 0
\(681\) 3.64973 0.139858
\(682\) 0 0
\(683\) 17.6644i 0.675910i 0.941162 + 0.337955i \(0.109735\pi\)
−0.941162 + 0.337955i \(0.890265\pi\)
\(684\) 0 0
\(685\) 9.76481i 0.373094i
\(686\) 0 0
\(687\) −0.432825 −0.0165133
\(688\) 0 0
\(689\) 8.97858 0.342057
\(690\) 0 0
\(691\) − 44.4998i − 1.69285i −0.532507 0.846426i \(-0.678750\pi\)
0.532507 0.846426i \(-0.321250\pi\)
\(692\) 0 0
\(693\) 1.17092i 0.0444797i
\(694\) 0 0
\(695\) 19.4752 0.738737
\(696\) 0 0
\(697\) −6.39312 −0.242157
\(698\) 0 0
\(699\) 0.759980i 0.0287451i
\(700\) 0 0
\(701\) 17.0643i 0.644509i 0.946653 + 0.322254i \(0.104441\pi\)
−0.946653 + 0.322254i \(0.895559\pi\)
\(702\) 0 0
\(703\) 15.9143 0.600220
\(704\) 0 0
\(705\) 1.04285 0.0392758
\(706\) 0 0
\(707\) − 2.62831i − 0.0988477i
\(708\) 0 0
\(709\) 0.427539i 0.0160566i 0.999968 + 0.00802829i \(0.00255551\pi\)
−0.999968 + 0.00802829i \(0.997444\pi\)
\(710\) 0 0
\(711\) −44.7862 −1.67961
\(712\) 0 0
\(713\) −8.78623 −0.329047
\(714\) 0 0
\(715\) 2.68585i 0.100445i
\(716\) 0 0
\(717\) − 2.10711i − 0.0786916i
\(718\) 0 0
\(719\) −37.3780 −1.39396 −0.696981 0.717089i \(-0.745474\pi\)
−0.696981 + 0.717089i \(0.745474\pi\)
\(720\) 0 0
\(721\) −1.50023 −0.0558715
\(722\) 0 0
\(723\) − 3.41454i − 0.126988i
\(724\) 0 0
\(725\) 17.5725i 0.652625i
\(726\) 0 0
\(727\) −14.4851 −0.537222 −0.268611 0.963249i \(-0.586565\pi\)
−0.268611 + 0.963249i \(0.586565\pi\)
\(728\) 0 0
\(729\) 25.8500 0.957409
\(730\) 0 0
\(731\) − 6.83221i − 0.252698i
\(732\) 0 0
\(733\) 0.299461i 0.0110608i 0.999985 + 0.00553042i \(0.00176040\pi\)
−0.999985 + 0.00553042i \(0.998240\pi\)
\(734\) 0 0
\(735\) −1.02142 −0.0376757
\(736\) 0 0
\(737\) −22.2730 −0.820436
\(738\) 0 0
\(739\) − 18.9786i − 0.698138i −0.937097 0.349069i \(-0.886498\pi\)
0.937097 0.349069i \(-0.113502\pi\)
\(740\) 0 0
\(741\) − 0.585462i − 0.0215075i
\(742\) 0 0
\(743\) 26.7465 0.981235 0.490617 0.871375i \(-0.336771\pi\)
0.490617 + 0.871375i \(0.336771\pi\)
\(744\) 0 0
\(745\) −11.9572 −0.438076
\(746\) 0 0
\(747\) 12.7862i 0.467824i
\(748\) 0 0
\(749\) − 2.14950i − 0.0785411i
\(750\) 0 0
\(751\) 14.1923 0.517886 0.258943 0.965893i \(-0.416626\pi\)
0.258943 + 0.965893i \(0.416626\pi\)
\(752\) 0 0
\(753\) −2.23519 −0.0814549
\(754\) 0 0
\(755\) − 12.7894i − 0.465453i
\(756\) 0 0
\(757\) 45.5934i 1.65712i 0.559899 + 0.828561i \(0.310840\pi\)
−0.559899 + 0.828561i \(0.689160\pi\)
\(758\) 0 0
\(759\) 2.62831 0.0954015
\(760\) 0 0
\(761\) −37.6363 −1.36431 −0.682157 0.731206i \(-0.738958\pi\)
−0.682157 + 0.731206i \(0.738958\pi\)
\(762\) 0 0
\(763\) − 2.16106i − 0.0782356i
\(764\) 0 0
\(765\) 2.97858i 0.107691i
\(766\) 0 0
\(767\) −12.3503 −0.445942
\(768\) 0 0
\(769\) 0.700539 0.0252621 0.0126310 0.999920i \(-0.495979\pi\)
0.0126310 + 0.999920i \(0.495979\pi\)
\(770\) 0 0
\(771\) − 3.06113i − 0.110244i
\(772\) 0 0
\(773\) 5.08569i 0.182920i 0.995809 + 0.0914598i \(0.0291533\pi\)
−0.995809 + 0.0914598i \(0.970847\pi\)
\(774\) 0 0
\(775\) −5.25662 −0.188823
\(776\) 0 0
\(777\) −0.0852325 −0.00305770
\(778\) 0 0
\(779\) − 25.5725i − 0.916228i
\(780\) 0 0
\(781\) − 14.8207i − 0.530325i
\(782\) 0 0
\(783\) 3.84423 0.137381
\(784\) 0 0
\(785\) −21.7220 −0.775290
\(786\) 0 0
\(787\) 14.3074i 0.510005i 0.966940 + 0.255002i \(0.0820762\pi\)
−0.966940 + 0.255002i \(0.917924\pi\)
\(788\) 0 0
\(789\) 1.90589i 0.0678514i
\(790\) 0 0
\(791\) 0.579191 0.0205937
\(792\) 0 0
\(793\) −8.35027 −0.296527
\(794\) 0 0
\(795\) 1.31415i 0.0466082i
\(796\) 0 0
\(797\) 2.54262i 0.0900641i 0.998986 + 0.0450320i \(0.0143390\pi\)
−0.998986 + 0.0450320i \(0.985661\pi\)
\(798\) 0 0
\(799\) 7.12494 0.252062
\(800\) 0 0
\(801\) −16.0000 −0.565332
\(802\) 0 0
\(803\) − 18.7434i − 0.661440i
\(804\) 0 0
\(805\) 0.978577i 0.0344903i
\(806\) 0 0
\(807\) −3.56404 −0.125460
\(808\) 0 0
\(809\) −33.1495 −1.16547 −0.582737 0.812661i \(-0.698018\pi\)
−0.582737 + 0.812661i \(0.698018\pi\)
\(810\) 0 0
\(811\) − 1.28600i − 0.0451576i −0.999745 0.0225788i \(-0.992812\pi\)
0.999745 0.0225788i \(-0.00718767\pi\)
\(812\) 0 0
\(813\) 3.74338i 0.131286i
\(814\) 0 0
\(815\) 20.6430 0.723093
\(816\) 0 0
\(817\) 27.3288 0.956115
\(818\) 0 0
\(819\) − 0.435961i − 0.0152337i
\(820\) 0 0
\(821\) − 11.7005i − 0.408352i −0.978934 0.204176i \(-0.934549\pi\)
0.978934 0.204176i \(-0.0654514\pi\)
\(822\) 0 0
\(823\) 38.9786 1.35871 0.679354 0.733811i \(-0.262260\pi\)
0.679354 + 0.733811i \(0.262260\pi\)
\(824\) 0 0
\(825\) 1.57246 0.0547461
\(826\) 0 0
\(827\) − 43.5296i − 1.51367i −0.653604 0.756837i \(-0.726744\pi\)
0.653604 0.756837i \(-0.273256\pi\)
\(828\) 0 0
\(829\) 35.0852i 1.21856i 0.792955 + 0.609280i \(0.208542\pi\)
−0.792955 + 0.609280i \(0.791458\pi\)
\(830\) 0 0
\(831\) −0.649272 −0.0225230
\(832\) 0 0
\(833\) −6.97858 −0.241793
\(834\) 0 0
\(835\) 18.0147i 0.623424i
\(836\) 0 0
\(837\) 1.14996i 0.0397484i
\(838\) 0 0
\(839\) 10.4851 0.361985 0.180993 0.983484i \(-0.442069\pi\)
0.180993 + 0.983484i \(0.442069\pi\)
\(840\) 0 0
\(841\) 9.70054 0.334501
\(842\) 0 0
\(843\) − 1.67069i − 0.0575418i
\(844\) 0 0
\(845\) − 1.00000i − 0.0344010i
\(846\) 0 0
\(847\) 0.554173 0.0190416
\(848\) 0 0
\(849\) −2.85004 −0.0978131
\(850\) 0 0
\(851\) − 26.6002i − 0.911842i
\(852\) 0 0
\(853\) − 40.5296i − 1.38771i −0.720116 0.693854i \(-0.755911\pi\)
0.720116 0.693854i \(-0.244089\pi\)
\(854\) 0 0
\(855\) −11.9143 −0.407461
\(856\) 0 0
\(857\) 5.61531 0.191815 0.0959076 0.995390i \(-0.469425\pi\)
0.0959076 + 0.995390i \(0.469425\pi\)
\(858\) 0 0
\(859\) − 27.4721i − 0.937335i −0.883375 0.468668i \(-0.844734\pi\)
0.883375 0.468668i \(-0.155266\pi\)
\(860\) 0 0
\(861\) 0.136959i 0.00466754i
\(862\) 0 0
\(863\) −42.8898 −1.45998 −0.729992 0.683456i \(-0.760476\pi\)
−0.729992 + 0.683456i \(0.760476\pi\)
\(864\) 0 0
\(865\) 6.58546 0.223912
\(866\) 0 0
\(867\) 2.34185i 0.0795333i
\(868\) 0 0
\(869\) − 40.3847i − 1.36996i
\(870\) 0 0
\(871\) 8.29273 0.280988
\(872\) 0 0
\(873\) −30.8291 −1.04341
\(874\) 0 0
\(875\) 1.31729i 0.0445325i
\(876\) 0 0
\(877\) − 31.7005i − 1.07045i −0.844709 0.535226i \(-0.820227\pi\)
0.844709 0.535226i \(-0.179773\pi\)
\(878\) 0 0
\(879\) −1.58187 −0.0533551
\(880\) 0 0
\(881\) −44.4011 −1.49591 −0.747955 0.663749i \(-0.768964\pi\)
−0.747955 + 0.663749i \(0.768964\pi\)
\(882\) 0 0
\(883\) 1.28287i 0.0431719i 0.999767 + 0.0215859i \(0.00687155\pi\)
−0.999767 + 0.0215859i \(0.993128\pi\)
\(884\) 0 0
\(885\) − 1.80765i − 0.0607636i
\(886\) 0 0
\(887\) −41.5212 −1.39415 −0.697073 0.717001i \(-0.745514\pi\)
−0.697073 + 0.717001i \(0.745514\pi\)
\(888\) 0 0
\(889\) 0.892886 0.0299464
\(890\) 0 0
\(891\) 23.6560i 0.792506i
\(892\) 0 0
\(893\) 28.4998i 0.953708i
\(894\) 0 0
\(895\) −7.56090 −0.252733
\(896\) 0 0
\(897\) −0.978577 −0.0326737
\(898\) 0 0
\(899\) − 5.77323i − 0.192548i
\(900\) 0 0
\(901\) 8.97858i 0.299120i
\(902\) 0 0
\(903\) −0.146365 −0.00487074
\(904\) 0 0
\(905\) −0.628308 −0.0208857
\(906\) 0 0
\(907\) 41.9834i 1.39404i 0.717054 + 0.697018i \(0.245490\pi\)
−0.717054 + 0.697018i \(0.754510\pi\)
\(908\) 0 0
\(909\) − 53.4868i − 1.77404i
\(910\) 0 0
\(911\) 37.5443 1.24390 0.621949 0.783058i \(-0.286341\pi\)
0.621949 + 0.783058i \(0.286341\pi\)
\(912\) 0 0
\(913\) −11.5296 −0.381575
\(914\) 0 0
\(915\) − 1.22219i − 0.0404044i
\(916\) 0 0
\(917\) 2.17092i 0.0716902i
\(918\) 0 0
\(919\) −48.7005 −1.60648 −0.803241 0.595654i \(-0.796893\pi\)
−0.803241 + 0.595654i \(0.796893\pi\)
\(920\) 0 0
\(921\) 0.722421 0.0238046
\(922\) 0 0
\(923\) 5.51806i 0.181629i
\(924\) 0 0
\(925\) − 15.9143i − 0.523259i
\(926\) 0 0
\(927\) −30.5301 −1.00274
\(928\) 0 0
\(929\) −11.1281 −0.365100 −0.182550 0.983197i \(-0.558435\pi\)
−0.182550 + 0.983197i \(0.558435\pi\)
\(930\) 0 0
\(931\) − 27.9143i − 0.914855i
\(932\) 0 0
\(933\) 0.115077i 0.00376745i
\(934\) 0 0
\(935\) −2.68585 −0.0878366
\(936\) 0 0
\(937\) 17.6153 0.575467 0.287733 0.957711i \(-0.407098\pi\)
0.287733 + 0.957711i \(0.407098\pi\)
\(938\) 0 0
\(939\) 2.03971i 0.0665634i
\(940\) 0 0
\(941\) 35.6577i 1.16241i 0.813758 + 0.581204i \(0.197418\pi\)
−0.813758 + 0.581204i \(0.802582\pi\)
\(942\) 0 0
\(943\) −42.7434 −1.39192
\(944\) 0 0
\(945\) 0.128078 0.00416638
\(946\) 0 0
\(947\) 22.7715i 0.739976i 0.929037 + 0.369988i \(0.120638\pi\)
−0.929037 + 0.369988i \(0.879362\pi\)
\(948\) 0 0
\(949\) 6.97858i 0.226534i
\(950\) 0 0
\(951\) 2.92104 0.0947212
\(952\) 0 0
\(953\) −1.74338 −0.0564738 −0.0282369 0.999601i \(-0.508989\pi\)
−0.0282369 + 0.999601i \(0.508989\pi\)
\(954\) 0 0
\(955\) 10.1004i 0.326841i
\(956\) 0 0
\(957\) 1.72700i 0.0558260i
\(958\) 0 0
\(959\) 1.42923 0.0461523
\(960\) 0 0
\(961\) −29.2730 −0.944290
\(962\) 0 0
\(963\) − 43.7429i − 1.40960i
\(964\) 0 0
\(965\) − 3.37169i − 0.108539i
\(966\) 0 0
\(967\) 33.8402 1.08823 0.544113 0.839012i \(-0.316866\pi\)
0.544113 + 0.839012i \(0.316866\pi\)
\(968\) 0 0
\(969\) 0.585462 0.0188077
\(970\) 0 0
\(971\) 40.0031i 1.28376i 0.766804 + 0.641881i \(0.221846\pi\)
−0.766804 + 0.641881i \(0.778154\pi\)
\(972\) 0 0
\(973\) − 2.85050i − 0.0913828i
\(974\) 0 0
\(975\) −0.585462 −0.0187498
\(976\) 0 0
\(977\) 38.7005 1.23814 0.619070 0.785336i \(-0.287510\pi\)
0.619070 + 0.785336i \(0.287510\pi\)
\(978\) 0 0
\(979\) − 14.4275i − 0.461106i
\(980\) 0 0
\(981\) − 43.9781i − 1.40411i
\(982\) 0 0
\(983\) −23.8536 −0.760813 −0.380406 0.924819i \(-0.624216\pi\)
−0.380406 + 0.924819i \(0.624216\pi\)
\(984\) 0 0
\(985\) −14.7220 −0.469081
\(986\) 0 0
\(987\) − 0.152637i − 0.00485848i
\(988\) 0 0
\(989\) − 45.6791i − 1.45251i
\(990\) 0 0
\(991\) 3.01300 0.0957111 0.0478556 0.998854i \(-0.484761\pi\)
0.0478556 + 0.998854i \(0.484761\pi\)
\(992\) 0 0
\(993\) 1.71354 0.0543776
\(994\) 0 0
\(995\) 13.6644i 0.433191i
\(996\) 0 0
\(997\) − 7.13650i − 0.226015i −0.993594 0.113008i \(-0.963952\pi\)
0.993594 0.113008i \(-0.0360484\pi\)
\(998\) 0 0
\(999\) −3.48148 −0.110149
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.b.c.209.3 6
3.2 odd 2 3744.2.g.c.1873.2 6
4.3 odd 2 104.2.b.c.53.6 yes 6
8.3 odd 2 104.2.b.c.53.5 6
8.5 even 2 inner 416.2.b.c.209.4 6
12.11 even 2 936.2.g.c.469.1 6
16.3 odd 4 3328.2.a.bh.1.2 3
16.5 even 4 3328.2.a.bg.1.2 3
16.11 odd 4 3328.2.a.be.1.2 3
16.13 even 4 3328.2.a.bf.1.2 3
24.5 odd 2 3744.2.g.c.1873.5 6
24.11 even 2 936.2.g.c.469.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.b.c.53.5 6 8.3 odd 2
104.2.b.c.53.6 yes 6 4.3 odd 2
416.2.b.c.209.3 6 1.1 even 1 trivial
416.2.b.c.209.4 6 8.5 even 2 inner
936.2.g.c.469.1 6 12.11 even 2
936.2.g.c.469.2 6 24.11 even 2
3328.2.a.be.1.2 3 16.11 odd 4
3328.2.a.bf.1.2 3 16.13 even 4
3328.2.a.bg.1.2 3 16.5 even 4
3328.2.a.bh.1.2 3 16.3 odd 4
3744.2.g.c.1873.2 6 3.2 odd 2
3744.2.g.c.1873.5 6 24.5 odd 2