Defining parameters
| Level: | \( N \) | \(=\) | \( 416 = 2^{5} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 416.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(112\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(416, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 64 | 12 | 52 |
| Cusp forms | 48 | 12 | 36 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(416, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 416.2.b.a | $2$ | $3.322$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(-6\) | \(q+i q^{3}+3 i q^{5}-3 q^{7}+2 q^{9}+i q^{13}+\cdots\) |
| 416.2.b.b | $4$ | $3.322$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(12\) | \(q+2\beta_1 q^{3}-2\beta_{2} q^{5}+(-\beta_{3}+3)q^{7}+\cdots\) |
| 416.2.b.c | $6$ | $3.322$ | 6.0.399424.1 | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q+\beta _{5}q^{3}-\beta _{2}q^{5}+\beta _{1}q^{7}+(-2+\beta _{1}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(416, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(416, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)