Properties

Label 416.2.b
Level $416$
Weight $2$
Character orbit 416.b
Rep. character $\chi_{416}(209,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $3$
Sturm bound $112$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(112\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(416, [\chi])\).

Total New Old
Modular forms 64 12 52
Cusp forms 48 12 36
Eisenstein series 16 0 16

Trace form

\( 12 q + 4 q^{7} - 12 q^{9} - 8 q^{15} - 8 q^{23} - 12 q^{25} + 4 q^{31} + 8 q^{33} + 8 q^{39} - 8 q^{41} + 4 q^{47} + 12 q^{49} - 16 q^{55} - 8 q^{57} + 20 q^{63} + 36 q^{71} + 24 q^{79} + 4 q^{81} - 56 q^{87}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(416, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
416.2.b.a 416.b 8.b $2$ $3.322$ \(\Q(\sqrt{-1}) \) None 104.2.b.a \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+3 i q^{5}-3 q^{7}+2 q^{9}+i q^{13}+\cdots\)
416.2.b.b 416.b 8.b $4$ $3.322$ \(\Q(\zeta_{12})\) None 104.2.b.b \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta_1 q^{3}-2\beta_{2} q^{5}+(-\beta_{3}+3)q^{7}+\cdots\)
416.2.b.c 416.b 8.b $6$ $3.322$ 6.0.399424.1 None 104.2.b.c \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}-\beta _{2}q^{5}+\beta _{1}q^{7}+(-2+\beta _{1}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(416, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(416, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)