Properties

Label 416.2.b.c
Level $416$
Weight $2$
Character orbit 416.b
Analytic conductor $3.322$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(209,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.209");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{3} - \beta_{2} q^{5} + \beta_1 q^{7} + ( - \beta_{4} + \beta_1 - 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{5} q^{3} - \beta_{2} q^{5} + \beta_1 q^{7} + ( - \beta_{4} + \beta_1 - 2) q^{9} + (\beta_{5} - \beta_{3} + 2 \beta_{2}) q^{11} + \beta_{2} q^{13} + \beta_1 q^{15} + q^{17} - 4 \beta_{2} q^{19} + ( - \beta_{5} - \beta_{3} + 5 \beta_{2}) q^{21} + ( - \beta_{4} - \beta_1 + 2) q^{23} + 4 q^{25} + ( - 2 \beta_{5} - \beta_{3} + 6 \beta_{2}) q^{27} + (3 \beta_{5} - \beta_{3}) q^{29} + ( - \beta_{4} - \beta_1 - 6) q^{31} + ( - \beta_{4} - 3 \beta_1 - 4) q^{33} - \beta_{5} q^{35} + (\beta_{5} + \beta_{3} - \beta_{2}) q^{37} - \beta_1 q^{39} + (\beta_{4} + 3 \beta_1 - 2) q^{41} + (\beta_{3} + 2 \beta_{2}) q^{43} + ( - \beta_{5} - \beta_{3} + 2 \beta_{2}) q^{45} + ( - \beta_{4} + 2 \beta_1 + 2) q^{47} + (\beta_{4} - \beta_1 - 2) q^{49} + \beta_{5} q^{51} + ( - \beta_{5} - \beta_{3} - 4 \beta_{2}) q^{53} + (\beta_{4} + \beta_1 + 2) q^{55} + 4 \beta_1 q^{57} + ( - \beta_{5} + 3 \beta_{3} - 2 \beta_{2}) q^{59} + ( - \beta_{5} + 3 \beta_{3} - 6 \beta_{2}) q^{61} + (\beta_{4} - 5 \beta_1 + 6) q^{63} + q^{65} + ( - 2 \beta_{5} - 8 \beta_{2}) q^{67} + (\beta_{5} + \beta_{3} - 4 \beta_{2}) q^{69} + (2 \beta_{4} + \beta_1 + 4) q^{71} + (\beta_{4} - \beta_1 - 2) q^{73} + 4 \beta_{5} q^{75} + (3 \beta_{5} - \beta_{3} + 4 \beta_{2}) q^{77} + (4 \beta_{4} + 2 \beta_1 + 4) q^{79} + ( - \beta_{4} - 7 \beta_1 + 5) q^{81} + ( - 2 \beta_{5} - 4 \beta_{2}) q^{83} - \beta_{2} q^{85} + ( - 3 \beta_{4} + \beta_1 - 14) q^{87} + (2 \beta_{4} + 2 \beta_1 + 4) q^{89} + \beta_{5} q^{91} + ( - 7 \beta_{5} + \beta_{3} - 4 \beta_{2}) q^{93} - 4 q^{95} + (3 \beta_{4} + \beta_1 + 4) q^{97} - 8 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{7} - 12 q^{9} - 2 q^{15} + 6 q^{17} + 16 q^{23} + 24 q^{25} - 32 q^{31} - 16 q^{33} + 2 q^{39} - 20 q^{41} + 10 q^{47} - 12 q^{49} + 8 q^{55} - 8 q^{57} + 44 q^{63} + 6 q^{65} + 18 q^{71} - 12 q^{73} + 12 q^{79} + 46 q^{81} - 80 q^{87} + 16 q^{89} - 24 q^{95} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{5} + \nu^{3} + 4\nu^{2} + 2\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + 3\nu^{3} - 4\nu^{2} + 2\nu - 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} - \nu^{3} + 4\nu + 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} + 4\nu^{4} - 7\nu^{3} + 8\nu^{2} - 6\nu + 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - \nu^{4} + 2\nu^{3} - 3\nu^{2} + 3\nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + \beta_{3} + \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + \beta_{4} - \beta_{3} - 2\beta_{2} + 3\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{5} - \beta_{4} - \beta_{3} + 4\beta_{2} + 3\beta _1 + 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{5} + 3\beta_{4} + \beta_{3} + 10\beta_{2} + \beta _1 + 8 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 5\beta_{5} + 5\beta_{4} - 3\beta_{3} - 4\beta_{2} + \beta _1 + 10 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
209.1
0.264658 1.38923i
1.40680 0.144584i
−0.671462 1.24464i
−0.671462 + 1.24464i
1.40680 + 0.144584i
0.264658 + 1.38923i
0 3.24914i 0 1.00000i 0 −3.24914 0 −7.55691 0
209.2 0 2.10278i 0 1.00000i 0 2.10278 0 −1.42166 0
209.3 0 0.146365i 0 1.00000i 0 0.146365 0 2.97858 0
209.4 0 0.146365i 0 1.00000i 0 0.146365 0 2.97858 0
209.5 0 2.10278i 0 1.00000i 0 2.10278 0 −1.42166 0
209.6 0 3.24914i 0 1.00000i 0 −3.24914 0 −7.55691 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 209.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.2.b.c 6
3.b odd 2 1 3744.2.g.c 6
4.b odd 2 1 104.2.b.c 6
8.b even 2 1 inner 416.2.b.c 6
8.d odd 2 1 104.2.b.c 6
12.b even 2 1 936.2.g.c 6
16.e even 4 1 3328.2.a.bf 3
16.e even 4 1 3328.2.a.bg 3
16.f odd 4 1 3328.2.a.be 3
16.f odd 4 1 3328.2.a.bh 3
24.f even 2 1 936.2.g.c 6
24.h odd 2 1 3744.2.g.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.b.c 6 4.b odd 2 1
104.2.b.c 6 8.d odd 2 1
416.2.b.c 6 1.a even 1 1 trivial
416.2.b.c 6 8.b even 2 1 inner
936.2.g.c 6 12.b even 2 1
936.2.g.c 6 24.f even 2 1
3328.2.a.be 3 16.f odd 4 1
3328.2.a.bf 3 16.e even 4 1
3328.2.a.bg 3 16.e even 4 1
3328.2.a.bh 3 16.f odd 4 1
3744.2.g.c 6 3.b odd 2 1
3744.2.g.c 6 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 15T_{3}^{4} + 47T_{3}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(416, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 15 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$7$ \( (T^{3} + T^{2} - 7 T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + 40 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$17$ \( (T - 1)^{6} \) Copy content Toggle raw display
$19$ \( (T^{2} + 16)^{3} \) Copy content Toggle raw display
$23$ \( (T^{3} - 8 T^{2} + 4 T + 32)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} + 136 T^{4} + \cdots + 65536 \) Copy content Toggle raw display
$31$ \( (T^{3} + 16 T^{2} + \cdots + 64)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 59 T^{4} + \cdots + 121 \) Copy content Toggle raw display
$41$ \( (T^{3} + 10 T^{2} + \cdots - 352)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 47 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( (T^{3} - 5 T^{2} + \cdots + 227)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + 104 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$59$ \( T^{6} + 260 T^{4} + \cdots + 369664 \) Copy content Toggle raw display
$61$ \( T^{6} + 324 T^{4} + \cdots + 1048576 \) Copy content Toggle raw display
$67$ \( T^{6} + 220 T^{4} + \cdots + 23104 \) Copy content Toggle raw display
$71$ \( (T^{3} - 9 T^{2} + \cdots + 271)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + 6 T^{2} - 16 T - 64)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 6 T^{2} + \cdots + 1448)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 92 T^{4} + \cdots + 7744 \) Copy content Toggle raw display
$89$ \( (T^{3} - 8 T^{2} + \cdots + 128)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} - 8 T^{2} + \cdots + 848)^{2} \) Copy content Toggle raw display
show more
show less