Properties

Label 416.2.b.b.209.4
Level $416$
Weight $2$
Character 416.209
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(209,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.209");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.4
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 416.209
Dual form 416.2.b.b.209.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{3} +3.46410i q^{5} +4.73205 q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+2.00000i q^{3} +3.46410i q^{5} +4.73205 q^{7} -1.00000 q^{9} -1.26795i q^{11} -1.00000i q^{13} -6.92820 q^{15} -1.46410 q^{17} -2.73205i q^{19} +9.46410i q^{21} -4.00000 q^{23} -7.00000 q^{25} +4.00000i q^{27} -2.00000i q^{29} +3.26795 q^{31} +2.53590 q^{33} +16.3923i q^{35} -4.92820i q^{37} +2.00000 q^{39} -4.92820 q^{41} -7.46410i q^{43} -3.46410i q^{45} -3.26795 q^{47} +15.3923 q^{49} -2.92820i q^{51} -10.9282i q^{53} +4.39230 q^{55} +5.46410 q^{57} +0.196152i q^{59} +10.9282i q^{61} -4.73205 q^{63} +3.46410 q^{65} -2.73205i q^{67} -8.00000i q^{69} -2.19615 q^{71} -0.535898 q^{73} -14.0000i q^{75} -6.00000i q^{77} +1.46410 q^{79} -11.0000 q^{81} +6.73205i q^{83} -5.07180i q^{85} +4.00000 q^{87} +17.3205 q^{89} -4.73205i q^{91} +6.53590i q^{93} +9.46410 q^{95} -14.3923 q^{97} +1.26795i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{7} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 12 q^{7} - 4 q^{9} + 8 q^{17} - 16 q^{23} - 28 q^{25} + 20 q^{31} + 24 q^{33} + 8 q^{39} + 8 q^{41} - 20 q^{47} + 20 q^{49} - 24 q^{55} + 8 q^{57} - 12 q^{63} + 12 q^{71} - 16 q^{73} - 8 q^{79} - 44 q^{81} + 16 q^{87} + 24 q^{95} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000i 1.15470i 0.816497 + 0.577350i \(0.195913\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) 0 0
\(5\) 3.46410i 1.54919i 0.632456 + 0.774597i \(0.282047\pi\)
−0.632456 + 0.774597i \(0.717953\pi\)
\(6\) 0 0
\(7\) 4.73205 1.78855 0.894274 0.447521i \(-0.147693\pi\)
0.894274 + 0.447521i \(0.147693\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 1.26795i − 0.382301i −0.981561 0.191151i \(-0.938778\pi\)
0.981561 0.191151i \(-0.0612219\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) −6.92820 −1.78885
\(16\) 0 0
\(17\) −1.46410 −0.355097 −0.177548 0.984112i \(-0.556817\pi\)
−0.177548 + 0.984112i \(0.556817\pi\)
\(18\) 0 0
\(19\) − 2.73205i − 0.626775i −0.949625 0.313388i \(-0.898536\pi\)
0.949625 0.313388i \(-0.101464\pi\)
\(20\) 0 0
\(21\) 9.46410i 2.06524i
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −7.00000 −1.40000
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) − 2.00000i − 0.371391i −0.982607 0.185695i \(-0.940546\pi\)
0.982607 0.185695i \(-0.0594537\pi\)
\(30\) 0 0
\(31\) 3.26795 0.586941 0.293471 0.955968i \(-0.405190\pi\)
0.293471 + 0.955968i \(0.405190\pi\)
\(32\) 0 0
\(33\) 2.53590 0.441443
\(34\) 0 0
\(35\) 16.3923i 2.77081i
\(36\) 0 0
\(37\) − 4.92820i − 0.810192i −0.914274 0.405096i \(-0.867238\pi\)
0.914274 0.405096i \(-0.132762\pi\)
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −4.92820 −0.769656 −0.384828 0.922988i \(-0.625739\pi\)
−0.384828 + 0.922988i \(0.625739\pi\)
\(42\) 0 0
\(43\) − 7.46410i − 1.13826i −0.822246 0.569132i \(-0.807279\pi\)
0.822246 0.569132i \(-0.192721\pi\)
\(44\) 0 0
\(45\) − 3.46410i − 0.516398i
\(46\) 0 0
\(47\) −3.26795 −0.476679 −0.238340 0.971182i \(-0.576603\pi\)
−0.238340 + 0.971182i \(0.576603\pi\)
\(48\) 0 0
\(49\) 15.3923 2.19890
\(50\) 0 0
\(51\) − 2.92820i − 0.410030i
\(52\) 0 0
\(53\) − 10.9282i − 1.50110i −0.660811 0.750552i \(-0.729788\pi\)
0.660811 0.750552i \(-0.270212\pi\)
\(54\) 0 0
\(55\) 4.39230 0.592258
\(56\) 0 0
\(57\) 5.46410 0.723738
\(58\) 0 0
\(59\) 0.196152i 0.0255369i 0.999918 + 0.0127684i \(0.00406443\pi\)
−0.999918 + 0.0127684i \(0.995936\pi\)
\(60\) 0 0
\(61\) 10.9282i 1.39921i 0.714528 + 0.699607i \(0.246641\pi\)
−0.714528 + 0.699607i \(0.753359\pi\)
\(62\) 0 0
\(63\) −4.73205 −0.596182
\(64\) 0 0
\(65\) 3.46410 0.429669
\(66\) 0 0
\(67\) − 2.73205i − 0.333773i −0.985976 0.166887i \(-0.946629\pi\)
0.985976 0.166887i \(-0.0533714\pi\)
\(68\) 0 0
\(69\) − 8.00000i − 0.963087i
\(70\) 0 0
\(71\) −2.19615 −0.260635 −0.130318 0.991472i \(-0.541600\pi\)
−0.130318 + 0.991472i \(0.541600\pi\)
\(72\) 0 0
\(73\) −0.535898 −0.0627222 −0.0313611 0.999508i \(-0.509984\pi\)
−0.0313611 + 0.999508i \(0.509984\pi\)
\(74\) 0 0
\(75\) − 14.0000i − 1.61658i
\(76\) 0 0
\(77\) − 6.00000i − 0.683763i
\(78\) 0 0
\(79\) 1.46410 0.164724 0.0823622 0.996602i \(-0.473754\pi\)
0.0823622 + 0.996602i \(0.473754\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 6.73205i 0.738939i 0.929243 + 0.369469i \(0.120461\pi\)
−0.929243 + 0.369469i \(0.879539\pi\)
\(84\) 0 0
\(85\) − 5.07180i − 0.550114i
\(86\) 0 0
\(87\) 4.00000 0.428845
\(88\) 0 0
\(89\) 17.3205 1.83597 0.917985 0.396615i \(-0.129815\pi\)
0.917985 + 0.396615i \(0.129815\pi\)
\(90\) 0 0
\(91\) − 4.73205i − 0.496054i
\(92\) 0 0
\(93\) 6.53590i 0.677741i
\(94\) 0 0
\(95\) 9.46410 0.970996
\(96\) 0 0
\(97\) −14.3923 −1.46132 −0.730659 0.682743i \(-0.760787\pi\)
−0.730659 + 0.682743i \(0.760787\pi\)
\(98\) 0 0
\(99\) 1.26795i 0.127434i
\(100\) 0 0
\(101\) 12.0000i 1.19404i 0.802225 + 0.597022i \(0.203650\pi\)
−0.802225 + 0.597022i \(0.796350\pi\)
\(102\) 0 0
\(103\) 6.92820 0.682656 0.341328 0.939944i \(-0.389123\pi\)
0.341328 + 0.939944i \(0.389123\pi\)
\(104\) 0 0
\(105\) −32.7846 −3.19945
\(106\) 0 0
\(107\) − 8.92820i − 0.863122i −0.902084 0.431561i \(-0.857963\pi\)
0.902084 0.431561i \(-0.142037\pi\)
\(108\) 0 0
\(109\) 2.00000i 0.191565i 0.995402 + 0.0957826i \(0.0305354\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) 0 0
\(111\) 9.85641 0.935529
\(112\) 0 0
\(113\) 9.46410 0.890308 0.445154 0.895454i \(-0.353149\pi\)
0.445154 + 0.895454i \(0.353149\pi\)
\(114\) 0 0
\(115\) − 13.8564i − 1.29212i
\(116\) 0 0
\(117\) 1.00000i 0.0924500i
\(118\) 0 0
\(119\) −6.92820 −0.635107
\(120\) 0 0
\(121\) 9.39230 0.853846
\(122\) 0 0
\(123\) − 9.85641i − 0.888722i
\(124\) 0 0
\(125\) − 6.92820i − 0.619677i
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 14.9282 1.31436
\(130\) 0 0
\(131\) − 7.85641i − 0.686417i −0.939259 0.343209i \(-0.888486\pi\)
0.939259 0.343209i \(-0.111514\pi\)
\(132\) 0 0
\(133\) − 12.9282i − 1.12102i
\(134\) 0 0
\(135\) −13.8564 −1.19257
\(136\) 0 0
\(137\) −0.928203 −0.0793018 −0.0396509 0.999214i \(-0.512625\pi\)
−0.0396509 + 0.999214i \(0.512625\pi\)
\(138\) 0 0
\(139\) − 10.0000i − 0.848189i −0.905618 0.424094i \(-0.860592\pi\)
0.905618 0.424094i \(-0.139408\pi\)
\(140\) 0 0
\(141\) − 6.53590i − 0.550422i
\(142\) 0 0
\(143\) −1.26795 −0.106031
\(144\) 0 0
\(145\) 6.92820 0.575356
\(146\) 0 0
\(147\) 30.7846i 2.53907i
\(148\) 0 0
\(149\) − 0.928203i − 0.0760414i −0.999277 0.0380207i \(-0.987895\pi\)
0.999277 0.0380207i \(-0.0121053\pi\)
\(150\) 0 0
\(151\) −17.1244 −1.39356 −0.696780 0.717285i \(-0.745385\pi\)
−0.696780 + 0.717285i \(0.745385\pi\)
\(152\) 0 0
\(153\) 1.46410 0.118366
\(154\) 0 0
\(155\) 11.3205i 0.909285i
\(156\) 0 0
\(157\) 3.07180i 0.245156i 0.992459 + 0.122578i \(0.0391162\pi\)
−0.992459 + 0.122578i \(0.960884\pi\)
\(158\) 0 0
\(159\) 21.8564 1.73333
\(160\) 0 0
\(161\) −18.9282 −1.49175
\(162\) 0 0
\(163\) 13.2679i 1.03923i 0.854402 + 0.519613i \(0.173924\pi\)
−0.854402 + 0.519613i \(0.826076\pi\)
\(164\) 0 0
\(165\) 8.78461i 0.683881i
\(166\) 0 0
\(167\) −11.6603 −0.902298 −0.451149 0.892449i \(-0.648986\pi\)
−0.451149 + 0.892449i \(0.648986\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 2.73205i 0.208925i
\(172\) 0 0
\(173\) 6.92820i 0.526742i 0.964695 + 0.263371i \(0.0848343\pi\)
−0.964695 + 0.263371i \(0.915166\pi\)
\(174\) 0 0
\(175\) −33.1244 −2.50397
\(176\) 0 0
\(177\) −0.392305 −0.0294874
\(178\) 0 0
\(179\) 10.3923i 0.776757i 0.921500 + 0.388379i \(0.126965\pi\)
−0.921500 + 0.388379i \(0.873035\pi\)
\(180\) 0 0
\(181\) − 4.92820i − 0.366310i −0.983084 0.183155i \(-0.941369\pi\)
0.983084 0.183155i \(-0.0586311\pi\)
\(182\) 0 0
\(183\) −21.8564 −1.61567
\(184\) 0 0
\(185\) 17.0718 1.25514
\(186\) 0 0
\(187\) 1.85641i 0.135754i
\(188\) 0 0
\(189\) 18.9282i 1.37682i
\(190\) 0 0
\(191\) 21.4641 1.55309 0.776544 0.630063i \(-0.216971\pi\)
0.776544 + 0.630063i \(0.216971\pi\)
\(192\) 0 0
\(193\) −22.3923 −1.61183 −0.805917 0.592029i \(-0.798327\pi\)
−0.805917 + 0.592029i \(0.798327\pi\)
\(194\) 0 0
\(195\) 6.92820i 0.496139i
\(196\) 0 0
\(197\) 16.9282i 1.20608i 0.797709 + 0.603042i \(0.206045\pi\)
−0.797709 + 0.603042i \(0.793955\pi\)
\(198\) 0 0
\(199\) 24.7846 1.75693 0.878467 0.477803i \(-0.158567\pi\)
0.878467 + 0.477803i \(0.158567\pi\)
\(200\) 0 0
\(201\) 5.46410 0.385408
\(202\) 0 0
\(203\) − 9.46410i − 0.664250i
\(204\) 0 0
\(205\) − 17.0718i − 1.19235i
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) −3.46410 −0.239617
\(210\) 0 0
\(211\) 19.8564i 1.36697i 0.729964 + 0.683486i \(0.239537\pi\)
−0.729964 + 0.683486i \(0.760463\pi\)
\(212\) 0 0
\(213\) − 4.39230i − 0.300956i
\(214\) 0 0
\(215\) 25.8564 1.76339
\(216\) 0 0
\(217\) 15.4641 1.04977
\(218\) 0 0
\(219\) − 1.07180i − 0.0724253i
\(220\) 0 0
\(221\) 1.46410i 0.0984861i
\(222\) 0 0
\(223\) −10.1962 −0.682785 −0.341392 0.939921i \(-0.610899\pi\)
−0.341392 + 0.939921i \(0.610899\pi\)
\(224\) 0 0
\(225\) 7.00000 0.466667
\(226\) 0 0
\(227\) 27.1244i 1.80031i 0.435573 + 0.900153i \(0.356546\pi\)
−0.435573 + 0.900153i \(0.643454\pi\)
\(228\) 0 0
\(229\) − 29.3205i − 1.93755i −0.247934 0.968777i \(-0.579752\pi\)
0.247934 0.968777i \(-0.420248\pi\)
\(230\) 0 0
\(231\) 12.0000 0.789542
\(232\) 0 0
\(233\) 3.07180 0.201240 0.100620 0.994925i \(-0.467917\pi\)
0.100620 + 0.994925i \(0.467917\pi\)
\(234\) 0 0
\(235\) − 11.3205i − 0.738469i
\(236\) 0 0
\(237\) 2.92820i 0.190207i
\(238\) 0 0
\(239\) −15.2679 −0.987602 −0.493801 0.869575i \(-0.664393\pi\)
−0.493801 + 0.869575i \(0.664393\pi\)
\(240\) 0 0
\(241\) −9.60770 −0.618886 −0.309443 0.950918i \(-0.600143\pi\)
−0.309443 + 0.950918i \(0.600143\pi\)
\(242\) 0 0
\(243\) − 10.0000i − 0.641500i
\(244\) 0 0
\(245\) 53.3205i 3.40652i
\(246\) 0 0
\(247\) −2.73205 −0.173836
\(248\) 0 0
\(249\) −13.4641 −0.853253
\(250\) 0 0
\(251\) − 14.3923i − 0.908434i −0.890891 0.454217i \(-0.849919\pi\)
0.890891 0.454217i \(-0.150081\pi\)
\(252\) 0 0
\(253\) 5.07180i 0.318861i
\(254\) 0 0
\(255\) 10.1436 0.635216
\(256\) 0 0
\(257\) 3.85641 0.240556 0.120278 0.992740i \(-0.461621\pi\)
0.120278 + 0.992740i \(0.461621\pi\)
\(258\) 0 0
\(259\) − 23.3205i − 1.44907i
\(260\) 0 0
\(261\) 2.00000i 0.123797i
\(262\) 0 0
\(263\) −7.32051 −0.451402 −0.225701 0.974197i \(-0.572467\pi\)
−0.225701 + 0.974197i \(0.572467\pi\)
\(264\) 0 0
\(265\) 37.8564 2.32550
\(266\) 0 0
\(267\) 34.6410i 2.12000i
\(268\) 0 0
\(269\) − 19.8564i − 1.21067i −0.795972 0.605333i \(-0.793040\pi\)
0.795972 0.605333i \(-0.206960\pi\)
\(270\) 0 0
\(271\) 9.80385 0.595541 0.297771 0.954637i \(-0.403757\pi\)
0.297771 + 0.954637i \(0.403757\pi\)
\(272\) 0 0
\(273\) 9.46410 0.572793
\(274\) 0 0
\(275\) 8.87564i 0.535221i
\(276\) 0 0
\(277\) 25.8564i 1.55356i 0.629771 + 0.776780i \(0.283149\pi\)
−0.629771 + 0.776780i \(0.716851\pi\)
\(278\) 0 0
\(279\) −3.26795 −0.195647
\(280\) 0 0
\(281\) −25.3205 −1.51049 −0.755247 0.655440i \(-0.772483\pi\)
−0.755247 + 0.655440i \(0.772483\pi\)
\(282\) 0 0
\(283\) 12.5359i 0.745182i 0.927996 + 0.372591i \(0.121531\pi\)
−0.927996 + 0.372591i \(0.878469\pi\)
\(284\) 0 0
\(285\) 18.9282i 1.12121i
\(286\) 0 0
\(287\) −23.3205 −1.37657
\(288\) 0 0
\(289\) −14.8564 −0.873906
\(290\) 0 0
\(291\) − 28.7846i − 1.68738i
\(292\) 0 0
\(293\) − 19.0718i − 1.11419i −0.830450 0.557093i \(-0.811917\pi\)
0.830450 0.557093i \(-0.188083\pi\)
\(294\) 0 0
\(295\) −0.679492 −0.0395615
\(296\) 0 0
\(297\) 5.07180 0.294295
\(298\) 0 0
\(299\) 4.00000i 0.231326i
\(300\) 0 0
\(301\) − 35.3205i − 2.03584i
\(302\) 0 0
\(303\) −24.0000 −1.37876
\(304\) 0 0
\(305\) −37.8564 −2.16765
\(306\) 0 0
\(307\) − 2.73205i − 0.155926i −0.996956 0.0779632i \(-0.975158\pi\)
0.996956 0.0779632i \(-0.0248417\pi\)
\(308\) 0 0
\(309\) 13.8564i 0.788263i
\(310\) 0 0
\(311\) −14.9282 −0.846501 −0.423250 0.906013i \(-0.639111\pi\)
−0.423250 + 0.906013i \(0.639111\pi\)
\(312\) 0 0
\(313\) −20.3923 −1.15264 −0.576321 0.817224i \(-0.695512\pi\)
−0.576321 + 0.817224i \(0.695512\pi\)
\(314\) 0 0
\(315\) − 16.3923i − 0.923602i
\(316\) 0 0
\(317\) 3.46410i 0.194563i 0.995257 + 0.0972817i \(0.0310148\pi\)
−0.995257 + 0.0972817i \(0.968985\pi\)
\(318\) 0 0
\(319\) −2.53590 −0.141983
\(320\) 0 0
\(321\) 17.8564 0.996647
\(322\) 0 0
\(323\) 4.00000i 0.222566i
\(324\) 0 0
\(325\) 7.00000i 0.388290i
\(326\) 0 0
\(327\) −4.00000 −0.221201
\(328\) 0 0
\(329\) −15.4641 −0.852564
\(330\) 0 0
\(331\) − 27.5167i − 1.51245i −0.654310 0.756226i \(-0.727041\pi\)
0.654310 0.756226i \(-0.272959\pi\)
\(332\) 0 0
\(333\) 4.92820i 0.270064i
\(334\) 0 0
\(335\) 9.46410 0.517079
\(336\) 0 0
\(337\) −5.46410 −0.297649 −0.148824 0.988864i \(-0.547549\pi\)
−0.148824 + 0.988864i \(0.547549\pi\)
\(338\) 0 0
\(339\) 18.9282i 1.02804i
\(340\) 0 0
\(341\) − 4.14359i − 0.224388i
\(342\) 0 0
\(343\) 39.7128 2.14429
\(344\) 0 0
\(345\) 27.7128 1.49201
\(346\) 0 0
\(347\) − 20.9282i − 1.12348i −0.827312 0.561742i \(-0.810131\pi\)
0.827312 0.561742i \(-0.189869\pi\)
\(348\) 0 0
\(349\) − 30.3923i − 1.62686i −0.581661 0.813431i \(-0.697597\pi\)
0.581661 0.813431i \(-0.302403\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) 0 0
\(353\) −24.9282 −1.32679 −0.663397 0.748267i \(-0.730886\pi\)
−0.663397 + 0.748267i \(0.730886\pi\)
\(354\) 0 0
\(355\) − 7.60770i − 0.403775i
\(356\) 0 0
\(357\) − 13.8564i − 0.733359i
\(358\) 0 0
\(359\) 13.5167 0.713382 0.356691 0.934222i \(-0.383905\pi\)
0.356691 + 0.934222i \(0.383905\pi\)
\(360\) 0 0
\(361\) 11.5359 0.607153
\(362\) 0 0
\(363\) 18.7846i 0.985936i
\(364\) 0 0
\(365\) − 1.85641i − 0.0971688i
\(366\) 0 0
\(367\) −26.2487 −1.37017 −0.685086 0.728462i \(-0.740235\pi\)
−0.685086 + 0.728462i \(0.740235\pi\)
\(368\) 0 0
\(369\) 4.92820 0.256552
\(370\) 0 0
\(371\) − 51.7128i − 2.68480i
\(372\) 0 0
\(373\) − 26.7846i − 1.38685i −0.720527 0.693427i \(-0.756100\pi\)
0.720527 0.693427i \(-0.243900\pi\)
\(374\) 0 0
\(375\) 13.8564 0.715542
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) − 16.5885i − 0.852092i −0.904702 0.426046i \(-0.859906\pi\)
0.904702 0.426046i \(-0.140094\pi\)
\(380\) 0 0
\(381\) 8.00000i 0.409852i
\(382\) 0 0
\(383\) 27.6603 1.41337 0.706686 0.707527i \(-0.250189\pi\)
0.706686 + 0.707527i \(0.250189\pi\)
\(384\) 0 0
\(385\) 20.7846 1.05928
\(386\) 0 0
\(387\) 7.46410i 0.379422i
\(388\) 0 0
\(389\) − 2.00000i − 0.101404i −0.998714 0.0507020i \(-0.983854\pi\)
0.998714 0.0507020i \(-0.0161459\pi\)
\(390\) 0 0
\(391\) 5.85641 0.296171
\(392\) 0 0
\(393\) 15.7128 0.792607
\(394\) 0 0
\(395\) 5.07180i 0.255190i
\(396\) 0 0
\(397\) 11.4641i 0.575367i 0.957726 + 0.287683i \(0.0928851\pi\)
−0.957726 + 0.287683i \(0.907115\pi\)
\(398\) 0 0
\(399\) 25.8564 1.29444
\(400\) 0 0
\(401\) 11.4641 0.572490 0.286245 0.958156i \(-0.407593\pi\)
0.286245 + 0.958156i \(0.407593\pi\)
\(402\) 0 0
\(403\) − 3.26795i − 0.162788i
\(404\) 0 0
\(405\) − 38.1051i − 1.89346i
\(406\) 0 0
\(407\) −6.24871 −0.309737
\(408\) 0 0
\(409\) −0.928203 −0.0458967 −0.0229483 0.999737i \(-0.507305\pi\)
−0.0229483 + 0.999737i \(0.507305\pi\)
\(410\) 0 0
\(411\) − 1.85641i − 0.0915698i
\(412\) 0 0
\(413\) 0.928203i 0.0456739i
\(414\) 0 0
\(415\) −23.3205 −1.14476
\(416\) 0 0
\(417\) 20.0000 0.979404
\(418\) 0 0
\(419\) 10.7846i 0.526863i 0.964678 + 0.263431i \(0.0848542\pi\)
−0.964678 + 0.263431i \(0.915146\pi\)
\(420\) 0 0
\(421\) 24.2487i 1.18181i 0.806741 + 0.590905i \(0.201229\pi\)
−0.806741 + 0.590905i \(0.798771\pi\)
\(422\) 0 0
\(423\) 3.26795 0.158893
\(424\) 0 0
\(425\) 10.2487 0.497136
\(426\) 0 0
\(427\) 51.7128i 2.50256i
\(428\) 0 0
\(429\) − 2.53590i − 0.122434i
\(430\) 0 0
\(431\) −14.8756 −0.716535 −0.358267 0.933619i \(-0.616632\pi\)
−0.358267 + 0.933619i \(0.616632\pi\)
\(432\) 0 0
\(433\) 34.7846 1.67164 0.835821 0.549002i \(-0.184992\pi\)
0.835821 + 0.549002i \(0.184992\pi\)
\(434\) 0 0
\(435\) 13.8564i 0.664364i
\(436\) 0 0
\(437\) 10.9282i 0.522767i
\(438\) 0 0
\(439\) 10.9282 0.521575 0.260787 0.965396i \(-0.416018\pi\)
0.260787 + 0.965396i \(0.416018\pi\)
\(440\) 0 0
\(441\) −15.3923 −0.732967
\(442\) 0 0
\(443\) − 30.0000i − 1.42534i −0.701498 0.712672i \(-0.747485\pi\)
0.701498 0.712672i \(-0.252515\pi\)
\(444\) 0 0
\(445\) 60.0000i 2.84427i
\(446\) 0 0
\(447\) 1.85641 0.0878050
\(448\) 0 0
\(449\) 38.3923 1.81184 0.905922 0.423444i \(-0.139179\pi\)
0.905922 + 0.423444i \(0.139179\pi\)
\(450\) 0 0
\(451\) 6.24871i 0.294240i
\(452\) 0 0
\(453\) − 34.2487i − 1.60914i
\(454\) 0 0
\(455\) 16.3923 0.768483
\(456\) 0 0
\(457\) −14.0000 −0.654892 −0.327446 0.944870i \(-0.606188\pi\)
−0.327446 + 0.944870i \(0.606188\pi\)
\(458\) 0 0
\(459\) − 5.85641i − 0.273354i
\(460\) 0 0
\(461\) − 7.07180i − 0.329366i −0.986347 0.164683i \(-0.947340\pi\)
0.986347 0.164683i \(-0.0526602\pi\)
\(462\) 0 0
\(463\) 15.6603 0.727794 0.363897 0.931439i \(-0.381446\pi\)
0.363897 + 0.931439i \(0.381446\pi\)
\(464\) 0 0
\(465\) −22.6410 −1.04995
\(466\) 0 0
\(467\) − 12.2487i − 0.566803i −0.959001 0.283401i \(-0.908537\pi\)
0.959001 0.283401i \(-0.0914629\pi\)
\(468\) 0 0
\(469\) − 12.9282i − 0.596969i
\(470\) 0 0
\(471\) −6.14359 −0.283082
\(472\) 0 0
\(473\) −9.46410 −0.435160
\(474\) 0 0
\(475\) 19.1244i 0.877486i
\(476\) 0 0
\(477\) 10.9282i 0.500368i
\(478\) 0 0
\(479\) −24.7321 −1.13004 −0.565018 0.825078i \(-0.691131\pi\)
−0.565018 + 0.825078i \(0.691131\pi\)
\(480\) 0 0
\(481\) −4.92820 −0.224707
\(482\) 0 0
\(483\) − 37.8564i − 1.72253i
\(484\) 0 0
\(485\) − 49.8564i − 2.26386i
\(486\) 0 0
\(487\) −16.4449 −0.745188 −0.372594 0.927994i \(-0.621532\pi\)
−0.372594 + 0.927994i \(0.621532\pi\)
\(488\) 0 0
\(489\) −26.5359 −1.19999
\(490\) 0 0
\(491\) 24.2487i 1.09433i 0.837025 + 0.547165i \(0.184293\pi\)
−0.837025 + 0.547165i \(0.815707\pi\)
\(492\) 0 0
\(493\) 2.92820i 0.131880i
\(494\) 0 0
\(495\) −4.39230 −0.197419
\(496\) 0 0
\(497\) −10.3923 −0.466159
\(498\) 0 0
\(499\) − 10.7321i − 0.480433i −0.970719 0.240216i \(-0.922782\pi\)
0.970719 0.240216i \(-0.0772184\pi\)
\(500\) 0 0
\(501\) − 23.3205i − 1.04188i
\(502\) 0 0
\(503\) −37.4641 −1.67044 −0.835221 0.549915i \(-0.814660\pi\)
−0.835221 + 0.549915i \(0.814660\pi\)
\(504\) 0 0
\(505\) −41.5692 −1.84981
\(506\) 0 0
\(507\) − 2.00000i − 0.0888231i
\(508\) 0 0
\(509\) 6.39230i 0.283334i 0.989914 + 0.141667i \(0.0452462\pi\)
−0.989914 + 0.141667i \(0.954754\pi\)
\(510\) 0 0
\(511\) −2.53590 −0.112182
\(512\) 0 0
\(513\) 10.9282 0.482492
\(514\) 0 0
\(515\) 24.0000i 1.05757i
\(516\) 0 0
\(517\) 4.14359i 0.182235i
\(518\) 0 0
\(519\) −13.8564 −0.608229
\(520\) 0 0
\(521\) 37.1769 1.62875 0.814375 0.580339i \(-0.197080\pi\)
0.814375 + 0.580339i \(0.197080\pi\)
\(522\) 0 0
\(523\) 14.0000i 0.612177i 0.952003 + 0.306089i \(0.0990204\pi\)
−0.952003 + 0.306089i \(0.900980\pi\)
\(524\) 0 0
\(525\) − 66.2487i − 2.89133i
\(526\) 0 0
\(527\) −4.78461 −0.208421
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) − 0.196152i − 0.00851229i
\(532\) 0 0
\(533\) 4.92820i 0.213464i
\(534\) 0 0
\(535\) 30.9282 1.33714
\(536\) 0 0
\(537\) −20.7846 −0.896922
\(538\) 0 0
\(539\) − 19.5167i − 0.840642i
\(540\) 0 0
\(541\) 16.9282i 0.727800i 0.931438 + 0.363900i \(0.118555\pi\)
−0.931438 + 0.363900i \(0.881445\pi\)
\(542\) 0 0
\(543\) 9.85641 0.422979
\(544\) 0 0
\(545\) −6.92820 −0.296772
\(546\) 0 0
\(547\) 15.8564i 0.677971i 0.940792 + 0.338985i \(0.110084\pi\)
−0.940792 + 0.338985i \(0.889916\pi\)
\(548\) 0 0
\(549\) − 10.9282i − 0.466404i
\(550\) 0 0
\(551\) −5.46410 −0.232779
\(552\) 0 0
\(553\) 6.92820 0.294617
\(554\) 0 0
\(555\) 34.1436i 1.44931i
\(556\) 0 0
\(557\) 6.78461i 0.287473i 0.989616 + 0.143737i \(0.0459118\pi\)
−0.989616 + 0.143737i \(0.954088\pi\)
\(558\) 0 0
\(559\) −7.46410 −0.315698
\(560\) 0 0
\(561\) −3.71281 −0.156755
\(562\) 0 0
\(563\) − 0.535898i − 0.0225854i −0.999936 0.0112927i \(-0.996405\pi\)
0.999936 0.0112927i \(-0.00359466\pi\)
\(564\) 0 0
\(565\) 32.7846i 1.37926i
\(566\) 0 0
\(567\) −52.0526 −2.18600
\(568\) 0 0
\(569\) −14.0000 −0.586911 −0.293455 0.955973i \(-0.594805\pi\)
−0.293455 + 0.955973i \(0.594805\pi\)
\(570\) 0 0
\(571\) 37.3205i 1.56181i 0.624647 + 0.780907i \(0.285243\pi\)
−0.624647 + 0.780907i \(0.714757\pi\)
\(572\) 0 0
\(573\) 42.9282i 1.79335i
\(574\) 0 0
\(575\) 28.0000 1.16768
\(576\) 0 0
\(577\) −20.9282 −0.871253 −0.435626 0.900128i \(-0.643473\pi\)
−0.435626 + 0.900128i \(0.643473\pi\)
\(578\) 0 0
\(579\) − 44.7846i − 1.86118i
\(580\) 0 0
\(581\) 31.8564i 1.32163i
\(582\) 0 0
\(583\) −13.8564 −0.573874
\(584\) 0 0
\(585\) −3.46410 −0.143223
\(586\) 0 0
\(587\) − 21.6603i − 0.894014i −0.894530 0.447007i \(-0.852490\pi\)
0.894530 0.447007i \(-0.147510\pi\)
\(588\) 0 0
\(589\) − 8.92820i − 0.367880i
\(590\) 0 0
\(591\) −33.8564 −1.39267
\(592\) 0 0
\(593\) 19.8564 0.815405 0.407702 0.913115i \(-0.366330\pi\)
0.407702 + 0.913115i \(0.366330\pi\)
\(594\) 0 0
\(595\) − 24.0000i − 0.983904i
\(596\) 0 0
\(597\) 49.5692i 2.02873i
\(598\) 0 0
\(599\) −17.1769 −0.701830 −0.350915 0.936407i \(-0.614129\pi\)
−0.350915 + 0.936407i \(0.614129\pi\)
\(600\) 0 0
\(601\) 16.3923 0.668656 0.334328 0.942457i \(-0.391491\pi\)
0.334328 + 0.942457i \(0.391491\pi\)
\(602\) 0 0
\(603\) 2.73205i 0.111258i
\(604\) 0 0
\(605\) 32.5359i 1.32277i
\(606\) 0 0
\(607\) 27.3205 1.10891 0.554453 0.832215i \(-0.312928\pi\)
0.554453 + 0.832215i \(0.312928\pi\)
\(608\) 0 0
\(609\) 18.9282 0.767010
\(610\) 0 0
\(611\) 3.26795i 0.132207i
\(612\) 0 0
\(613\) 44.6410i 1.80303i 0.432744 + 0.901517i \(0.357545\pi\)
−0.432744 + 0.901517i \(0.642455\pi\)
\(614\) 0 0
\(615\) 34.1436 1.37680
\(616\) 0 0
\(617\) 6.67949 0.268906 0.134453 0.990920i \(-0.457072\pi\)
0.134453 + 0.990920i \(0.457072\pi\)
\(618\) 0 0
\(619\) 12.5885i 0.505973i 0.967470 + 0.252986i \(0.0814128\pi\)
−0.967470 + 0.252986i \(0.918587\pi\)
\(620\) 0 0
\(621\) − 16.0000i − 0.642058i
\(622\) 0 0
\(623\) 81.9615 3.28372
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) − 6.92820i − 0.276686i
\(628\) 0 0
\(629\) 7.21539i 0.287696i
\(630\) 0 0
\(631\) 3.94744 0.157145 0.0785726 0.996908i \(-0.474964\pi\)
0.0785726 + 0.996908i \(0.474964\pi\)
\(632\) 0 0
\(633\) −39.7128 −1.57844
\(634\) 0 0
\(635\) 13.8564i 0.549875i
\(636\) 0 0
\(637\) − 15.3923i − 0.609865i
\(638\) 0 0
\(639\) 2.19615 0.0868784
\(640\) 0 0
\(641\) 26.2487 1.03676 0.518381 0.855150i \(-0.326535\pi\)
0.518381 + 0.855150i \(0.326535\pi\)
\(642\) 0 0
\(643\) − 9.26795i − 0.365492i −0.983160 0.182746i \(-0.941501\pi\)
0.983160 0.182746i \(-0.0584986\pi\)
\(644\) 0 0
\(645\) 51.7128i 2.03619i
\(646\) 0 0
\(647\) −10.1436 −0.398786 −0.199393 0.979920i \(-0.563897\pi\)
−0.199393 + 0.979920i \(0.563897\pi\)
\(648\) 0 0
\(649\) 0.248711 0.00976277
\(650\) 0 0
\(651\) 30.9282i 1.21217i
\(652\) 0 0
\(653\) 16.9282i 0.662452i 0.943551 + 0.331226i \(0.107462\pi\)
−0.943551 + 0.331226i \(0.892538\pi\)
\(654\) 0 0
\(655\) 27.2154 1.06339
\(656\) 0 0
\(657\) 0.535898 0.0209074
\(658\) 0 0
\(659\) 14.0000i 0.545363i 0.962104 + 0.272681i \(0.0879105\pi\)
−0.962104 + 0.272681i \(0.912090\pi\)
\(660\) 0 0
\(661\) 17.3205i 0.673690i 0.941560 + 0.336845i \(0.109360\pi\)
−0.941560 + 0.336845i \(0.890640\pi\)
\(662\) 0 0
\(663\) −2.92820 −0.113722
\(664\) 0 0
\(665\) 44.7846 1.73667
\(666\) 0 0
\(667\) 8.00000i 0.309761i
\(668\) 0 0
\(669\) − 20.3923i − 0.788412i
\(670\) 0 0
\(671\) 13.8564 0.534921
\(672\) 0 0
\(673\) −29.1769 −1.12469 −0.562344 0.826904i \(-0.690100\pi\)
−0.562344 + 0.826904i \(0.690100\pi\)
\(674\) 0 0
\(675\) − 28.0000i − 1.07772i
\(676\) 0 0
\(677\) − 34.9282i − 1.34240i −0.741276 0.671200i \(-0.765779\pi\)
0.741276 0.671200i \(-0.234221\pi\)
\(678\) 0 0
\(679\) −68.1051 −2.61363
\(680\) 0 0
\(681\) −54.2487 −2.07882
\(682\) 0 0
\(683\) − 28.1962i − 1.07890i −0.842019 0.539448i \(-0.818633\pi\)
0.842019 0.539448i \(-0.181367\pi\)
\(684\) 0 0
\(685\) − 3.21539i − 0.122854i
\(686\) 0 0
\(687\) 58.6410 2.23729
\(688\) 0 0
\(689\) −10.9282 −0.416331
\(690\) 0 0
\(691\) 46.8372i 1.78177i 0.454229 + 0.890885i \(0.349915\pi\)
−0.454229 + 0.890885i \(0.650085\pi\)
\(692\) 0 0
\(693\) 6.00000i 0.227921i
\(694\) 0 0
\(695\) 34.6410 1.31401
\(696\) 0 0
\(697\) 7.21539 0.273302
\(698\) 0 0
\(699\) 6.14359i 0.232372i
\(700\) 0 0
\(701\) − 28.6410i − 1.08176i −0.841101 0.540878i \(-0.818092\pi\)
0.841101 0.540878i \(-0.181908\pi\)
\(702\) 0 0
\(703\) −13.4641 −0.507808
\(704\) 0 0
\(705\) 22.6410 0.852710
\(706\) 0 0
\(707\) 56.7846i 2.13561i
\(708\) 0 0
\(709\) 5.32051i 0.199816i 0.994997 + 0.0999079i \(0.0318548\pi\)
−0.994997 + 0.0999079i \(0.968145\pi\)
\(710\) 0 0
\(711\) −1.46410 −0.0549081
\(712\) 0 0
\(713\) −13.0718 −0.489543
\(714\) 0 0
\(715\) − 4.39230i − 0.164263i
\(716\) 0 0
\(717\) − 30.5359i − 1.14038i
\(718\) 0 0
\(719\) −17.0718 −0.636671 −0.318335 0.947978i \(-0.603124\pi\)
−0.318335 + 0.947978i \(0.603124\pi\)
\(720\) 0 0
\(721\) 32.7846 1.22096
\(722\) 0 0
\(723\) − 19.2154i − 0.714628i
\(724\) 0 0
\(725\) 14.0000i 0.519947i
\(726\) 0 0
\(727\) 9.07180 0.336454 0.168227 0.985748i \(-0.446196\pi\)
0.168227 + 0.985748i \(0.446196\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 10.9282i 0.404194i
\(732\) 0 0
\(733\) − 2.67949i − 0.0989693i −0.998775 0.0494846i \(-0.984242\pi\)
0.998775 0.0494846i \(-0.0157579\pi\)
\(734\) 0 0
\(735\) −106.641 −3.93351
\(736\) 0 0
\(737\) −3.46410 −0.127602
\(738\) 0 0
\(739\) − 53.7654i − 1.97779i −0.148612 0.988896i \(-0.547481\pi\)
0.148612 0.988896i \(-0.452519\pi\)
\(740\) 0 0
\(741\) − 5.46410i − 0.200729i
\(742\) 0 0
\(743\) 21.8038 0.799906 0.399953 0.916536i \(-0.369027\pi\)
0.399953 + 0.916536i \(0.369027\pi\)
\(744\) 0 0
\(745\) 3.21539 0.117803
\(746\) 0 0
\(747\) − 6.73205i − 0.246313i
\(748\) 0 0
\(749\) − 42.2487i − 1.54373i
\(750\) 0 0
\(751\) −14.9282 −0.544738 −0.272369 0.962193i \(-0.587807\pi\)
−0.272369 + 0.962193i \(0.587807\pi\)
\(752\) 0 0
\(753\) 28.7846 1.04897
\(754\) 0 0
\(755\) − 59.3205i − 2.15889i
\(756\) 0 0
\(757\) 0.784610i 0.0285171i 0.999898 + 0.0142586i \(0.00453880\pi\)
−0.999898 + 0.0142586i \(0.995461\pi\)
\(758\) 0 0
\(759\) −10.1436 −0.368189
\(760\) 0 0
\(761\) −22.7846 −0.825941 −0.412971 0.910744i \(-0.635509\pi\)
−0.412971 + 0.910744i \(0.635509\pi\)
\(762\) 0 0
\(763\) 9.46410i 0.342623i
\(764\) 0 0
\(765\) 5.07180i 0.183371i
\(766\) 0 0
\(767\) 0.196152 0.00708265
\(768\) 0 0
\(769\) 24.5359 0.884787 0.442394 0.896821i \(-0.354129\pi\)
0.442394 + 0.896821i \(0.354129\pi\)
\(770\) 0 0
\(771\) 7.71281i 0.277770i
\(772\) 0 0
\(773\) − 20.5359i − 0.738625i −0.929305 0.369312i \(-0.879593\pi\)
0.929305 0.369312i \(-0.120407\pi\)
\(774\) 0 0
\(775\) −22.8756 −0.821717
\(776\) 0 0
\(777\) 46.6410 1.67324
\(778\) 0 0
\(779\) 13.4641i 0.482402i
\(780\) 0 0
\(781\) 2.78461i 0.0996412i
\(782\) 0 0
\(783\) 8.00000 0.285897
\(784\) 0 0
\(785\) −10.6410 −0.379794
\(786\) 0 0
\(787\) − 4.87564i − 0.173798i −0.996217 0.0868990i \(-0.972304\pi\)
0.996217 0.0868990i \(-0.0276957\pi\)
\(788\) 0 0
\(789\) − 14.6410i − 0.521234i
\(790\) 0 0
\(791\) 44.7846 1.59236
\(792\) 0 0
\(793\) 10.9282 0.388072
\(794\) 0 0
\(795\) 75.7128i 2.68526i
\(796\) 0 0
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) 4.78461 0.169267
\(800\) 0 0
\(801\) −17.3205 −0.611990
\(802\) 0 0
\(803\) 0.679492i 0.0239787i
\(804\) 0 0
\(805\) − 65.5692i − 2.31101i
\(806\) 0 0
\(807\) 39.7128 1.39796
\(808\) 0 0
\(809\) 1.46410 0.0514751 0.0257375 0.999669i \(-0.491807\pi\)
0.0257375 + 0.999669i \(0.491807\pi\)
\(810\) 0 0
\(811\) 52.5885i 1.84663i 0.384043 + 0.923315i \(0.374531\pi\)
−0.384043 + 0.923315i \(0.625469\pi\)
\(812\) 0 0
\(813\) 19.6077i 0.687672i
\(814\) 0 0
\(815\) −45.9615 −1.60996
\(816\) 0 0
\(817\) −20.3923 −0.713436
\(818\) 0 0
\(819\) 4.73205i 0.165351i
\(820\) 0 0
\(821\) − 0.248711i − 0.00868008i −0.999991 0.00434004i \(-0.998619\pi\)
0.999991 0.00434004i \(-0.00138148\pi\)
\(822\) 0 0
\(823\) −20.0000 −0.697156 −0.348578 0.937280i \(-0.613335\pi\)
−0.348578 + 0.937280i \(0.613335\pi\)
\(824\) 0 0
\(825\) −17.7513 −0.618021
\(826\) 0 0
\(827\) 5.26795i 0.183185i 0.995797 + 0.0915923i \(0.0291956\pi\)
−0.995797 + 0.0915923i \(0.970804\pi\)
\(828\) 0 0
\(829\) − 12.7846i − 0.444028i −0.975043 0.222014i \(-0.928737\pi\)
0.975043 0.222014i \(-0.0712630\pi\)
\(830\) 0 0
\(831\) −51.7128 −1.79390
\(832\) 0 0
\(833\) −22.5359 −0.780823
\(834\) 0 0
\(835\) − 40.3923i − 1.39783i
\(836\) 0 0
\(837\) 13.0718i 0.451827i
\(838\) 0 0
\(839\) −30.9808 −1.06957 −0.534787 0.844987i \(-0.679608\pi\)
−0.534787 + 0.844987i \(0.679608\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) − 50.6410i − 1.74417i
\(844\) 0 0
\(845\) − 3.46410i − 0.119169i
\(846\) 0 0
\(847\) 44.4449 1.52714
\(848\) 0 0
\(849\) −25.0718 −0.860462
\(850\) 0 0
\(851\) 19.7128i 0.675747i
\(852\) 0 0
\(853\) − 7.17691i − 0.245733i −0.992423 0.122866i \(-0.960791\pi\)
0.992423 0.122866i \(-0.0392087\pi\)
\(854\) 0 0
\(855\) −9.46410 −0.323665
\(856\) 0 0
\(857\) 19.8564 0.678282 0.339141 0.940736i \(-0.389864\pi\)
0.339141 + 0.940736i \(0.389864\pi\)
\(858\) 0 0
\(859\) 18.0000i 0.614152i 0.951685 + 0.307076i \(0.0993506\pi\)
−0.951685 + 0.307076i \(0.900649\pi\)
\(860\) 0 0
\(861\) − 46.6410i − 1.58952i
\(862\) 0 0
\(863\) −4.73205 −0.161081 −0.0805404 0.996751i \(-0.525665\pi\)
−0.0805404 + 0.996751i \(0.525665\pi\)
\(864\) 0 0
\(865\) −24.0000 −0.816024
\(866\) 0 0
\(867\) − 29.7128i − 1.00910i
\(868\) 0 0
\(869\) − 1.85641i − 0.0629743i
\(870\) 0 0
\(871\) −2.73205 −0.0925720
\(872\) 0 0
\(873\) 14.3923 0.487106
\(874\) 0 0
\(875\) − 32.7846i − 1.10832i
\(876\) 0 0
\(877\) 16.5359i 0.558378i 0.960236 + 0.279189i \(0.0900655\pi\)
−0.960236 + 0.279189i \(0.909934\pi\)
\(878\) 0 0
\(879\) 38.1436 1.28655
\(880\) 0 0
\(881\) 21.7128 0.731523 0.365762 0.930709i \(-0.380809\pi\)
0.365762 + 0.930709i \(0.380809\pi\)
\(882\) 0 0
\(883\) 24.5359i 0.825699i 0.910799 + 0.412849i \(0.135466\pi\)
−0.910799 + 0.412849i \(0.864534\pi\)
\(884\) 0 0
\(885\) − 1.35898i − 0.0456817i
\(886\) 0 0
\(887\) 18.2487 0.612732 0.306366 0.951914i \(-0.400887\pi\)
0.306366 + 0.951914i \(0.400887\pi\)
\(888\) 0 0
\(889\) 18.9282 0.634832
\(890\) 0 0
\(891\) 13.9474i 0.467257i
\(892\) 0 0
\(893\) 8.92820i 0.298771i
\(894\) 0 0
\(895\) −36.0000 −1.20335
\(896\) 0 0
\(897\) −8.00000 −0.267112
\(898\) 0 0
\(899\) − 6.53590i − 0.217984i
\(900\) 0 0
\(901\) 16.0000i 0.533037i
\(902\) 0 0
\(903\) 70.6410 2.35079
\(904\) 0 0
\(905\) 17.0718 0.567486
\(906\) 0 0
\(907\) − 54.1051i − 1.79653i −0.439453 0.898265i \(-0.644828\pi\)
0.439453 0.898265i \(-0.355172\pi\)
\(908\) 0 0
\(909\) − 12.0000i − 0.398015i
\(910\) 0 0
\(911\) 31.3205 1.03769 0.518847 0.854867i \(-0.326361\pi\)
0.518847 + 0.854867i \(0.326361\pi\)
\(912\) 0 0
\(913\) 8.53590 0.282497
\(914\) 0 0
\(915\) − 75.7128i − 2.50299i
\(916\) 0 0
\(917\) − 37.1769i − 1.22769i
\(918\) 0 0
\(919\) 0.679492 0.0224144 0.0112072 0.999937i \(-0.496433\pi\)
0.0112072 + 0.999937i \(0.496433\pi\)
\(920\) 0 0
\(921\) 5.46410 0.180048
\(922\) 0 0
\(923\) 2.19615i 0.0722872i
\(924\) 0 0
\(925\) 34.4974i 1.13427i
\(926\) 0 0
\(927\) −6.92820 −0.227552
\(928\) 0 0
\(929\) 27.4641 0.901068 0.450534 0.892759i \(-0.351234\pi\)
0.450534 + 0.892759i \(0.351234\pi\)
\(930\) 0 0
\(931\) − 42.0526i − 1.37822i
\(932\) 0 0
\(933\) − 29.8564i − 0.977455i
\(934\) 0 0
\(935\) −6.43078 −0.210309
\(936\) 0 0
\(937\) 41.7128 1.36270 0.681349 0.731959i \(-0.261394\pi\)
0.681349 + 0.731959i \(0.261394\pi\)
\(938\) 0 0
\(939\) − 40.7846i − 1.33096i
\(940\) 0 0
\(941\) 16.2487i 0.529693i 0.964291 + 0.264846i \(0.0853213\pi\)
−0.964291 + 0.264846i \(0.914679\pi\)
\(942\) 0 0
\(943\) 19.7128 0.641938
\(944\) 0 0
\(945\) −65.5692 −2.13297
\(946\) 0 0
\(947\) 10.4449i 0.339412i 0.985495 + 0.169706i \(0.0542819\pi\)
−0.985495 + 0.169706i \(0.945718\pi\)
\(948\) 0 0
\(949\) 0.535898i 0.0173960i
\(950\) 0 0
\(951\) −6.92820 −0.224662
\(952\) 0 0
\(953\) −4.14359 −0.134224 −0.0671121 0.997745i \(-0.521379\pi\)
−0.0671121 + 0.997745i \(0.521379\pi\)
\(954\) 0 0
\(955\) 74.3538i 2.40603i
\(956\) 0 0
\(957\) − 5.07180i − 0.163948i
\(958\) 0 0
\(959\) −4.39230 −0.141835
\(960\) 0 0
\(961\) −20.3205 −0.655500
\(962\) 0 0
\(963\) 8.92820i 0.287707i
\(964\) 0 0
\(965\) − 77.5692i − 2.49704i
\(966\) 0 0
\(967\) −42.9808 −1.38217 −0.691084 0.722774i \(-0.742867\pi\)
−0.691084 + 0.722774i \(0.742867\pi\)
\(968\) 0 0
\(969\) −8.00000 −0.256997
\(970\) 0 0
\(971\) − 43.8564i − 1.40742i −0.710488 0.703710i \(-0.751526\pi\)
0.710488 0.703710i \(-0.248474\pi\)
\(972\) 0 0
\(973\) − 47.3205i − 1.51703i
\(974\) 0 0
\(975\) −14.0000 −0.448359
\(976\) 0 0
\(977\) −37.6077 −1.20318 −0.601588 0.798806i \(-0.705465\pi\)
−0.601588 + 0.798806i \(0.705465\pi\)
\(978\) 0 0
\(979\) − 21.9615i − 0.701893i
\(980\) 0 0
\(981\) − 2.00000i − 0.0638551i
\(982\) 0 0
\(983\) −5.80385 −0.185114 −0.0925570 0.995707i \(-0.529504\pi\)
−0.0925570 + 0.995707i \(0.529504\pi\)
\(984\) 0 0
\(985\) −58.6410 −1.86846
\(986\) 0 0
\(987\) − 30.9282i − 0.984456i
\(988\) 0 0
\(989\) 29.8564i 0.949378i
\(990\) 0 0
\(991\) 43.3205 1.37612 0.688061 0.725653i \(-0.258462\pi\)
0.688061 + 0.725653i \(0.258462\pi\)
\(992\) 0 0
\(993\) 55.0333 1.74643
\(994\) 0 0
\(995\) 85.8564i 2.72183i
\(996\) 0 0
\(997\) 49.5692i 1.56987i 0.619576 + 0.784936i \(0.287304\pi\)
−0.619576 + 0.784936i \(0.712696\pi\)
\(998\) 0 0
\(999\) 19.7128 0.623686
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.b.b.209.4 4
3.2 odd 2 3744.2.g.b.1873.2 4
4.3 odd 2 104.2.b.b.53.3 4
8.3 odd 2 104.2.b.b.53.4 yes 4
8.5 even 2 inner 416.2.b.b.209.1 4
12.11 even 2 936.2.g.b.469.2 4
16.3 odd 4 3328.2.a.bd.1.2 2
16.5 even 4 3328.2.a.bc.1.1 2
16.11 odd 4 3328.2.a.n.1.1 2
16.13 even 4 3328.2.a.m.1.2 2
24.5 odd 2 3744.2.g.b.1873.4 4
24.11 even 2 936.2.g.b.469.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.b.b.53.3 4 4.3 odd 2
104.2.b.b.53.4 yes 4 8.3 odd 2
416.2.b.b.209.1 4 8.5 even 2 inner
416.2.b.b.209.4 4 1.1 even 1 trivial
936.2.g.b.469.1 4 24.11 even 2
936.2.g.b.469.2 4 12.11 even 2
3328.2.a.m.1.2 2 16.13 even 4
3328.2.a.n.1.1 2 16.11 odd 4
3328.2.a.bc.1.1 2 16.5 even 4
3328.2.a.bd.1.2 2 16.3 odd 4
3744.2.g.b.1873.2 4 3.2 odd 2
3744.2.g.b.1873.4 4 24.5 odd 2