Properties

Label 416.2.a.f.1.1
Level $416$
Weight $2$
Character 416.1
Self dual yes
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(1,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13448.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.546295\) of defining polynomial
Character \(\chi\) \(=\) 416.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.11473 q^{3} -3.70156 q^{5} -4.20732 q^{7} +6.70156 q^{9} +1.09259 q^{11} +1.00000 q^{13} +11.5294 q^{15} +0.298438 q^{17} -1.09259 q^{19} +13.1047 q^{21} +8.70156 q^{25} -11.5294 q^{27} -2.00000 q^{29} +5.13688 q^{31} -3.40312 q^{33} +15.5737 q^{35} -3.70156 q^{37} -3.11473 q^{39} -9.40312 q^{41} +5.29991 q^{43} -24.8062 q^{45} -4.20732 q^{47} +10.7016 q^{49} -0.929554 q^{51} +1.40312 q^{53} -4.04429 q^{55} +3.40312 q^{57} +13.5515 q^{59} +9.40312 q^{61} -28.1956 q^{63} -3.70156 q^{65} +11.3663 q^{67} -8.25161 q^{71} -6.00000 q^{73} -27.1030 q^{75} -4.59688 q^{77} +14.6441 q^{79} +15.8062 q^{81} -7.32206 q^{83} -1.10469 q^{85} +6.22947 q^{87} -6.00000 q^{89} -4.20732 q^{91} -16.0000 q^{93} +4.04429 q^{95} +8.80625 q^{97} +7.32206 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} + 14 q^{9} + 4 q^{13} + 14 q^{17} + 14 q^{21} + 22 q^{25} - 8 q^{29} + 12 q^{33} - 2 q^{37} - 12 q^{41} - 48 q^{45} + 30 q^{49} - 20 q^{53} - 12 q^{57} + 12 q^{61} - 2 q^{65} - 24 q^{73} - 44 q^{77}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.11473 −1.79829 −0.899146 0.437649i \(-0.855811\pi\)
−0.899146 + 0.437649i \(0.855811\pi\)
\(4\) 0 0
\(5\) −3.70156 −1.65539 −0.827694 0.561179i \(-0.810348\pi\)
−0.827694 + 0.561179i \(0.810348\pi\)
\(6\) 0 0
\(7\) −4.20732 −1.59022 −0.795109 0.606466i \(-0.792587\pi\)
−0.795109 + 0.606466i \(0.792587\pi\)
\(8\) 0 0
\(9\) 6.70156 2.23385
\(10\) 0 0
\(11\) 1.09259 0.329428 0.164714 0.986341i \(-0.447330\pi\)
0.164714 + 0.986341i \(0.447330\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 11.5294 2.97687
\(16\) 0 0
\(17\) 0.298438 0.0723818 0.0361909 0.999345i \(-0.488478\pi\)
0.0361909 + 0.999345i \(0.488478\pi\)
\(18\) 0 0
\(19\) −1.09259 −0.250657 −0.125329 0.992115i \(-0.539999\pi\)
−0.125329 + 0.992115i \(0.539999\pi\)
\(20\) 0 0
\(21\) 13.1047 2.85968
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 8.70156 1.74031
\(26\) 0 0
\(27\) −11.5294 −2.21883
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 5.13688 0.922610 0.461305 0.887242i \(-0.347381\pi\)
0.461305 + 0.887242i \(0.347381\pi\)
\(32\) 0 0
\(33\) −3.40312 −0.592408
\(34\) 0 0
\(35\) 15.5737 2.63243
\(36\) 0 0
\(37\) −3.70156 −0.608533 −0.304267 0.952587i \(-0.598411\pi\)
−0.304267 + 0.952587i \(0.598411\pi\)
\(38\) 0 0
\(39\) −3.11473 −0.498756
\(40\) 0 0
\(41\) −9.40312 −1.46852 −0.734261 0.678868i \(-0.762471\pi\)
−0.734261 + 0.678868i \(0.762471\pi\)
\(42\) 0 0
\(43\) 5.29991 0.808229 0.404114 0.914708i \(-0.367580\pi\)
0.404114 + 0.914708i \(0.367580\pi\)
\(44\) 0 0
\(45\) −24.8062 −3.69790
\(46\) 0 0
\(47\) −4.20732 −0.613701 −0.306851 0.951758i \(-0.599275\pi\)
−0.306851 + 0.951758i \(0.599275\pi\)
\(48\) 0 0
\(49\) 10.7016 1.52879
\(50\) 0 0
\(51\) −0.929554 −0.130164
\(52\) 0 0
\(53\) 1.40312 0.192734 0.0963670 0.995346i \(-0.469278\pi\)
0.0963670 + 0.995346i \(0.469278\pi\)
\(54\) 0 0
\(55\) −4.04429 −0.545332
\(56\) 0 0
\(57\) 3.40312 0.450755
\(58\) 0 0
\(59\) 13.5515 1.76426 0.882129 0.471008i \(-0.156110\pi\)
0.882129 + 0.471008i \(0.156110\pi\)
\(60\) 0 0
\(61\) 9.40312 1.20395 0.601973 0.798516i \(-0.294381\pi\)
0.601973 + 0.798516i \(0.294381\pi\)
\(62\) 0 0
\(63\) −28.1956 −3.55232
\(64\) 0 0
\(65\) −3.70156 −0.459122
\(66\) 0 0
\(67\) 11.3663 1.38862 0.694310 0.719676i \(-0.255710\pi\)
0.694310 + 0.719676i \(0.255710\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.25161 −0.979286 −0.489643 0.871923i \(-0.662873\pi\)
−0.489643 + 0.871923i \(0.662873\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) −27.1030 −3.12959
\(76\) 0 0
\(77\) −4.59688 −0.523863
\(78\) 0 0
\(79\) 14.6441 1.64759 0.823796 0.566887i \(-0.191852\pi\)
0.823796 + 0.566887i \(0.191852\pi\)
\(80\) 0 0
\(81\) 15.8062 1.75625
\(82\) 0 0
\(83\) −7.32206 −0.803700 −0.401850 0.915706i \(-0.631633\pi\)
−0.401850 + 0.915706i \(0.631633\pi\)
\(84\) 0 0
\(85\) −1.10469 −0.119820
\(86\) 0 0
\(87\) 6.22947 0.667869
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −4.20732 −0.441047
\(92\) 0 0
\(93\) −16.0000 −1.65912
\(94\) 0 0
\(95\) 4.04429 0.414935
\(96\) 0 0
\(97\) 8.80625 0.894139 0.447070 0.894499i \(-0.352468\pi\)
0.447070 + 0.894499i \(0.352468\pi\)
\(98\) 0 0
\(99\) 7.32206 0.735894
\(100\) 0 0
\(101\) −5.40312 −0.537631 −0.268815 0.963192i \(-0.586632\pi\)
−0.268815 + 0.963192i \(0.586632\pi\)
\(102\) 0 0
\(103\) −12.4589 −1.22762 −0.613808 0.789456i \(-0.710363\pi\)
−0.613808 + 0.789456i \(0.710363\pi\)
\(104\) 0 0
\(105\) −48.5078 −4.73388
\(106\) 0 0
\(107\) −14.6441 −1.41570 −0.707850 0.706363i \(-0.750335\pi\)
−0.707850 + 0.706363i \(0.750335\pi\)
\(108\) 0 0
\(109\) 4.29844 0.411716 0.205858 0.978582i \(-0.434002\pi\)
0.205858 + 0.978582i \(0.434002\pi\)
\(110\) 0 0
\(111\) 11.5294 1.09432
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.70156 0.619560
\(118\) 0 0
\(119\) −1.25562 −0.115103
\(120\) 0 0
\(121\) −9.80625 −0.891477
\(122\) 0 0
\(123\) 29.2882 2.64083
\(124\) 0 0
\(125\) −13.7016 −1.22550
\(126\) 0 0
\(127\) 16.8293 1.49336 0.746679 0.665185i \(-0.231647\pi\)
0.746679 + 0.665185i \(0.231647\pi\)
\(128\) 0 0
\(129\) −16.5078 −1.45343
\(130\) 0 0
\(131\) 7.48509 0.653975 0.326988 0.945029i \(-0.393966\pi\)
0.326988 + 0.945029i \(0.393966\pi\)
\(132\) 0 0
\(133\) 4.59688 0.398600
\(134\) 0 0
\(135\) 42.6767 3.67303
\(136\) 0 0
\(137\) 20.2094 1.72660 0.863302 0.504688i \(-0.168393\pi\)
0.863302 + 0.504688i \(0.168393\pi\)
\(138\) 0 0
\(139\) 15.5737 1.32094 0.660471 0.750852i \(-0.270357\pi\)
0.660471 + 0.750852i \(0.270357\pi\)
\(140\) 0 0
\(141\) 13.1047 1.10361
\(142\) 0 0
\(143\) 1.09259 0.0913669
\(144\) 0 0
\(145\) 7.40312 0.614796
\(146\) 0 0
\(147\) −33.3325 −2.74922
\(148\) 0 0
\(149\) 12.8062 1.04913 0.524564 0.851371i \(-0.324228\pi\)
0.524564 + 0.851371i \(0.324228\pi\)
\(150\) 0 0
\(151\) 2.02214 0.164560 0.0822799 0.996609i \(-0.473780\pi\)
0.0822799 + 0.996609i \(0.473780\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) −19.0145 −1.52728
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) −4.37036 −0.346592
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.50723 −0.744664 −0.372332 0.928100i \(-0.621442\pi\)
−0.372332 + 0.928100i \(0.621442\pi\)
\(164\) 0 0
\(165\) 12.5969 0.980665
\(166\) 0 0
\(167\) 11.6924 0.904786 0.452393 0.891819i \(-0.350570\pi\)
0.452393 + 0.891819i \(0.350570\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −7.32206 −0.559932
\(172\) 0 0
\(173\) 9.40312 0.714906 0.357453 0.933931i \(-0.383645\pi\)
0.357453 + 0.933931i \(0.383645\pi\)
\(174\) 0 0
\(175\) −36.6103 −2.76748
\(176\) 0 0
\(177\) −42.2094 −3.17265
\(178\) 0 0
\(179\) 5.29991 0.396134 0.198067 0.980188i \(-0.436534\pi\)
0.198067 + 0.980188i \(0.436534\pi\)
\(180\) 0 0
\(181\) 2.59688 0.193024 0.0965121 0.995332i \(-0.469231\pi\)
0.0965121 + 0.995332i \(0.469231\pi\)
\(182\) 0 0
\(183\) −29.2882 −2.16505
\(184\) 0 0
\(185\) 13.7016 1.00736
\(186\) 0 0
\(187\) 0.326070 0.0238446
\(188\) 0 0
\(189\) 48.5078 3.52842
\(190\) 0 0
\(191\) −4.04429 −0.292634 −0.146317 0.989238i \(-0.546742\pi\)
−0.146317 + 0.989238i \(0.546742\pi\)
\(192\) 0 0
\(193\) 21.4031 1.54063 0.770315 0.637663i \(-0.220099\pi\)
0.770315 + 0.637663i \(0.220099\pi\)
\(194\) 0 0
\(195\) 11.5294 0.825636
\(196\) 0 0
\(197\) −16.2984 −1.16122 −0.580608 0.814183i \(-0.697185\pi\)
−0.580608 + 0.814183i \(0.697185\pi\)
\(198\) 0 0
\(199\) 18.6884 1.32479 0.662393 0.749157i \(-0.269541\pi\)
0.662393 + 0.749157i \(0.269541\pi\)
\(200\) 0 0
\(201\) −35.4031 −2.49714
\(202\) 0 0
\(203\) 8.41464 0.590592
\(204\) 0 0
\(205\) 34.8062 2.43097
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.19375 −0.0825735
\(210\) 0 0
\(211\) −21.8031 −1.50099 −0.750495 0.660876i \(-0.770185\pi\)
−0.750495 + 0.660876i \(0.770185\pi\)
\(212\) 0 0
\(213\) 25.7016 1.76104
\(214\) 0 0
\(215\) −19.6180 −1.33793
\(216\) 0 0
\(217\) −21.6125 −1.46715
\(218\) 0 0
\(219\) 18.6884 1.26284
\(220\) 0 0
\(221\) 0.298438 0.0200751
\(222\) 0 0
\(223\) −20.7105 −1.38688 −0.693440 0.720514i \(-0.743906\pi\)
−0.693440 + 0.720514i \(0.743906\pi\)
\(224\) 0 0
\(225\) 58.3141 3.88760
\(226\) 0 0
\(227\) 5.13688 0.340946 0.170473 0.985362i \(-0.445470\pi\)
0.170473 + 0.985362i \(0.445470\pi\)
\(228\) 0 0
\(229\) 8.89531 0.587819 0.293909 0.955833i \(-0.405044\pi\)
0.293909 + 0.955833i \(0.405044\pi\)
\(230\) 0 0
\(231\) 14.3180 0.942058
\(232\) 0 0
\(233\) 23.1047 1.51364 0.756819 0.653624i \(-0.226752\pi\)
0.756819 + 0.653624i \(0.226752\pi\)
\(234\) 0 0
\(235\) 15.5737 1.01591
\(236\) 0 0
\(237\) −45.6125 −2.96285
\(238\) 0 0
\(239\) −14.4811 −0.936703 −0.468351 0.883542i \(-0.655152\pi\)
−0.468351 + 0.883542i \(0.655152\pi\)
\(240\) 0 0
\(241\) −4.80625 −0.309598 −0.154799 0.987946i \(-0.549473\pi\)
−0.154799 + 0.987946i \(0.549473\pi\)
\(242\) 0 0
\(243\) −14.6441 −0.939420
\(244\) 0 0
\(245\) −39.6125 −2.53075
\(246\) 0 0
\(247\) −1.09259 −0.0695198
\(248\) 0 0
\(249\) 22.8062 1.44529
\(250\) 0 0
\(251\) −16.8293 −1.06226 −0.531128 0.847292i \(-0.678232\pi\)
−0.531128 + 0.847292i \(0.678232\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 3.44080 0.215471
\(256\) 0 0
\(257\) −14.5078 −0.904972 −0.452486 0.891771i \(-0.649463\pi\)
−0.452486 + 0.891771i \(0.649463\pi\)
\(258\) 0 0
\(259\) 15.5737 0.967700
\(260\) 0 0
\(261\) −13.4031 −0.829633
\(262\) 0 0
\(263\) 2.18518 0.134744 0.0673719 0.997728i \(-0.478539\pi\)
0.0673719 + 0.997728i \(0.478539\pi\)
\(264\) 0 0
\(265\) −5.19375 −0.319050
\(266\) 0 0
\(267\) 18.6884 1.14371
\(268\) 0 0
\(269\) −12.2094 −0.744419 −0.372209 0.928149i \(-0.621400\pi\)
−0.372209 + 0.928149i \(0.621400\pi\)
\(270\) 0 0
\(271\) −4.20732 −0.255577 −0.127788 0.991801i \(-0.540788\pi\)
−0.127788 + 0.991801i \(0.540788\pi\)
\(272\) 0 0
\(273\) 13.1047 0.793132
\(274\) 0 0
\(275\) 9.50723 0.573308
\(276\) 0 0
\(277\) 24.2094 1.45460 0.727300 0.686320i \(-0.240775\pi\)
0.727300 + 0.686320i \(0.240775\pi\)
\(278\) 0 0
\(279\) 34.4251 2.06098
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) −12.5969 −0.746175
\(286\) 0 0
\(287\) 39.5620 2.33527
\(288\) 0 0
\(289\) −16.9109 −0.994761
\(290\) 0 0
\(291\) −27.4291 −1.60792
\(292\) 0 0
\(293\) 19.1047 1.11611 0.558054 0.829805i \(-0.311548\pi\)
0.558054 + 0.829805i \(0.311548\pi\)
\(294\) 0 0
\(295\) −50.1618 −2.92053
\(296\) 0 0
\(297\) −12.5969 −0.730945
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −22.2984 −1.28526
\(302\) 0 0
\(303\) 16.8293 0.966817
\(304\) 0 0
\(305\) −34.8062 −1.99300
\(306\) 0 0
\(307\) −15.7367 −0.898141 −0.449070 0.893496i \(-0.648245\pi\)
−0.449070 + 0.893496i \(0.648245\pi\)
\(308\) 0 0
\(309\) 38.8062 2.20761
\(310\) 0 0
\(311\) 18.6884 1.05972 0.529861 0.848085i \(-0.322244\pi\)
0.529861 + 0.848085i \(0.322244\pi\)
\(312\) 0 0
\(313\) 2.50781 0.141750 0.0708749 0.997485i \(-0.477421\pi\)
0.0708749 + 0.997485i \(0.477421\pi\)
\(314\) 0 0
\(315\) 104.368 5.88046
\(316\) 0 0
\(317\) −24.8062 −1.39326 −0.696629 0.717432i \(-0.745318\pi\)
−0.696629 + 0.717432i \(0.745318\pi\)
\(318\) 0 0
\(319\) −2.18518 −0.122347
\(320\) 0 0
\(321\) 45.6125 2.54584
\(322\) 0 0
\(323\) −0.326070 −0.0181430
\(324\) 0 0
\(325\) 8.70156 0.482676
\(326\) 0 0
\(327\) −13.3885 −0.740385
\(328\) 0 0
\(329\) 17.7016 0.975919
\(330\) 0 0
\(331\) −24.1513 −1.32748 −0.663739 0.747964i \(-0.731031\pi\)
−0.663739 + 0.747964i \(0.731031\pi\)
\(332\) 0 0
\(333\) −24.8062 −1.35937
\(334\) 0 0
\(335\) −42.0732 −2.29871
\(336\) 0 0
\(337\) −3.10469 −0.169123 −0.0845615 0.996418i \(-0.526949\pi\)
−0.0845615 + 0.996418i \(0.526949\pi\)
\(338\) 0 0
\(339\) −31.1473 −1.69169
\(340\) 0 0
\(341\) 5.61250 0.303934
\(342\) 0 0
\(343\) −15.5737 −0.840899
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.97384 −0.267010 −0.133505 0.991048i \(-0.542623\pi\)
−0.133505 + 0.991048i \(0.542623\pi\)
\(348\) 0 0
\(349\) 33.9109 1.81521 0.907605 0.419824i \(-0.137908\pi\)
0.907605 + 0.419824i \(0.137908\pi\)
\(350\) 0 0
\(351\) −11.5294 −0.615393
\(352\) 0 0
\(353\) 14.5969 0.776913 0.388457 0.921467i \(-0.373008\pi\)
0.388457 + 0.921467i \(0.373008\pi\)
\(354\) 0 0
\(355\) 30.5438 1.62110
\(356\) 0 0
\(357\) 3.91093 0.206989
\(358\) 0 0
\(359\) 2.95170 0.155785 0.0778923 0.996962i \(-0.475181\pi\)
0.0778923 + 0.996962i \(0.475181\pi\)
\(360\) 0 0
\(361\) −17.8062 −0.937171
\(362\) 0 0
\(363\) 30.5438 1.60314
\(364\) 0 0
\(365\) 22.2094 1.16249
\(366\) 0 0
\(367\) 28.9622 1.51181 0.755906 0.654680i \(-0.227197\pi\)
0.755906 + 0.654680i \(0.227197\pi\)
\(368\) 0 0
\(369\) −63.0156 −3.28046
\(370\) 0 0
\(371\) −5.90340 −0.306489
\(372\) 0 0
\(373\) 16.2094 0.839290 0.419645 0.907688i \(-0.362155\pi\)
0.419645 + 0.907688i \(0.362155\pi\)
\(374\) 0 0
\(375\) 42.6767 2.20382
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) −27.8696 −1.43156 −0.715782 0.698324i \(-0.753929\pi\)
−0.715782 + 0.698324i \(0.753929\pi\)
\(380\) 0 0
\(381\) −52.4187 −2.68549
\(382\) 0 0
\(383\) 8.57768 0.438299 0.219149 0.975691i \(-0.429672\pi\)
0.219149 + 0.975691i \(0.429672\pi\)
\(384\) 0 0
\(385\) 17.0156 0.867196
\(386\) 0 0
\(387\) 35.5177 1.80547
\(388\) 0 0
\(389\) −32.8062 −1.66334 −0.831671 0.555268i \(-0.812616\pi\)
−0.831671 + 0.555268i \(0.812616\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −23.3141 −1.17604
\(394\) 0 0
\(395\) −54.2061 −2.72740
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) −14.3180 −0.716799
\(400\) 0 0
\(401\) −24.2094 −1.20896 −0.604479 0.796621i \(-0.706619\pi\)
−0.604479 + 0.796621i \(0.706619\pi\)
\(402\) 0 0
\(403\) 5.13688 0.255886
\(404\) 0 0
\(405\) −58.5078 −2.90728
\(406\) 0 0
\(407\) −4.04429 −0.200468
\(408\) 0 0
\(409\) −9.40312 −0.464955 −0.232477 0.972602i \(-0.574683\pi\)
−0.232477 + 0.972602i \(0.574683\pi\)
\(410\) 0 0
\(411\) −62.9468 −3.10494
\(412\) 0 0
\(413\) −57.0156 −2.80556
\(414\) 0 0
\(415\) 27.1030 1.33044
\(416\) 0 0
\(417\) −48.5078 −2.37544
\(418\) 0 0
\(419\) −32.4030 −1.58299 −0.791494 0.611177i \(-0.790696\pi\)
−0.791494 + 0.611177i \(0.790696\pi\)
\(420\) 0 0
\(421\) 19.1047 0.931105 0.465553 0.885020i \(-0.345856\pi\)
0.465553 + 0.885020i \(0.345856\pi\)
\(422\) 0 0
\(423\) −28.1956 −1.37092
\(424\) 0 0
\(425\) 2.59688 0.125967
\(426\) 0 0
\(427\) −39.5620 −1.91454
\(428\) 0 0
\(429\) −3.40312 −0.164304
\(430\) 0 0
\(431\) −18.8514 −0.908042 −0.454021 0.890991i \(-0.650011\pi\)
−0.454021 + 0.890991i \(0.650011\pi\)
\(432\) 0 0
\(433\) 4.89531 0.235254 0.117627 0.993058i \(-0.462471\pi\)
0.117627 + 0.993058i \(0.462471\pi\)
\(434\) 0 0
\(435\) −23.0588 −1.10558
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 27.4291 1.30912 0.654560 0.756010i \(-0.272854\pi\)
0.654560 + 0.756010i \(0.272854\pi\)
\(440\) 0 0
\(441\) 71.7172 3.41510
\(442\) 0 0
\(443\) −11.8554 −0.563269 −0.281635 0.959522i \(-0.590877\pi\)
−0.281635 + 0.959522i \(0.590877\pi\)
\(444\) 0 0
\(445\) 22.2094 1.05283
\(446\) 0 0
\(447\) −39.8880 −1.88664
\(448\) 0 0
\(449\) 24.8062 1.17068 0.585340 0.810788i \(-0.300961\pi\)
0.585340 + 0.810788i \(0.300961\pi\)
\(450\) 0 0
\(451\) −10.2738 −0.483772
\(452\) 0 0
\(453\) −6.29844 −0.295926
\(454\) 0 0
\(455\) 15.5737 0.730105
\(456\) 0 0
\(457\) 0.806248 0.0377147 0.0188574 0.999822i \(-0.493997\pi\)
0.0188574 + 0.999822i \(0.493997\pi\)
\(458\) 0 0
\(459\) −3.44080 −0.160603
\(460\) 0 0
\(461\) −11.7016 −0.544996 −0.272498 0.962156i \(-0.587850\pi\)
−0.272498 + 0.962156i \(0.587850\pi\)
\(462\) 0 0
\(463\) 32.2399 1.49832 0.749158 0.662391i \(-0.230458\pi\)
0.749158 + 0.662391i \(0.230458\pi\)
\(464\) 0 0
\(465\) 59.2250 2.74649
\(466\) 0 0
\(467\) 29.2882 1.35530 0.677649 0.735386i \(-0.262999\pi\)
0.677649 + 0.735386i \(0.262999\pi\)
\(468\) 0 0
\(469\) −47.8219 −2.20821
\(470\) 0 0
\(471\) 6.22947 0.287039
\(472\) 0 0
\(473\) 5.79063 0.266253
\(474\) 0 0
\(475\) −9.50723 −0.436222
\(476\) 0 0
\(477\) 9.40312 0.430539
\(478\) 0 0
\(479\) 25.0809 1.14598 0.572988 0.819564i \(-0.305784\pi\)
0.572988 + 0.819564i \(0.305784\pi\)
\(480\) 0 0
\(481\) −3.70156 −0.168777
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −32.5969 −1.48015
\(486\) 0 0
\(487\) −2.95170 −0.133754 −0.0668771 0.997761i \(-0.521304\pi\)
−0.0668771 + 0.997761i \(0.521304\pi\)
\(488\) 0 0
\(489\) 29.6125 1.33912
\(490\) 0 0
\(491\) 34.5881 1.56094 0.780470 0.625193i \(-0.214980\pi\)
0.780470 + 0.625193i \(0.214980\pi\)
\(492\) 0 0
\(493\) −0.596876 −0.0268819
\(494\) 0 0
\(495\) −27.1030 −1.21819
\(496\) 0 0
\(497\) 34.7172 1.55728
\(498\) 0 0
\(499\) 38.7955 1.73672 0.868362 0.495932i \(-0.165173\pi\)
0.868362 + 0.495932i \(0.165173\pi\)
\(500\) 0 0
\(501\) −36.4187 −1.62707
\(502\) 0 0
\(503\) 8.41464 0.375190 0.187595 0.982246i \(-0.439931\pi\)
0.187595 + 0.982246i \(0.439931\pi\)
\(504\) 0 0
\(505\) 20.0000 0.889988
\(506\) 0 0
\(507\) −3.11473 −0.138330
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) 25.2439 1.11673
\(512\) 0 0
\(513\) 12.5969 0.556166
\(514\) 0 0
\(515\) 46.1175 2.03218
\(516\) 0 0
\(517\) −4.59688 −0.202170
\(518\) 0 0
\(519\) −29.2882 −1.28561
\(520\) 0 0
\(521\) 18.5078 0.810842 0.405421 0.914130i \(-0.367125\pi\)
0.405421 + 0.914130i \(0.367125\pi\)
\(522\) 0 0
\(523\) −19.0145 −0.831445 −0.415722 0.909492i \(-0.636471\pi\)
−0.415722 + 0.909492i \(0.636471\pi\)
\(524\) 0 0
\(525\) 114.031 4.97673
\(526\) 0 0
\(527\) 1.53304 0.0667802
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 90.8164 3.94109
\(532\) 0 0
\(533\) −9.40312 −0.407295
\(534\) 0 0
\(535\) 54.2061 2.34353
\(536\) 0 0
\(537\) −16.5078 −0.712365
\(538\) 0 0
\(539\) 11.6924 0.503628
\(540\) 0 0
\(541\) −8.29844 −0.356778 −0.178389 0.983960i \(-0.557088\pi\)
−0.178389 + 0.983960i \(0.557088\pi\)
\(542\) 0 0
\(543\) −8.08857 −0.347114
\(544\) 0 0
\(545\) −15.9109 −0.681550
\(546\) 0 0
\(547\) 21.8031 0.932235 0.466117 0.884723i \(-0.345652\pi\)
0.466117 + 0.884723i \(0.345652\pi\)
\(548\) 0 0
\(549\) 63.0156 2.68944
\(550\) 0 0
\(551\) 2.18518 0.0930917
\(552\) 0 0
\(553\) −61.6125 −2.62003
\(554\) 0 0
\(555\) −42.6767 −1.81153
\(556\) 0 0
\(557\) 7.70156 0.326326 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(558\) 0 0
\(559\) 5.29991 0.224162
\(560\) 0 0
\(561\) −1.01562 −0.0428796
\(562\) 0 0
\(563\) 9.01813 0.380069 0.190034 0.981777i \(-0.439140\pi\)
0.190034 + 0.981777i \(0.439140\pi\)
\(564\) 0 0
\(565\) −37.0156 −1.55726
\(566\) 0 0
\(567\) −66.5020 −2.79282
\(568\) 0 0
\(569\) 35.7016 1.49669 0.748344 0.663311i \(-0.230849\pi\)
0.748344 + 0.663311i \(0.230849\pi\)
\(570\) 0 0
\(571\) −5.29991 −0.221794 −0.110897 0.993832i \(-0.535372\pi\)
−0.110897 + 0.993832i \(0.535372\pi\)
\(572\) 0 0
\(573\) 12.5969 0.526242
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7.19375 −0.299480 −0.149740 0.988725i \(-0.547844\pi\)
−0.149740 + 0.988725i \(0.547844\pi\)
\(578\) 0 0
\(579\) −66.6650 −2.77050
\(580\) 0 0
\(581\) 30.8062 1.27806
\(582\) 0 0
\(583\) 1.53304 0.0634920
\(584\) 0 0
\(585\) −24.8062 −1.02561
\(586\) 0 0
\(587\) 9.50723 0.392406 0.196203 0.980563i \(-0.437139\pi\)
0.196203 + 0.980563i \(0.437139\pi\)
\(588\) 0 0
\(589\) −5.61250 −0.231259
\(590\) 0 0
\(591\) 50.7653 2.08820
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 4.64777 0.190540
\(596\) 0 0
\(597\) −58.2094 −2.38235
\(598\) 0 0
\(599\) −33.3325 −1.36193 −0.680965 0.732316i \(-0.738439\pi\)
−0.680965 + 0.732316i \(0.738439\pi\)
\(600\) 0 0
\(601\) 24.2984 0.991154 0.495577 0.868564i \(-0.334957\pi\)
0.495577 + 0.868564i \(0.334957\pi\)
\(602\) 0 0
\(603\) 76.1723 3.10197
\(604\) 0 0
\(605\) 36.2984 1.47574
\(606\) 0 0
\(607\) 12.1329 0.492458 0.246229 0.969212i \(-0.420809\pi\)
0.246229 + 0.969212i \(0.420809\pi\)
\(608\) 0 0
\(609\) −26.2094 −1.06206
\(610\) 0 0
\(611\) −4.20732 −0.170210
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 0 0
\(615\) −108.412 −4.37160
\(616\) 0 0
\(617\) 6.59688 0.265580 0.132790 0.991144i \(-0.457606\pi\)
0.132790 + 0.991144i \(0.457606\pi\)
\(618\) 0 0
\(619\) 36.6103 1.47149 0.735746 0.677258i \(-0.236832\pi\)
0.735746 + 0.677258i \(0.236832\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 25.2439 1.01138
\(624\) 0 0
\(625\) 7.20937 0.288375
\(626\) 0 0
\(627\) 3.71822 0.148491
\(628\) 0 0
\(629\) −1.10469 −0.0440467
\(630\) 0 0
\(631\) −1.69607 −0.0675196 −0.0337598 0.999430i \(-0.510748\pi\)
−0.0337598 + 0.999430i \(0.510748\pi\)
\(632\) 0 0
\(633\) 67.9109 2.69922
\(634\) 0 0
\(635\) −62.2947 −2.47209
\(636\) 0 0
\(637\) 10.7016 0.424011
\(638\) 0 0
\(639\) −55.2987 −2.18758
\(640\) 0 0
\(641\) 32.8062 1.29577 0.647884 0.761739i \(-0.275654\pi\)
0.647884 + 0.761739i \(0.275654\pi\)
\(642\) 0 0
\(643\) 20.1071 0.792945 0.396472 0.918047i \(-0.370234\pi\)
0.396472 + 0.918047i \(0.370234\pi\)
\(644\) 0 0
\(645\) 61.1047 2.40599
\(646\) 0 0
\(647\) 18.6884 0.734717 0.367358 0.930079i \(-0.380262\pi\)
0.367358 + 0.930079i \(0.380262\pi\)
\(648\) 0 0
\(649\) 14.8062 0.581196
\(650\) 0 0
\(651\) 67.3172 2.63837
\(652\) 0 0
\(653\) 47.0156 1.83986 0.919932 0.392079i \(-0.128244\pi\)
0.919932 + 0.392079i \(0.128244\pi\)
\(654\) 0 0
\(655\) −27.7065 −1.08258
\(656\) 0 0
\(657\) −40.2094 −1.56872
\(658\) 0 0
\(659\) −19.0145 −0.740699 −0.370349 0.928893i \(-0.620762\pi\)
−0.370349 + 0.928893i \(0.620762\pi\)
\(660\) 0 0
\(661\) 28.8062 1.12043 0.560217 0.828346i \(-0.310718\pi\)
0.560217 + 0.828346i \(0.310718\pi\)
\(662\) 0 0
\(663\) −0.929554 −0.0361009
\(664\) 0 0
\(665\) −17.0156 −0.659837
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 64.5078 2.49402
\(670\) 0 0
\(671\) 10.2738 0.396614
\(672\) 0 0
\(673\) −29.3141 −1.12997 −0.564987 0.825100i \(-0.691119\pi\)
−0.564987 + 0.825100i \(0.691119\pi\)
\(674\) 0 0
\(675\) −100.324 −3.86146
\(676\) 0 0
\(677\) 17.4031 0.668856 0.334428 0.942421i \(-0.391457\pi\)
0.334428 + 0.942421i \(0.391457\pi\)
\(678\) 0 0
\(679\) −37.0507 −1.42188
\(680\) 0 0
\(681\) −16.0000 −0.613121
\(682\) 0 0
\(683\) 49.0692 1.87758 0.938791 0.344488i \(-0.111948\pi\)
0.938791 + 0.344488i \(0.111948\pi\)
\(684\) 0 0
\(685\) −74.8062 −2.85820
\(686\) 0 0
\(687\) −27.7065 −1.05707
\(688\) 0 0
\(689\) 1.40312 0.0534548
\(690\) 0 0
\(691\) −28.5217 −1.08502 −0.542508 0.840050i \(-0.682525\pi\)
−0.542508 + 0.840050i \(0.682525\pi\)
\(692\) 0 0
\(693\) −30.8062 −1.17023
\(694\) 0 0
\(695\) −57.6469 −2.18667
\(696\) 0 0
\(697\) −2.80625 −0.106294
\(698\) 0 0
\(699\) −71.9649 −2.72196
\(700\) 0 0
\(701\) 17.4031 0.657307 0.328653 0.944451i \(-0.393405\pi\)
0.328653 + 0.944451i \(0.393405\pi\)
\(702\) 0 0
\(703\) 4.04429 0.152533
\(704\) 0 0
\(705\) −48.5078 −1.82691
\(706\) 0 0
\(707\) 22.7327 0.854951
\(708\) 0 0
\(709\) −3.19375 −0.119944 −0.0599719 0.998200i \(-0.519101\pi\)
−0.0599719 + 0.998200i \(0.519101\pi\)
\(710\) 0 0
\(711\) 98.1384 3.68048
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −4.04429 −0.151248
\(716\) 0 0
\(717\) 45.1047 1.68447
\(718\) 0 0
\(719\) 31.1473 1.16160 0.580800 0.814046i \(-0.302740\pi\)
0.580800 + 0.814046i \(0.302740\pi\)
\(720\) 0 0
\(721\) 52.4187 1.95218
\(722\) 0 0
\(723\) 14.9702 0.556747
\(724\) 0 0
\(725\) −17.4031 −0.646336
\(726\) 0 0
\(727\) −2.51125 −0.0931371 −0.0465685 0.998915i \(-0.514829\pi\)
−0.0465685 + 0.998915i \(0.514829\pi\)
\(728\) 0 0
\(729\) −1.80625 −0.0668981
\(730\) 0 0
\(731\) 1.58169 0.0585011
\(732\) 0 0
\(733\) −37.9109 −1.40027 −0.700136 0.714009i \(-0.746877\pi\)
−0.700136 + 0.714009i \(0.746877\pi\)
\(734\) 0 0
\(735\) 123.382 4.55103
\(736\) 0 0
\(737\) 12.4187 0.457450
\(738\) 0 0
\(739\) −17.5958 −0.647272 −0.323636 0.946182i \(-0.604905\pi\)
−0.323636 + 0.946182i \(0.604905\pi\)
\(740\) 0 0
\(741\) 3.40312 0.125017
\(742\) 0 0
\(743\) −2.02214 −0.0741853 −0.0370926 0.999312i \(-0.511810\pi\)
−0.0370926 + 0.999312i \(0.511810\pi\)
\(744\) 0 0
\(745\) −47.4031 −1.73672
\(746\) 0 0
\(747\) −49.0692 −1.79535
\(748\) 0 0
\(749\) 61.6125 2.25127
\(750\) 0 0
\(751\) −49.8357 −1.81853 −0.909266 0.416216i \(-0.863356\pi\)
−0.909266 + 0.416216i \(0.863356\pi\)
\(752\) 0 0
\(753\) 52.4187 1.91025
\(754\) 0 0
\(755\) −7.48509 −0.272410
\(756\) 0 0
\(757\) −12.2094 −0.443757 −0.221879 0.975074i \(-0.571219\pi\)
−0.221879 + 0.975074i \(0.571219\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.6125 0.855952 0.427976 0.903790i \(-0.359227\pi\)
0.427976 + 0.903790i \(0.359227\pi\)
\(762\) 0 0
\(763\) −18.0849 −0.654718
\(764\) 0 0
\(765\) −7.40312 −0.267661
\(766\) 0 0
\(767\) 13.5515 0.489317
\(768\) 0 0
\(769\) 12.2094 0.440281 0.220141 0.975468i \(-0.429348\pi\)
0.220141 + 0.975468i \(0.429348\pi\)
\(770\) 0 0
\(771\) 45.1880 1.62740
\(772\) 0 0
\(773\) 3.10469 0.111668 0.0558339 0.998440i \(-0.482218\pi\)
0.0558339 + 0.998440i \(0.482218\pi\)
\(774\) 0 0
\(775\) 44.6989 1.60563
\(776\) 0 0
\(777\) −48.5078 −1.74021
\(778\) 0 0
\(779\) 10.2738 0.368095
\(780\) 0 0
\(781\) −9.01562 −0.322604
\(782\) 0 0
\(783\) 23.0588 0.824053
\(784\) 0 0
\(785\) 7.40312 0.264229
\(786\) 0 0
\(787\) −0.766519 −0.0273235 −0.0136617 0.999907i \(-0.504349\pi\)
−0.0136617 + 0.999907i \(0.504349\pi\)
\(788\) 0 0
\(789\) −6.80625 −0.242309
\(790\) 0 0
\(791\) −42.0732 −1.49595
\(792\) 0 0
\(793\) 9.40312 0.333915
\(794\) 0 0
\(795\) 16.1771 0.573744
\(796\) 0 0
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) −1.25562 −0.0444208
\(800\) 0 0
\(801\) −40.2094 −1.42073
\(802\) 0 0
\(803\) −6.55554 −0.231340
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 38.0289 1.33868
\(808\) 0 0
\(809\) −27.1047 −0.952950 −0.476475 0.879188i \(-0.658086\pi\)
−0.476475 + 0.879188i \(0.658086\pi\)
\(810\) 0 0
\(811\) −16.0628 −0.564040 −0.282020 0.959409i \(-0.591004\pi\)
−0.282020 + 0.959409i \(0.591004\pi\)
\(812\) 0 0
\(813\) 13.1047 0.459601
\(814\) 0 0
\(815\) 35.1916 1.23271
\(816\) 0 0
\(817\) −5.79063 −0.202588
\(818\) 0 0
\(819\) −28.1956 −0.985235
\(820\) 0 0
\(821\) 25.9109 0.904298 0.452149 0.891942i \(-0.350658\pi\)
0.452149 + 0.891942i \(0.350658\pi\)
\(822\) 0 0
\(823\) −31.7995 −1.10846 −0.554230 0.832364i \(-0.686987\pi\)
−0.554230 + 0.832364i \(0.686987\pi\)
\(824\) 0 0
\(825\) −29.6125 −1.03097
\(826\) 0 0
\(827\) −11.3663 −0.395246 −0.197623 0.980278i \(-0.563322\pi\)
−0.197623 + 0.980278i \(0.563322\pi\)
\(828\) 0 0
\(829\) 51.6125 1.79258 0.896288 0.443472i \(-0.146254\pi\)
0.896288 + 0.443472i \(0.146254\pi\)
\(830\) 0 0
\(831\) −75.4057 −2.61580
\(832\) 0 0
\(833\) 3.19375 0.110657
\(834\) 0 0
\(835\) −43.2802 −1.49777
\(836\) 0 0
\(837\) −59.2250 −2.04712
\(838\) 0 0
\(839\) 32.2399 1.11305 0.556523 0.830832i \(-0.312135\pi\)
0.556523 + 0.830832i \(0.312135\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −31.1473 −1.07277
\(844\) 0 0
\(845\) −3.70156 −0.127338
\(846\) 0 0
\(847\) 41.2580 1.41764
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −23.1047 −0.791089 −0.395545 0.918447i \(-0.629444\pi\)
−0.395545 + 0.918447i \(0.629444\pi\)
\(854\) 0 0
\(855\) 27.1030 0.926905
\(856\) 0 0
\(857\) −12.8062 −0.437453 −0.218727 0.975786i \(-0.570190\pi\)
−0.218727 + 0.975786i \(0.570190\pi\)
\(858\) 0 0
\(859\) 14.6441 0.499651 0.249825 0.968291i \(-0.419627\pi\)
0.249825 + 0.968291i \(0.419627\pi\)
\(860\) 0 0
\(861\) −123.225 −4.19950
\(862\) 0 0
\(863\) 27.2661 0.928148 0.464074 0.885796i \(-0.346387\pi\)
0.464074 + 0.885796i \(0.346387\pi\)
\(864\) 0 0
\(865\) −34.8062 −1.18345
\(866\) 0 0
\(867\) 52.6730 1.78887
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 11.3663 0.385134
\(872\) 0 0
\(873\) 59.0156 1.99738
\(874\) 0 0
\(875\) 57.6469 1.94882
\(876\) 0 0
\(877\) −44.7172 −1.50999 −0.754996 0.655729i \(-0.772361\pi\)
−0.754996 + 0.655729i \(0.772361\pi\)
\(878\) 0 0
\(879\) −59.5060 −2.00709
\(880\) 0 0
\(881\) −55.7016 −1.87663 −0.938317 0.345777i \(-0.887615\pi\)
−0.938317 + 0.345777i \(0.887615\pi\)
\(882\) 0 0
\(883\) 40.8176 1.37362 0.686811 0.726836i \(-0.259010\pi\)
0.686811 + 0.726836i \(0.259010\pi\)
\(884\) 0 0
\(885\) 156.241 5.25197
\(886\) 0 0
\(887\) −19.0145 −0.638443 −0.319222 0.947680i \(-0.603421\pi\)
−0.319222 + 0.947680i \(0.603421\pi\)
\(888\) 0 0
\(889\) −70.8062 −2.37477
\(890\) 0 0
\(891\) 17.2697 0.578558
\(892\) 0 0
\(893\) 4.59688 0.153829
\(894\) 0 0
\(895\) −19.6180 −0.655756
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −10.2738 −0.342649
\(900\) 0 0
\(901\) 0.418745 0.0139504
\(902\) 0 0
\(903\) 69.4537 2.31127
\(904\) 0 0
\(905\) −9.61250 −0.319530
\(906\) 0 0
\(907\) 17.7588 0.589673 0.294836 0.955548i \(-0.404735\pi\)
0.294836 + 0.955548i \(0.404735\pi\)
\(908\) 0 0
\(909\) −36.2094 −1.20099
\(910\) 0 0
\(911\) 25.2439 0.836369 0.418184 0.908362i \(-0.362667\pi\)
0.418184 + 0.908362i \(0.362667\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 0 0
\(915\) 108.412 3.58400
\(916\) 0 0
\(917\) −31.4922 −1.03996
\(918\) 0 0
\(919\) 14.6441 0.483065 0.241532 0.970393i \(-0.422350\pi\)
0.241532 + 0.970393i \(0.422350\pi\)
\(920\) 0 0
\(921\) 49.0156 1.61512
\(922\) 0 0
\(923\) −8.25161 −0.271605
\(924\) 0 0
\(925\) −32.2094 −1.05904
\(926\) 0 0
\(927\) −83.4943 −2.74231
\(928\) 0 0
\(929\) 5.40312 0.177271 0.0886354 0.996064i \(-0.471749\pi\)
0.0886354 + 0.996064i \(0.471749\pi\)
\(930\) 0 0
\(931\) −11.6924 −0.383203
\(932\) 0 0
\(933\) −58.2094 −1.90569
\(934\) 0 0
\(935\) −1.20697 −0.0394721
\(936\) 0 0
\(937\) 32.8062 1.07173 0.535867 0.844303i \(-0.319985\pi\)
0.535867 + 0.844303i \(0.319985\pi\)
\(938\) 0 0
\(939\) −7.81116 −0.254908
\(940\) 0 0
\(941\) 16.8953 0.550771 0.275386 0.961334i \(-0.411194\pi\)
0.275386 + 0.961334i \(0.411194\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −179.555 −5.84091
\(946\) 0 0
\(947\) −19.4549 −0.632200 −0.316100 0.948726i \(-0.602373\pi\)
−0.316100 + 0.948726i \(0.602373\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) 77.2648 2.50548
\(952\) 0 0
\(953\) 49.3141 1.59744 0.798720 0.601704i \(-0.205511\pi\)
0.798720 + 0.601704i \(0.205511\pi\)
\(954\) 0 0
\(955\) 14.9702 0.484424
\(956\) 0 0
\(957\) 6.80625 0.220015
\(958\) 0 0
\(959\) −85.0273 −2.74568
\(960\) 0 0
\(961\) −4.61250 −0.148790
\(962\) 0 0
\(963\) −98.1384 −3.16247
\(964\) 0 0
\(965\) −79.2250 −2.55034
\(966\) 0 0
\(967\) −0.163035 −0.00524285 −0.00262143 0.999997i \(-0.500834\pi\)
−0.00262143 + 0.999997i \(0.500834\pi\)
\(968\) 0 0
\(969\) 1.01562 0.0326265
\(970\) 0 0
\(971\) 17.4328 0.559444 0.279722 0.960081i \(-0.409758\pi\)
0.279722 + 0.960081i \(0.409758\pi\)
\(972\) 0 0
\(973\) −65.5234 −2.10058
\(974\) 0 0
\(975\) −27.1030 −0.867992
\(976\) 0 0
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) −6.55554 −0.209516
\(980\) 0 0
\(981\) 28.8062 0.919713
\(982\) 0 0
\(983\) 49.9988 1.59471 0.797356 0.603509i \(-0.206231\pi\)
0.797356 + 0.603509i \(0.206231\pi\)
\(984\) 0 0
\(985\) 60.3297 1.92226
\(986\) 0 0
\(987\) −55.1356 −1.75499
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −20.8736 −0.663071 −0.331536 0.943443i \(-0.607567\pi\)
−0.331536 + 0.943443i \(0.607567\pi\)
\(992\) 0 0
\(993\) 75.2250 2.38719
\(994\) 0 0
\(995\) −69.1763 −2.19304
\(996\) 0 0
\(997\) 4.80625 0.152215 0.0761077 0.997100i \(-0.475751\pi\)
0.0761077 + 0.997100i \(0.475751\pi\)
\(998\) 0 0
\(999\) 42.6767 1.35023
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.a.f.1.1 4
3.2 odd 2 3744.2.a.be.1.3 4
4.3 odd 2 inner 416.2.a.f.1.4 yes 4
8.3 odd 2 832.2.a.p.1.1 4
8.5 even 2 832.2.a.p.1.4 4
12.11 even 2 3744.2.a.be.1.4 4
13.12 even 2 5408.2.a.bj.1.1 4
16.3 odd 4 3328.2.b.bb.1665.8 8
16.5 even 4 3328.2.b.bb.1665.7 8
16.11 odd 4 3328.2.b.bb.1665.1 8
16.13 even 4 3328.2.b.bb.1665.2 8
24.5 odd 2 7488.2.a.da.1.1 4
24.11 even 2 7488.2.a.da.1.2 4
52.51 odd 2 5408.2.a.bj.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.a.f.1.1 4 1.1 even 1 trivial
416.2.a.f.1.4 yes 4 4.3 odd 2 inner
832.2.a.p.1.1 4 8.3 odd 2
832.2.a.p.1.4 4 8.5 even 2
3328.2.b.bb.1665.1 8 16.11 odd 4
3328.2.b.bb.1665.2 8 16.13 even 4
3328.2.b.bb.1665.7 8 16.5 even 4
3328.2.b.bb.1665.8 8 16.3 odd 4
3744.2.a.be.1.3 4 3.2 odd 2
3744.2.a.be.1.4 4 12.11 even 2
5408.2.a.bj.1.1 4 13.12 even 2
5408.2.a.bj.1.4 4 52.51 odd 2
7488.2.a.da.1.1 4 24.5 odd 2
7488.2.a.da.1.2 4 24.11 even 2